第26讲-追及问题(1)(习题导学案教案)(奥数实战演练习题)
- 格式:doc
- 大小:72.81 KB
- 文档页数:10
第26讲追及问题根据“路程和=速度和×时间”解决简单的直线上的追及问题通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为v甲和v乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间t追了乙5米例1、小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?【解析】典例分析知识梳理教学目标小明12分钟走的路程200米/分当爸爸开始追小明时,小明已经离家:70×12=840(米),即爸爸要追及的路程为840米,也就是爸爸与小明的距离是840米,我们把这个距离叫做“路程差”,爸爸出发后,两人同时走,每过1分,他们之间的距离就缩短280-70=210(米),也就是爸爸与小明的速度差为280-70=210 (米/分),爸爸追及的时间:840÷210=4 (分钟).当爸爸追上小明时,小明已经出发12+4=16 (分钟),此时离家的距离是:70×16=1120(米)例2、下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【解析】若经过5分钟,弟弟已到了A地,此时弟弟已走了40×5=200(米);哥哥每分钟比弟弟多走20米,几分钟可以追上这200米呢?40×5÷(60-40)=200÷20=10(分钟),哥哥10分钟可以追上弟弟.例3、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?【解析】(1)4小时后相差多少千米:(340-300)×4=160(千米).(2)甲机提高速度后每小时飞行多少千米:160÷2+340=420(千米).例4、王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?【解析】已知二人出2分钟后,王芳返回学校取运动服,这样用去了5分钟,在学校又耽误了2分钟,王芳一共耽误了5×2+2= 12(分钟).李华在这段时间比王芳多走:70×12= 840(米),速度差为:110-70=40 (米/秒),王芳追上李华的时间是:840 ÷40=21(分钟)例5、两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?【解析】甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时 乙到达目标时所用时间:9001009÷=(分钟),甲9分钟走的路程:809720⨯=(米),甲距目标还有:900720180-=(米),相遇时间:180(10080)1÷+=(分钟),共用时间:9+1=10 (分钟).例6、龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题: 它们谁胜利了?为什么?500米终点起点【解析】(1) 乌龟胜利了.因为兔子醒来时,乌龟离终点只有40米,乌龟需要40104÷=(分钟)就能到达终点,而兔子离终点还有500米,需要5001005÷=(分钟)才能到达,所以乌龟胜利了.(2)乌龟跑到终点还要40104÷=(分钟),而小兔跑到终点还要100021005÷÷=(分钟),慢1分钟.当胜利者乌龟跑到终点时,小兔离终点还有:1001100⨯=(米).例7、小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?【解析】小红让小蓝先跑20米,则20米就是小红、小蓝二人的路程差,小红跑5秒钟追上小蓝,5秒就是追及时间,据此可求出他们的速度差为2054÷=(米/秒);若小红让小蓝先跑4秒,则小红6秒可追上小蓝,在这个过程中,追及时间为6秒,根据上一个条件,由追及差和追及时间可求出在这个过程中的路程差,这个路程差即是小蓝4秒钟所行的路程,路程差就等于4624⨯=(米),也即小蓝在4秒内跑了24米,所以可求出小蓝的速度,也可求出小红的速度.综合列式计算如下:小蓝的速度为:205646÷⨯÷=(米/秒),小红的速度为:6410+=(米/秒)例8、刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?【解析】这道题没有出发时间,没有学校到韩丁家的距离,也就是说既没有时间又没有路程,似乎无法求速度.这就需要通过已知条件,求出时间和路程.假设有A ,B 两人同时从学校出发到韩丁家,A 每小时行10千米,下午1点到;B 每小时行15千米,上午11点到.B 到韩丁家时,A 距韩丁家还有10×2=20(千米),这20千米是B 从学校到韩丁家这段时间B 比A 多行的路程.因为B 比A 每小时多行15-10=5(千米),所以B 从学校到韩丁家所用的时间是20÷(15-10)=4(时).由此知,A ,B 是上午7点出发的,学校离韩丁家的距离是15×4=60(千米).刘老师要想中午12点到,即想(12-7=)5时行60千米,刘老师骑车的速度应为60÷(12-7)=12(千米/时).例9、甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
