与圆有关的轨迹方程的求法培训资料
- 格式:doc
- 大小:459.00 KB
- 文档页数:8
圆的方程专题讲义一、知识梳理圆的定义与方程注意:1确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.()题组二:教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A .(x -3)2+(y +1)2=1B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=13.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.题组三:易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞)5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±46.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1三、典型例题题型一:圆的方典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________. 思维升华:(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.题型二:与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.引申探究1.在本例的条件下,求y x的最大值和最小值. 2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.思维升华:与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练:已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x的最大值和最小值; (2)求x +y 的最大值与最小值.题型三:与圆有关的轨迹问题典例已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.思维升华:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.注意:利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.四、反馈练习1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 3.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=44.若a ∈}431,0,2{ ,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C.1+22D.2+226.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=17.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.8.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.9.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为__________.10.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是__________.11.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为22,在y轴上截得的线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.12.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.13.已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|P A|2,其中A(0,1),B(0,-1),则d的最大值为________.14.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为55,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为_________________.。
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
与圆有关的轨迹问题知识点1 5种定义形式的圆1、“定义圆”:在平面内,到定点的距离等于定长的点的集合.数学语言描述为:在平面内,{|}M MA r =,其中M 为动点,A 为定点,0r >为定值.2、“斜率圆”:在平面内,与两定点斜率之积为-1的点的集合(除去定点所在垂直于x 轴的直线与曲线的交点).数学语言描述为∶在平面内,{|1}MA MB M k k ⋅=-,其中M 为动点,A ,B 为定点.且点M 的横坐标不等于A ,B 的横坐标.3、“平方圆”:在平面内,到两定点距离的平方和为定值的点的集合.数学语言描述为:在平面内,22{|}M MA MB λ+=,其中M 为动点,A ,B 为定点,λ为定值.注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]2224a cb d x y ac bd λ++-+-=--+-,此时221[()()]2a cb d λ>-+-.4、“向量圆”:在平面内,与两定点形成向量的数量积为定值的点的集合.数学语言描述为∶在平面内,{|}M MA MB λ⋅=,其中M 为动点,A ,B 为定点,λ为定值 注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]224a cb d x y ac bd λ++-+-=+-+-,此时221[()()]4a cb d λ>--+-.特别地,若A ,B 为定点,且0MA MB ⋅=,则点M 的轨迹是以AB 为直径的圆拓展:“角度圆”:在平面内,与两定点所成角为定值的点的集合.(角度可用向量的夹角公式表示) 5、“比值圆”(阿波罗尼斯圆):在平面内,到两定点距离之比为定值的点的集合. 数学语言描述为:{|}MAM MBλ=,其中M 为动点,A ,B 为定点,λ为定值,λ>0且λ≠1. 注:当1λ=时,M 的轨迹是线段AB 的垂直平分线. 6、这些圆彼此之间的联系:(1)斜率圆可以看成向量圆的特例,即两向量互相垂直时可以转化为两直线斜率之积等于-1,需要注意斜率不存在的情形.也就是说数量积为零比斜率之积为-1更一般. (2)比值圆与平方圆是一样的,都是用两点间距离公式求解.知识点2 注意“轨迹”与“轨迹方程”的区别1、“轨迹”是图形,“轨迹方程”是方程.2、求轨迹方程后要检验求轨迹方程后一定要注意检验轨迹的纯粹性和完备性,在所得的方程中删去或补上相应的特殊点,以保证方程的解与曲线上的点具有一一对应关系.考点一 直接法求轨迹解题方略:直接法是指将动点满足的几何条件或者等量关系,直接坐标化,列出等式,然后化简而求出动点轨迹方程的一种方法.此法的一般步骤∶建系、设点、列式、化简、限制说明.注:(1)根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等) (2)根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。
1.已知AB 是圆2522=+y x 的动弦,若6=AB ,则线段AB 的中点的轨迹方程为 .2.已知5=PQ ,P 到平面内一直线l 的距离为2且Q 到直线l 的距离为4,则满足条件的直线l 有 条.3.ABC ∆的三边长分别为||,||,||BC a BA c A C b ===,且a b c >>成等差数列,(1,0),(1,0)A C -,则顶点B 的轨迹方程为 .4.已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,由动点P 向圆O 和圆O '所引的切线长相等,则动点P 的轨迹方程为 .5.()24,P 是圆C :036282422=---+y x y x 内的一个定点,圆上的动点A 、B 满足ο90=∠APB ,则弦AB 的中点Q 的轨迹方程为 .轨迹方程热身练习知识梳理求轨迹是解析几何一个很重要的题型,方法较多,难度较大。
在此两讲中,我们将学习最为常见的几种求轨迹的方法(直接法、转移代入法、几何定义法、综合法、点差法、消参法、交轨法等).1、直接法直接法,又称“直译法”,是求轨迹最基本的方法,圆锥曲线的标准方程都是通过直接法得到的.解题步骤就是“建设现代化镇”(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.2、转移代入法转移代入法,也称“相关点法”.当动点是随着相关的点有规律的运动而运动时,可用此法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。
求轨迹方程的方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P 的坐标(x,y)表示该等量关系式,即可得到轨迹方程.3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g (t),进而通过消参化为轨迹的普通方程F(x,y)=0.4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用.(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变.2. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解.(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充.检验方法:研究运动中的特殊情形或极端情形.3.求轨迹方程还有整体法等其他方法.。
圆中的轨迹方程问题全文共四篇示例,供读者参考第一篇示例:圆中的轨迹方程问题一直是数学领域中的经典难题之一,其研究涉及到圆的性质、几何关系等多个方面。
在解决这类问题时,我们常常需要运用代数、几何、解析几何等知识,通过推理和分析来找出问题的解决方案。
让我们来了解一下什么是轨迹方程。
在数学领域中,轨迹方程是描述曲线或者点在运动中的路径的数学方程。
而在圆中的轨迹方程问题中,就是要求找出圆内部或者圆周上点的运动路径的方程。
在圆中的轨迹方程问题中,有一类比较经典的问题就是求解圆的内切方程。
内切方程是指一个点在圆内部的路径方程。
根据圆的性质和几何关系,我们可以通过分析得到内切方程的表达式。
以一个简单的例子来说明,给定一个半径为r的圆,圆心坐标为(a, b),点P(x, y)在圆内部运动。
我们可以通过利用圆的方程和点到圆心的距离等条件来推导出P点的轨迹方程。
