多元正态总体参数的假设检验(上)
- 格式:ppt
- 大小:1.48 MB
- 文档页数:6
第六章(4)多元正态总体均值向量的假设检验类似一元统计分析中的各种均值和方差的检验相应给出多元统计分析中的各种均值向量和协差阵的检验。
我们只侧重于解释选取统计量的合理性,而不给出推导过程,最后给出几个实例第1节 HotellingT 2分布为了对多元正态总体均值向量作检验,首先需要给出HotellingT 2分布的定义。
定义 设),(~),,(~∑∑n W S N Xp p μ且X 与S 相互独立,pn ≥,则称统计量XS X n T12-'=的分布为非中心HotellingT 2分布,记为),,(~22μn p T T 。
当0=μ时,称2T 服从(中心)HotellingT 2分布,记为),(2n p T ,由于这一统计量的分布首先由Harold Hotelling 提出来的,故称为HotellingT 2分布,值得指出的是,我国著名统计学家许宝马录 先生在1938年用不同方法也导出T 2分布的密度函数,因表达式很复杂,故略去。
在一元统计中,若n X X ,,1 来自总体),(2σμN 的样本,则统计量:)1(~ˆ)(--=n t X n t σμ分布其中212)(11ˆ∑=--=ni iX Xn σ显然)()ˆ()(ˆ)(12222μσμσμ-'-=-=-X X n X n t与上边给出的T2统计量形式类似,且⎪⎪⎭⎫⎝⎛-n N X 2,0~σμ。
可见,T 2分布是一元统计中t 分布的推广。
基本性质:在一元统计中,若统计量)1(~-n t t 分布,则)1,1(~2-n F t 分布,即把t 分布的统计量转化为F 统计量来处理,在多元统计分析中T 2统计量也具有类似的性质。
定理 若),(~),,0(~∑∑n W S N Xp p 且X 与S 相互独立,令X S X n T 12-'=,则)1,(~12+-+-p n p F Tnpp n这个性质在后面经常用到。
第2节 均值向量的检验设p 元正态总体),(∑μp N ,从总体中抽取容量为n 的样本∑∑=='--==ni ni i i i n X X X XS X nX X X X 11)()()()()2()1())((,1,,,, 。
对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。
特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。
如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。
具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。
t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。
什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。
我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。
这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。
(2) 条件期望值为0。
给定解释变量的任何值,误差u 的期望值为零。
应用多元统计分析第3章 多元正态总体的假设检验- 1-•在一元正态总体 中,关于参数 的假设检验涉及到一个总体和多个总体情况,推广到多元正态总体 ,关于参数 的假设检验问题也涉及一个总体和多个总体情况。
本章我们只讨论关于均值向量 的假设检验问题。
•在多元统计中,用于检验 的抽样分布有维希特(Wishart)分布、霍特林(Hotelling)分布和威尔克斯(Wilks)分布,它们都是由来自多元正态总体 的样本构成的统计量。
在第2章中,我们已经讨论了维希特分布的定义和性质,本章我们讨论后两个统计量的分布。
霍特林 分布在一元统计中,若 ,且 相互独立,则或等价地下面把 的分布推广到多元正态总体。
定义3.1 设 , ,其中 ,且 与 相互独立。
则称统计量 为 统计量,其分布称为自由度为n的霍特林 分布,记为分布的性质性质1 设 是来自正态总体 的随机样本, 和A 分别是样本均值向量和样本离差阵,则性质2 分布与F分布的关系为:若 则分布的性质性质3 设 是来自正态总体 的随机样本, 和A 分别是样本均值向量和样本离差阵,记则性质4 分布只与n,p有关,而与 无关。
威尔克斯 分布定义3.2 设 ,称协方差阵 的行列式 为的广义方差。
若 是来自总体 的随机样本,A为样本离差阵,则称或 为样本广义方差。
定义3.3设 ,这里 ,且 与 独立,则称广义方差比为 统计量,其分布称为威尔克斯 分布,记为 。
当p=1时, 分布正是一元统计中参数为 的贝塔分布,即。
分布的性质性质1当 时,若 ,则当 时,若 ,则当p=1时,当p=2时,若 ,则当 时有下列极限分布其中 。
下面是 分布的两个有用性质。
性质6 若 ,则存在 , 且 之间相互独立,使得性质7 若 则单总体均值向量的假设检验设总体为 , 为来自该总体的随机样本。
欲检验下列假设:其中 为已知常数向量。
1. 当 已知时均值向量的假设检验此时于是有若检验统计量取为则当原假设 成立时, 。
对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββΛΛ22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。
特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。
如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。
具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。
t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。
什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。
我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。
这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。
(2) 条件期望值为0。
给定解释变量的任何值,误差u 的期望值为零。
第三章 多元正态总体参数的假设检验3.1 几个重要统计量的分布一、正态变量二次型的分布1、分量独立的n 维随机向量X 的二次型设),,1)(,(~21n i N X i i =σμ,且相互独立,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n X X X 1,则),(~2n n I N X σμ,其中)',,(1n μμμ =。
X 的二次型具有以下一些结论:结论1 当),,1(0n i i ==μ,12=σ时,则)(~'212n XX X ni iχξ∑===;当),,1(0n i i ==μ,12≠σ时,则)(~'122n X X χσ(或记为)(~'22n X X χσ)。