追及问题学生/课程年级四年级学科数学授课教师日期时段11:00~11:40 核心内容相遇问题课型一对一/一对N教学目标1.理解总路程,相遇时间,速度和并熟记相遇问题中的四个常用公式2.会根据题意画出线段图,分析数量关系,从而解决实际问题重、难点重点:教学目标1.2 难点:教学目标2知识导图导学一:简单追及问题知识点讲解 1:求追及路程追及问题的基本运动模式是:同向运动的一慢一快的两个物体先有一段距离,由于后面的运动物体的速度快,因此在某一时刻追上前面的运动物体,这叫做追及问题。
追及路程:原来相隔的一段距离,追及时间:同时出发到追上,两运动物体所用的时间速度差:两运动物体各自速度的差(即每一个单位时间里追及的路程)追及问题的基本数量关系:(1)速度差×追及时间=追及路程(路程差)(2)追及路程÷速度差=追及时间(3)追及路程÷追及时间=速度差(根据其中一个速度可以求另一个速度)例 1. 机灵兔和大角牛在两地同时同向而行,机灵兔在前,大角牛在后,机灵兔每小时走5千米,大角牛每小时走14千米,2小时后大角牛追上了机灵兔,问2小时前,大角牛和机灵兔相距多远?我爱展示1.甲、乙两人分别从A、B两地同时出发,同向而行。
甲在前乙在后。
已知甲每分钟走50米,乙每分钟走70米,12分钟乙追上甲,A、B两地相距多远?2.甲、乙两车同时分别从A、B两地出发,同向而行,已知甲车在前,乙车在后,甲车的速度是50千米/时,乙车速度是80千米/时,3小时后乙车追上甲车,求A、B两地的距离。
知识点讲解 2:求追及时间例 1. A、B两地相距18千米,甲从A地,乙从B地同时出发同向而行,甲每小时行5千米,乙每小时行2千米,甲经过几小时追上乙?例 2. 黄艳以75米/分的速度步行去县城,出发1小时后,陆军以575米/分的速度从同一地点出发沿同一条路线去追黄艳。
追上时,黄艳还没到县城,求陆军出发后几分钟追上黄艳?我爱展示1.甲、乙两人相距150米,甲在前乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?2.哥哥以80米/分的速度步行放学回家,12分钟后弟弟以200米/分的速度骑自行车从同一学校放学回家,追上时哥哥还没到家。
第二十六讲行程问题联想法解题行程应用题的三个基本量是路程、时间和速度。
根据物体运动的起始位置、运动结果等因素,行程问题可分为相遇问题和追及问题两大类。
由于复杂的行程问题中运动方向、出发或到达时间、地点等条件变化多端,而且与其他典型问题综合,使得速度、时间、路程中的对应关系不易捕捉,因此,在解答行程问题的应用题时,要善于联想、转化,找准突破口。
例一、某边防站甲、乙两个哨所之间相距15 千米,一天,这两个哨所巡逻队同时从各自的哨所出发,相向而行,甲哨所巡逻队每小时行5. 5 千米,乙哨所巡逻队每小时行4.5千米。
乙哨所巡逻队刚出发;他们带的一只警犬便飞快地向甲哨所方向跑去,遇到甲哨所巡逻队后,立即转身往回跑,遇到乙哨所巡逻队后又立即向甲哨所方向跑去,警犬这样往返直到两巡逻队相遇为止。
已知警犬每小时跑20 千米,这只警犬一共跑了多少千米?分析:这道题看起来很复杂,但我们仔细分析题意后可知这只警犬来回跑所用的时间和甲、乙两巡逻队执勤所用的时间相同,因此,要求警犬一共跑的路程,要求出两巡逻队相遇时间,即15÷(5.5+4.5)=1.5(时),从而可求出警犬所跑的路程。
20×【15÷(5. 5+4. 5)】=20×1. 5=30(千米)答:这只警犬一共跑了30 千米.巩固练习11、东、西两地相距6 千米,小明从东向西每小时行4.5 千米,小亮从西向东每小时行3.5 千米,小刚骑自行车从东向西每小时行12 千米,三人同时出发,途中小刚遇到小亮立即返回向东行,遇到小明又立即返回向西行,小刚这样往返一直到三人在途中相遇为止。
小刚共行了多少千米?2、小明和小强从甲村、小刚从乙村同时相向而行。