我们知道圆的方程可以表示为:(x-a)² + (y-b)² = r²又因为点P在圆内部,所以P点到圆心的距离不能大于半径r。
即有:√[(x-a)² + (y-b)²] < r在解决圆中的轨迹方程问题时,我们还可以运用解析几何的方法来求解。
通过将问题转化为代数方程组,利用代数方法来解决。
举个例子,假设有一个半径为r的圆,圆心在原点O(0, 0),一个移动点M(x, y)在圆周上运动。
我们需要求出M点的轨迹方程。
根据圆的定义,M点在圆周上,所以有:x² + y² = r²M点的横纵坐标均为x,y,因此M点在第一象限、第二象限、第三象限和第四象限的坐标可以分别表示为(x, y),(-x, y),(-x, -y),(x, -y)。
M点的轨迹方程为:(x² + y² - r²)(x² + y² - r²)(x² + y² - r²)(x² + y² - r²) = 0两个圆的轨迹交点可以表示为一个方程组,通过求解方程组的解得到轨迹交点的坐标。
高一数学复习考点知识讲解课件第3课时轨迹问题考点知识1.掌握定义法求圆的方程.2.掌握直接法求圆的方程.3理解相关的方法(代入法)求轨迹方程.一、定义法求轨迹方程例1已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC =60°,当B ,C 在圆上运动时,BC 中点D 的轨迹方程是() A .x 2+y 2=12 B .x 2+y 2=14 C .x 2+y 2=12⎝ ⎛⎭⎪⎫x <12D .x 2+y 2=14⎝ ⎛⎭⎪⎫x <14答案D解析如图所示,因为∠BAC =60°,又因为圆周角等于圆心角的一半,所以∠BOC=120°,又D为BC的中点,OB=OC,所以∠BOD=60°,在Rt△BOD中,有OD=12OB=1 2,故中点D的轨迹方程是x2+y2=14,如图,由∠BAC的极限位置可得,x<14.反思感悟(1)当动点满足到定点距离等于定长时,直接求圆心、半径得圆的方程.(2)注意轨迹与轨迹方程不同.跟踪训练1长度为6的线段AB的两个端点A和B分别在x轴和y轴上滑动,则线段AB 的中点M的轨迹方程为__________.答案x2+y2=9解析设M(x,y),因为△AOB是直角三角形,所以OM=12AB=3为定值,故M的轨迹为以O为圆心,3为半径的圆,故x2+y2=9即为所求.二、直接法求轨迹方程例2点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上的动点.若∠PBQ=90°,求线段PQ的中点N的轨迹方程.解设线段PQ的中点为N(x,y),在Rt△PBQ中,PN=BN.设O为坐标原点,连接ON(图略),则ON⊥PQ,∴OP2=ON2+PN2=ON2+BN2,∴x2+y2+(x-1)2+(y-1)2=4,故线段PQ的中点N的轨迹方程为x2+y2-x-y-1=0.反思感悟直接法求轨迹方程的两种常见类型及解题策略直接法求轨迹方程,就是设出动点的坐标(x,y),然后根据题目中的等量关系列出x,y 之间的关系并化简.主要有以下两类常见题型.(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.提醒:求出曲线的方程后要注意验证方程的纯粹性和完备性.跟踪训练2点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点.求过点B的弦的中点T的轨迹方程.解设T(x,y).因为点T是弦的中点,所以OT⊥BT.当斜率存在且不为0时,有k OT·k BT=-1.即y x ·y -1x -1=-1,整理得x 2+y 2-x -y =0.当x =0或1时,点(0,0),(0,1),(1,0),(1,1)也都在圆上. 故所求轨迹方程为x 2+y 2-x -y =0. 三、代入法求轨迹方程例3已知动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程.解设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点,∴⎩⎪⎨⎪⎧x =x 0+32,y =y 02,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y ,又∵M 在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1, ∴P 点的轨迹方程为(2x -3)2+4y 2=1. 反思感悟代入法求解曲线方程的步骤 (1)设动点P (x ,y ),相关动点M (x 0,y 0).(2)利用条件求出两动点坐标之间的关系⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y ).(3)代入相关动点的轨迹方程.(4)化简、整理,得所求轨迹方程.其步骤可总结为“一设、二找、三代、四整理”.跟踪训练3设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON (O 为坐标原点)为邻边作平行四边形MONP ,求点P 的轨迹方程. 解如图所示,连接OP ,MN .设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42. 因为平行四边形的对角线互相平分, 所以x 2=x 0-32,y 2=y 0+42, 所以⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4,即所求点P 的轨迹方程为(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).1.