结论2 当),,1(0n i i =≠μ,X X '的分布常称为非中心2χ分布。
Def3.1.1 设n 维随机向量)0)(,(~≠μμn n I N X ,则称随机向量X X '=ξ为服从n 个自由度、非中心参数∑===ni i 12'μμμδ的2χ分布,记为)(~'),(~'22δχδχn X X n X X 或。
若时且1),0)(,(~22≠≠σμσμn n I N X ,有)(~'122δχσn X X 。
结论3 设),0(~2n n I N X σ,A 为对称矩阵,且r A rank =)(,则二次型 A A r AX X =⇔222)(~/'χσ(A 为对称幂等矩阵)。
结论4 设),(~2n n I N X σμ,'A A =,则),(~'122δχσr AX X ,其中A A A =⇔=22'1μμσδ,且)()(n r r A rank ≤=。
结论5 二次型与线性函数的独立性:设),(~2n n I N X σμ,A 为n 阶对称矩阵,B 为n m ⨯矩阵,令)(,'维随机向量为m Z BX Z AX X ==ξ,若O BA =,则AX X BX '和相互独立。
正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。
有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。
(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。
5.判断(同前) 注:这个检验法称为u检验。
(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。
(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。
在基础上依据抽样分布特点可构造统计量作为检验之⽤。
具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。
注:关于正态标准差的假设与上述三对假设等价,不另作讨论。
(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。
续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。
某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。
③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。
⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。
[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。
已知废⽔中该有毒化学物质的含量X服从正态分布。
该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。
第 3 章多元正态总体的假设检验与方差分析从本章开始,我们开始转入多元统计方法和统计模型的学习。
统计学分析处理的对象是带有随机性的数据。
按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。
由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。
所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。
统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。
统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。
参数估计问题回答诸如“未知参数的值有多大?”之类的问题, 而假设检验回答诸如“未知参数的值是吗?”之类的问题。
本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断,两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。
3.1 一元正态总体情形的回顾一、假设检验在假设检验问题中通常有两个统计假设(简称假设), 一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为和。
1、显著性检验2为便于表述,假定考虑假设检验问题:设X1, X2,…,X n来自总体N(,)的样本,我们要检验假设3.1)原假设H。
与备择假设H i应相互排斥,两者有且只有一个正确。
备择假设的意思是,一旦否定原假设H0 ,我们就选择已准备的假设H1。
2当 已知时,用统计量 z在原假设H 。
成立下,统计量z 服从正态分布z 〜N (0 ,1),通过查表,查得N(0 ,1)的上对于检验问题(3.1.1,我们制定这样一个检验规则(简称检验)(3.2)分位点z 2。
当z z 2时,拒绝H 0 ; 当z z 2时,接受H o 。
正态总体中参数的假设检验正态总体参数的假设检验是统计推断中的一种方法,用于判断总体参数是否符合我们的假设。
下面将详细介绍正态总体参数的假设检验原理和步骤。
一、假设检验原理正态总体参数的假设检验是通过收集样本数据,计算样本统计量来推断总体参数的方法,其中包括均值和标准差。
在进行正态总体参数的假设检验时,我们首先假设总体参数的值,并设立一个零假设和一个备择假设。
其中零假设(H0)是我们希望证伪的假设,备择假设(H1)是我们希望证明的假设。
然后,我们根据样本数据计算得到样本统计量,比如样本均值和样本标准差,并将其与假设中的总体参数进行比较。
通过计算假设检验统计量的值,我们可以判断是否拒绝零假设,即总体参数是否符合我们的假设。
二、假设检验步骤1.确定假设:我们首先需要确定我们要研究的总体参数是均值还是标准差,并设立零假设和备择假设。
通常情况下,零假设是总体参数等于一些特定值,备择假设可以是总体参数大于、小于或者不等于该特定值。
2.收集样本数据:我们需要从总体中取得一个样本,并记录相应的观测值。
3.计算样本统计量:根据样本数据,我们可以计算得到样本均值和样本标准差。
4.计算假设检验统计量:根据样本数据和零假设中的总体参数值,我们可以计算得到假设检验统计量的值,该值用于判断是否拒绝零假设。
5.设定显著性水平:我们需要设定一个显著性水平,通常为0.05或0.01、显著性水平表示拒绝零假设的程度,如果得到的结果小于显著性水平,则可以拒绝零假设。
6.判断拒绝或接受零假设:根据计算得到的假设检验统计量的值与临界值进行比较,如果假设检验统计量的值小于临界值,则拒绝零假设;如果假设检验统计量的值大于等于临界值,则接受零假设。
7.得出结论:根据拒绝或接受零假设的结果,我们可以得出总体参数是否符合我们的假设。
三、举例说明假设我们要研究厂生产的产品的重量是否符合标准,假设标准重量为500克。
我们收集了一个包含30个产品的样本,并计算得到样本的平均重量为495克,标准差为10克。