小明每分钟走55米,小强每分钟跑200 米,小刚每分钟走65 米,途中小强遇到小刚立即返回跑向小明.再遇到小明又立即返回跑向小刚,小强这样往返一直到三人在途中相遇为止,这1时小强共行了2850米,甲、乙两村相距多少米?3、甲、乙两小分队在相距20 千米的A,B 两地间进行拉练,甲队从A 地向B地、乙队从B 地向A 地同时相向而行。
小学数学教案:《追及问题》微教案一、教学目标:1. 让学生理解追及问题的概念,能够识别和分析追及问题。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 追及问题的定义及类型。
2. 追及问题的解题步骤。
3. 追及问题的实际应用。
三、教学重点与难点:1. 重点:让学生掌握追及问题的解题方法和实际应用。
2. 难点:如何引导学生运用数学知识解决复杂的追及问题。
四、教学准备:1. 教学课件或黑板。
2. 练习题及答案。
3. 教学道具或图片。
五、教学过程:1. 导入:通过一个生活中的追及问题情境,引发学生兴趣,导入新课。
2. 基本概念:介绍追及问题的定义及类型,让学生理解追及问题的本质。
3. 解题方法:讲解追及问题的解题步骤,引导学生学会分析问题、列出方程、求解答案。
4. 课堂练习:提供几个典型的追及问题,让学生独立解决,巩固所学知识。
5. 实际应用:讨论追及问题在生活中的实际应用,让学生体会数学的实用性。
6. 总结提升:引导学生归纳总结追及问题的解题方法,培养学生的总结能力。
7. 课后作业:布置一些相关的追及问题练习题,巩固所学知识。
8. 教学反思:根据学生的课堂表现和作业完成情况,总结教学效果,调整教学策略。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究追及问题的解决方法。
2. 利用直观教具和动画演示,帮助学生形象地理解追及问题。
3. 组织小组讨论,鼓励学生合作交流,提高解决问题的能力。
4. 注重个体差异,给予不同学生个性化的指导和帮助。
七、教学评价:1. 课堂练习:观察学生在练习中的表现,评估其对追及问题的理解和掌握程度。
2. 课后作业:检查学生作业的完成情况,评估其运用追及问题解决实际问题的能力。
3. 小组讨论:评价学生在团队合作中的参与度和提出的解决方案的质量。
4. 学生自我评价:鼓励学生反思学习过程,评价自己在解决问题中的成长。
1、 根据学习的“路程和=速度和× 时间”继续学习简单的直线上的相遇与追及问题2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇 甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
知识精讲教学目标相遇与追及问题⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题 【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
小学数学教案:《追及问题》微教案一、教学目标1. 知识与技能:(1)让学生理解追及问题的基本概念和意义;(2)培养学生解决追及问题的能力,掌握追及问题的解题方法。
2. 过程与方法:(1)通过生活实例引入追及问题,让学生感受数学与生活的联系;(2)利用图形、表格等直观教具,引导学生分析追及问题;(3)采用小组合作、讨论交流的方式,培养学生解决问题的合作精神。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生勇于探究、勇于创新的思维品质;(3)培养学生关爱生活、关爱他人的情感。
二、教学内容1. 追及问题的概念:追及问题是指两个物体从同一地点出发,以不同的速度运动,经过一段时间后,求其中一个物体追上另一个物体的条件及时间。
2. 追及问题的解题方法:(1)画图分析法:通过画图直观地展示两个物体的运动过程,找出它们之间的距离、速度、时间等关系;(2)方程解答法:根据追及问题的条件,列出相应的方程,求解未知数,得出答案。
三、教学重点与难点1. 教学重点:(1)追及问题的概念及解题方法;(2)培养学生解决追及问题的能力。
2. 教学难点:(1)追及问题中速度、时间、距离之间的关系;(2)如何列方程求解追及问题。
四、教学准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、尺子、圆规、量角器;3. 教学素材:追及问题实例、图形、表格等。
五、教学过程1. 导入新课:(1)利用生活实例引入追及问题,让学生感受数学与生活的联系;(2)引导学生思考追及问题中涉及的关键因素,如速度、时间、距离等。
2. 自主学习:(1)让学生自主探究追及问题的解题方法,鼓励学生发表自己的见解;(2)引导学生通过图形、表格等直观教具,分析追及问题。