知识清单: (1)定义法求轨迹方程. (2)直接法求轨迹方程. (3)代入法求轨迹方程. 2.方法归纳:数形结合.3.常见误区:将求轨迹方程与求轨迹弄混.1.若Rt △ABC 的斜边的两端点A ,B 的坐标分别为(-3,0)和(7,0),则直角顶点C 的轨迹方程为()A .x 2+y 2=25(y ≠0)B .x 2+y 2=25C .(x -2)2+y 2=25(y ≠0)D .(x -2)2+y 2=25 答案C解析线段AB 的中点为(2,0),因为△ABC 为直角三角形,C 为直角顶点,所以C 到点(2,0)的距离为12AB =5,所以点C (x ,y )满足(x -2)2+y 2=5(y ≠0),即(x -2)2+y 2=25(y ≠0).2.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是() A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案A解析设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.3.已知动点M 到点(8,0)的距离等于点M 到点(2,0)的距离的2倍,则点M 的轨迹方程是__________. 答案x 2+y 2=16 解析设M (x ,y ),则(x -8)2+y 2=2(x -2)2+y 2,整理可得点M 的轨迹方程为x 2+y 2=16.4.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________________. 答案x 2+y 2-4x +2y +1=0解析由条件知A(2,-1),设M(x,y),则P(2x-2,2y+1),由于P在圆上,∴(2x-2)2+(2y+1)2-4(2x-2)+2(2y+1)-11=0,整理得x2+y2-4x+2y+1=0.课时对点练1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是() A.x2+y2=4B.x2-y2=4C.x2+y2=4(x≠±2)D.x2-y2=4(x≠±2)答案C解析设P(x,y),由条件知PM⊥PN,且PM,PN的斜率肯定存在,故k MP·k NP=-1.即x2+y2=4,又当P,M,N三点共线时,不能构成三角形,所以x≠±2,即所求轨迹方程为x2+y2=4(x≠±2).2.古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A,B距离之比是常数λ(λ>0,λ≠1)的点M的轨迹是圆.若两定点A,B的距离为3,动点M满足MA=2MB,则M点的轨迹围成区域的面积为()A.πB.2πC.3πD.4π答案D解析以A点为原点,直线AB为x轴建立平面直角坐标系,则可取B(3,0).设M(x,y),依题意有,x2+y2(x-3)2+y2=2,化简整理得,x2+y2-8x+12=0,即(x-4)2+y2=4,圆的面积为4π.3.已知圆C:(x-a)2+(y-b)2=1过点A(1,0),则圆C的圆心的轨迹是()A.点B.直线C.线段D.圆答案D解析∵圆C:(x-a)2+(y-b)2=1过点A(1,0),∴(1-a)2+(0-b)2=1,∴(a-1)2+b2=1,∴圆C的圆心的轨迹是以(1,0)为圆心,1为半径的圆.4.已知A,B是圆O:x2+y2=16上的两点,且AB=6,若以AB为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程是()A.(x-2)2+(y+1)2=9B.(x-1)2+(y+1)2=9C.(x+1)2+(y-1)2=9D.(x+1)2+(y+1)2=9答案B解析设圆心M 的坐标为(x ,y ),则(x -1)2+(y +1)2=⎝ ⎛⎭⎪⎫AB 22,即(x -1)2+(y +1)2=9.5.已知两定点A (-2,0),B (1,0),若动点P 满足P A =2PB ,则P 的轨迹为() A .直线B .线段 C .圆D .半圆 答案C解析设点P 的坐标为(x ,y ),∵A (-2,0),B (1,0),动点P 满足P A =2PB ,∴(x +2)2+y 2=2(x -1)2+y 2,两边平方得(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4. ∴P 的轨迹为圆.6.如图,已知线段AB 的中点C 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,则线段AB 的端点B 的轨迹方程为()A .(x -9)2+(y -6)2=4B .(x -6)2+(y -9)2=4C .(x +6)2+(y +9)2=4D .(x +9)2+(y +6)2=4 答案A解析设B 点坐标是(x ,y ),点A 的坐标是(x 0,y 0),由于点C 的坐标是(4,3)且点C 是线段AB 的中点,所以4=x 0+x 2,3=y 0+y 2,于是有x 0=8-x ,y 0=6-y .①因为点A 在圆(x +1)2+y 2=4上运动,所以点A 的坐标满足方程(x +1)2+y 2=4,即(x 0+1)2+y 20=4,②把①代入②,得(8-x +1)2+(6-y )2=4,整理,得(x -9)2+(y -6)2=4.所以点B 的轨迹方程为(x -9)2+(y -6)2=4.7.已知圆O :x 2+y 2=4及一点P (-1,0),Q 在圆O 上运动一周,PQ 的中点M 形成轨迹C ,则轨迹C 的方程为____________________.答案⎝ ⎛⎭⎪⎫x +122+y 2=1 解析设M (x ,y ),则Q (2x +1,2y ),因为Q 在圆x 2+y 2=4上,所以(2x +1)2+4y 2=4,即⎝ ⎛⎭⎪⎫x +122+y 2=1, 所以轨迹C 的方程是⎝ ⎛⎭⎪⎫x +122+y 2=1. 8.圆x 2+y 2=8内有一点P (2,-1),AB 为过点P 的弦,则AB 的中点Q 的轨迹方程为______________.答案x 2+y 2+y -2x =0解析设AB 的中点为Q (x ,y ),则AB 的斜率为k =y +1x -2,又OQ ⊥AB ,所以k OQ ·k =-1,即y x ·y +1x -2=-1,整理得x 2+y 2+y -2x =0, 所以点Q 的轨迹方程为x 2+y 2+y -2x =0.9.已知两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹方程.解以两定点A ,B 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系, 设A (-3,0),B (3,0),M (x ,y ),则MA 2+MB 2=26.∴(x +3)2+y 2+(x -3)2+y 2=26.化简得M 点的轨迹方程为x 2+y 2=4.10.已知圆(x +1)2+y 2=2上动点A ,x 轴上定点B (2,0),将BA 延长到M ,使AM =BA ,求动点M 的轨迹方程.解设A (x 1,y 1),M (x ,y ),∵AM =BA ,且M 在BA 的延长线上,∴A 为线段MB 的中点.由中点坐标公式得⎩⎪⎨⎪⎧ x 1=x +22,y 1=y 2,∵A 在圆上运动,将点A 的坐标代入圆的方程,得⎝ ⎛⎭⎪⎫x +22+12+⎝ ⎛⎭⎪⎫y 22=2, 化简得(x +4)2+y 2=8,∴点M 的轨迹方程为(x +4)2+y 2=8.11.等腰三角形ABC 中,若一腰的两个端点分别是A (4,2),B (-2,0),A 为顶点,则另一腰的一个端点C 的轨迹方程是()A .x 2+y 2-8x -4y =0B .x 2+y 2-8x -4y -20=0(x ≠-2,x ≠10)C .x 2+y 2+8x +4y -20=0(x ≠-2,x ≠10)D .x 2+y 2-8x -4y +20=0(x ≠-2,x ≠10)答案B解析设另一腰的一个端点C 的坐标为(x ,y ),由题设条件知(x -4)2+(y -2)2=40,x ≠10,x ≠-2.整理,得x 2+y 2-8x -4y -20=0(x ≠10,x ≠-2).12.已知△ABC 的顶点A (0,0),B (4,0),且AC 边上的中线BD 的长为3,则顶点C 的轨迹方程是__________.答案(x -8)2+y 2=36(y ≠0)解析设C (x ,y )(y ≠0),则D ⎝ ⎛⎭⎪⎫x 2,y 2. ∵B (4,0),且AC 边上的中线BD 长为3,∴⎝ ⎛⎭⎪⎫x 2-42+⎝ ⎛⎭⎪⎫y 22=9, 即(x -8)2+y 2=36(y ≠0).13.存在如下结论:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.现已知在平面直角坐标系中A (-2,0),B (2,0),动点P 满足P A =λPB (λ>0),若点P 的轨迹为一条直线,则λ=__________;若λ=2,则点P 的轨迹方程为__________________.答案1x 2+y 2-203x +4=0解析设P (x ,y ),由P A =λPB ,可得(x +2)2+y 2=λ(x -2)2+y 2,两边平方,整理得点P 的轨迹方程为(1-λ2)x 2+(1-λ2)y 2+4(1+λ2)x +4-4λ2=0.若该方程表示直线,则⎩⎪⎨⎪⎧1-λ2=0,1+λ2≠0,解得λ=1或λ=-1(舍去).若λ=2,则点P 的轨迹方程为3x 2+3y 2-20x +12=0,即x 2+y 2-203x +4=0.14.已知△ABC 的边AB 的长为4,若BC 边上的中线为定长3,则顶点C 的轨迹方程为______________.答案(x +6)2+y 2=36(y ≠0)解析以直线AB 为x 轴,AB 的中垂线为y 轴建立平面直角坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 的中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0.①∵AD =3,∴(x 0+2)2+y 20=9.②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).15.在Rt △ABC 中,∠ABC =90°,AB =23,BC =4.在△ABD 中,∠ADB =120°,则CD 的取值范围是() A .[27-2,27+2] B .(4,23+2]C .[27-2,23+2]D .[23-2,23+2]答案C解析以点B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴建立平面直角坐标系,则B (0,0),A (23,0),C (0,4).设D (x ,y ),因为∠ADB =120°,所以由题易知点D 可能在直线AB 的上方,也可能在直线AB 的下方.当点D 在直线AB 的上方时,直线BD 的斜率k 1=y x ,直线AD 的斜率k 2=y x -23. 