3. 合作交流:(1)组织学生进行小组合作,共同解决追及问题;(2)鼓励学生互相交流、讨论,分享解题心得。
4. 课堂讲解:(1)讲解追及问题的概念及解题方法,引导学生理解并掌握;(2)通过例题讲解,让学生学会如何列方程求解追及问题。
小学数学教案:《追及问题》微教案一、教学目标:1. 知识与技能:(1)让学生理解追及问题的基本概念和意义。
(2)培养学生解决追及问题的能力,掌握追及问题的解题方法。
2. 过程与方法:(1)通过生活中的实际例子,引导学生感知追及问题。
(2)利用图形、表格等直观工具,帮助学生分析追及问题的数量关系。
(3)运用公式、方程等数学方法,解决追及问题。
3. 情感态度与价值观:(1)培养学生积极参与数学学习的兴趣,提高学生对数学的热爱。
(2)培养学生勇于探索、善于思考的良好学习习惯。
二、教学内容:1. 追及问题的概念及其意义。
2. 追及问题的基本数量关系。
3. 追及问题的解题方法。
三、教学重点与难点:1. 教学重点:(1)追及问题的基本概念和意义。
(2)追及问题的解题方法。
2. 教学难点:(1)追及问题中速度、时间和路程之间的数量关系。
(2)如何运用公式、方程解决追及问题。
四、教学过程:1. 导入新课:(1)利用生活中的实际例子,如赛车、跑步等,引导学生感知追及问题。
(2)提问:什么是追及问题?为什么会产生追及问题?2. 自主学习:(1)让学生阅读教材,了解追及问题的基本概念和意义。
(2)引导学生通过实例分析,掌握追及问题的基本数量关系。
3. 合作交流:(1)分组讨论:如何解决追及问题?(2)分享心得:每组汇报解决追及问题的方法。
4. 课堂讲解:(1)讲解追及问题的解题方法。
(2)示范性解题:运用公式、方程解决追及问题。
5. 练习巩固:(1)布置课堂练习题,让学生独立完成。
(2)讲解练习题,纠正错误,巩固知识点。
五、课后作业:1. 请学生总结本节课所学内容,整理成笔记。
2. 完成课后练习题,巩固追及问题的解题方法。
3. 思考:在生活中还有哪些追及问题?如何运用所学知识解决?六、教学评估:1. 课堂提问:通过提问了解学生对追及问题概念的理解程度和解决问题的能力。
2. 练习反馈:收集学生的练习作业,分析其解题思路和方法,评估学生的掌握情况。
追及问题解题方法追及问题是运动学中较为综合且有实践意义的一类习题,它往往涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同.对此类问题的求解,除了要透彻理解基本物理概念,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助分析,确认两个物体运动的位移关系、时间关系和速度关系,在头脑中建立起一幅物体运动关系的图景.借助于v -t 图象和x-t 来分析和求解往往可使解题过程简捷明了.例:汽车以 12/m s 的加速度启动,同时车后60m 远处有一人以一定的速度0v 匀速追赶要车停下。
已知人在离车小于20m ,且持续时间为2s 喊停车,方能把停车信息传达给司机,问0v 至少要多大?如果以0v =102/m s 的速度追车,人车距离最小值应为多少?分析:车人相距s ,同时同向运动,车在前面做加速度为a 、初速度为零的匀加速运动,人在后面匀速追赶。
V 追赶者<V 被追赶者 则一定不能追上,假设在追赶过程中经时间t 后两者能处在同一位置,找位移关系列方程,求解t. 若t 有解,说明能处在同一位置,能追上,比较此时的速度,若v1>v2,则会相撞,若v1=v2,则刚好相撞。
若t 无解,说明两者不能同时处于同一位置,追不上。
若追不上,当v1=v2时,两者间距最小。
(开始时,速度大的甲在后,在前的乙速度较小,间距越来越小,只有乙速度大于甲速度,间距才能越来越大,故两者速度相等时,间距最小。
)此情景学生不易理解,可用x-t 图象帮助理解。
有图1可看出二者速度相同时间距最小。
此时向前后各1秒间距小于20米即符合题意要求了。
前后一秒间距离相同可看v-t 图象理解如图2。