由两直线的夹角公式可得tan120°=-tan60°=k 2-k 11+k 2·k 1, 即-3=y x -23-y x 1+y x -23·y x,化简整理得(x -3)2+(y +1)2=4,可得点D 的轨迹是以点M (3,-1)为圆心,以r =2为半径的圆,且点D 在AB 的上方,所以是圆在AB 上方的劣弧部分,此时CD 的最短距离为CM -r =(3)2+(4+1)2-2=27-2.当点D 在直线AB 的下方时,同理可得点D 的轨迹方程为(x -3)2+(y -1)2=4,此时点D 的轨迹是以点N (3,1)为圆心,以r =2为半径的圆,且点D 在AB 的下方,所以是圆在AB 下方的劣弧部分,此时CD 的最大距离为CN +r =(3)2+(4-1)2+2=23+2. 所以CD 的取值范围为[27-2,23+2].16.已知圆O :x 2+y 2=4,直线l 1的方程为(1+2m )x +(m -1)y -3m =0.若直线l 1过定点P ,点M ,N 在圆O 上,且PM ⊥PN ,Q 为线段MN 的中点,求点Q 的轨迹方程. 解直线l 1的方程为(1+2m )x +(m -1)y -3m =0,即(x -y )+m (2x +y -3)=0,则有⎩⎪⎨⎪⎧ x -y =0,2x +y -3=0,解得⎩⎪⎨⎪⎧x =1,y =1,即点P 的坐标为(1,1).因为点M ,N 在圆O 上,且PM ⊥PN ,Q 为线段MN 的中点,则MN =2PQ ,设MN 的中点Q (x ,y ),则OM 2=OQ 2+MQ 2=OQ 2+PQ 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简可得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32,即为点Q 的轨迹方程.。
专题 轨迹方程的求法例1、 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.例2、已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线例3、【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
M(x,y)B(a,0)A(-a,0)oyx例4、已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.例5、【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
(1) 求点P 的轨迹方程;(2) 设点Q 在直线3x =-上,且1OP PQ ⋅=。
证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。
例6、过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.122=+y x MQ ()0>λλ例7、设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线例8、[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.例9、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程例10、如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
圆的轨迹方程求法技巧《说说圆的轨迹方程求法那些事儿》嘿,家人们!今天咱就来唠唠这个圆的轨迹方程求法技巧。
一说到圆啊,咱就想起那光滑圆润的形状,感觉特亲切。
求圆的轨迹方程呢,就像是追寻圆这家伙在数学世界里留下的脚印。
这可不是啥简单事儿,但别怕,咱有技巧!首先啊,你得跟那些已知条件搞好关系。
就好比你要去了解一个人的喜好才能跟他好好相处一样。
这些条件就是圆留下的蛛丝马迹,顺着它们往往就能找到圆的“藏身之处”。
比如说,给你几个点的坐标,或者说给你一条线段的长度啥的,这些都是关键线索呢!然后呢,咱就得用些“秘密武器”了。
什么待定系数法、直接法、定义法等等。
待定系数法就像是给圆穿上一件合适的衣服,通过设定几个参数,然后根据已知条件来确定它们的值,嘿,圆的样子就出来了。
直接法呢,就是直截了当地根据圆的性质去列式子,简单粗暴但有效。
定义法就更有意思了,直接根据圆的定义来,找到那个固定点和定长,圆就到手了!咱举个例子哈,比如告诉你一个点到另外两个固定点的距离之和是定值,那你就得反应过来,这可能是让咱用椭圆或者圆的定义来求轨迹方程啦。
嘿,这时候你就得机灵点,别傻傻地不知所措。
有时候啊,求这个轨迹方程就跟玩侦探游戏一样,得细心分析,不放过任何一个小细节。
一个不小心,可能就把圆给弄丢啦!当然啦,这过程中免不了会犯错。
就像咱走路也会摔跟头一样,没啥大不了的。
错了就改嘛,总结经验,下次就不会再犯啦。
总之呢,求圆的轨迹方程就是一场有趣的挑战。
咱得像个探险家一样,满怀好奇地去寻找答案。
别怕困难,跟着那些技巧,一步一个脚印地走,终究能找到那个漂亮的圆的轨迹方程。
所以啊,小伙伴们,加油吧!让我们一起在圆的轨迹方程的世界里尽情玩耍,找到属于我们自己的数学乐趣!嘿嘿,冲呀!。
与圆有关的轨迹方程
的求法
与圆有关的轨迹方程的求法
若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:
⎩
⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α)
,(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.
例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.
【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程.
【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ).
∵OQ 为∠AOP 的平分线,∴
3
1||||==OQ OP QA PQ , ∴Q 分PA 的比为31
.
∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622
=+⎪⎭⎫ ⎝⎛-y x . ∴Q 的轨迹方程为)0(16
9)43
(22>=+-y y x . 例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )
A .4)1(22=+-y x
B .)10(4)1(22<≤=+-x y x
C .4)2(22=+-y x
D .)10(4)2(22<≤=+-x y x
变式练习
1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且
MB AM 3
1=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(3
1),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩
⎪⎪⎨⎧=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴
12121=+y x ,∴1)34()134(22=+-y x ,即16
9)43(22=+-y x ,∴点M 的轨迹方程是16
9)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .
解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴3
1==OB OA MB AM , ∴MB AM 3
1=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 3:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.
解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,
∴点M 的坐标为)2
,2(y x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12
(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .
4、圆9)1()2(22=++-y x 的弦长为2,则弦的中点的轨迹方程是
5、已知半径为1的动圆与圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( )
A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(22=++-y x
C. 9)7()5(22=++-y x D. 25)7()5(22=++-y x 或9)7()5(2
2=++-y x 6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )
A B 4 C 8 D 9
7:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为2
1,求点M 的轨迹方程.
8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.
分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.
解:设),(y x H ,),(''y x C ,连结AH ,CH ,
则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,
所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.
所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.
,2''x x y y 又),(''y x C 满足42'2'=+y x ,
所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.
说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.
9. 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.
分析:利用几何法求解,或利用转移法求解,或利用参数法求解.
解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,
在直角三角形AOM 中,若设),(y x Q ,则)2
,2(
b y a x M ++. 由222OA AM OM =+,即 22222])()[(4
1)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.
解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22
121r y x =+,
22222r y x =+. 又2
2AB PQ =,即
)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.① 又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即
)(22)()(2121222y y x x r b y a x ++=+++ ②
①+②,有)(222222b a r y x +-=+.
这就是所求的轨迹方程.
解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q ,
由于APBQ 为矩形,故AB 与PQ 的中点重合,即有
βαcos cos r r a x +=+, ①
βαsin sin r r b y +=+, ② 又由PB PA ⊥有1cos sin cos sin -=--⋅--a
r b r a r b r ββαα ③
联立①、②、③消去α、β,即可得Q 点的轨迹方程为
)(222222b a r y x +-=+.
说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.
10、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .
解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴
222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .
练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.
解:设动点P 的坐标为),(y x P .由)0(>=a a PB PA ,得a y c x y c x =+-++222
2)()(,
化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .
当1≠a 时,化简得01)1(22222
2=+-+++c x a a c y x ,整理得222222
)1
2()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .
所以当1≠a 时,P 点的轨迹是以)0,1
1(22
c a a -+为圆心,122-a ac 为半径的圆; 当1=a 时,P 点的轨迹是y 轴.
11、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于
解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.。