解法1:设经t 秒人离车20米则t+1秒二者速度相等相距最近联立60+212at -o v t=20和o v =a (t+1)代入数据解的t=8s o v = 9m/s 解法2:设经t 秒人离车20米联立60+21at 2-0v t=20和 联立60+21a(t+2)2-0v (t+2)=20解得t=8s 和v 0=9m/s解法3: 联立60+212at -o v t=20 和21t t -≥2解得t=8s 和v 0=9m/s 练习:甲、乙两车相距s ,同时同向运动,乙在前面做加速度为a 1、初速度为零的匀加速运动,甲在后面做加速度为a 2、初速度为v 0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系.分析 由于两车同时同向运动,如图故有v 甲=v 0+a 2t , v 乙=a 1t.①当a 1<a 2时,a 1t <a 2t ,可得两车在运动过程中始终有v 甲>v 乙.由于原来甲在后,乙在前,所以甲、乙两车的距离在不断缩短,经过一段时间后甲车必然超过乙车,且甲超过乙后相距越来越大,因此甲、乙两车只能相遇一次.②当a 1=a 2时,a 1t=a 2t ,可得v 甲=v 0+v 乙,同样有v 甲>v 乙,因此甲、乙两车也只能相 遇一次.③当a 1>a 2时,a 1t >a 2t ,v 甲和v 乙的大小关系会随着运动时间的增加而发生变化.刚开始,a 1t 和a 2t 相差不大且甲有初速v 0,所以v 甲 >v 乙;随着时间的推移,a 1t 和a 2t 相差越来越大;当a 1t-a 2t=v 0时,v 甲=v 乙,接下来a 1t-a 2t >v 0,则有v 甲<v 乙.若在v 甲=v 乙之前,甲车还没有超过乙车,随后由于v 甲<v 乙,甲车就没有机会超过乙车,即两车不相遇;若在v 甲=v 乙 时,两车刚好相遇,随后v 甲<v 乙,甲车又要落后乙车,这样两车只能相遇一次;若在v 甲=v 乙前,甲车已超过乙车,即已相遇过一次,随后由于v 甲<v 乙,甲、乙距离又缩短,直到乙车反超甲车时,再相遇一次,则两车能相遇两次.①当a1<a2时,①式t只有一个正解,则相遇一次.②当a1=a2时t只有一个解,则相遇一次.③当a1>a2时,若v02<2(a1-a2)s,①式无解,即不相遇.若v02=2(a1-a2)s,①式t只有一个解,即相遇一次.若v02>2(a1-a2)s.①式t有两个正解,即相遇两次.解2 利用v-t图象求解.①当a1<a2时,甲、乙两车的运动图线分别为如图4中的Ⅰ和Ⅱ,其中划斜线部分的面积表示t时间内甲车比乙车多发生的位移,若此面积为S,则t时刻甲车追上乙车而相遇,以后在相等时间内甲车发生的位移都比乙车多,所以只能相遇一次.②当a1=a2时,甲、乙两车的运动图线分别为如图5中的Ⅰ和Ⅱ,讨论方法同①,所以两车也只能相遇一次.③当a1>a2时,甲、乙两车的运动图线分别为如图6中的Ⅰ和Ⅱ,其中划实斜线部分的面积表示甲车比乙车多发生的位移,划虚斜线部分的面积表示乙车比甲车多发生的位移.若划实斜线部分的面积小于S,说明甲车追不上乙车,则不能相遇;若划实斜线部分的面积等于S,说明甲车刚追上乙车又被反超.则相遇一次;若划实斜线部分的面积大于S.如图中0~t1内划实斜线部分的面积为S,说明t1时刻甲车追上乙车,以后在t1~t时间内,甲车超前乙车的位移为t1~t时间内划实斜线部分的面积,随后在t~t2时间内,乙车比甲车多发生划虚线部分的面积,如果两者相等,则t2时刻乙车反超甲车,故两车先后相遇两次.这类问题并不难,需要的是细心.首先把可能的情况想全,然后逐一认真从实际情况出发来分析,以得到正确的结果.总结一、追及相遇问题1.追及问题例如:A追赶B时(如图)若VA>VB,则AB距离缩小;若VA=VB,则AB距离不变;若VA <VB,则AB距离增大;2.相遇问题1)同向运动的两物体:相遇问题就是追及问题2)相向运动的两物体:当各自发生的位移的代数和等于开始时两物体间的距离时,即相遇3.在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件:其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题二、把握的关系1.两个关系:即时间关系和位移关系2.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
追及问题(教案)2023-2024学年数学五年级下册-沪教版教学内容:本节课主要讲解追及问题的基本概念和方法。
追及问题是指两个或多个物体从同一地点出发,以不同的速度行驶,要求找出它们相遇的时间或地点。
通过本节课的学习,学生将掌握追及问题的解题思路和技巧。
教学目标:1. 让学生理解追及问题的基本概念和条件。
2. 培养学生运用追及问题的解题方法,解决实际问题。
3. 提高学生分析问题和解决问题的能力。
教学难点:1. 追及问题的条件和解题思路的理解。
2. 追及问题中速度、时间、距离的关系的运用。
教具学具准备:1. 教学PPT或黑板。
2. 练习题和草稿纸。
3. 计算器(可选)。
教学过程:1. 导入:通过一个简单的追及问题,引起学生的兴趣,让他们了解追及问题的基本概念。
2. 讲解:讲解追及问题的条件和解题思路,通过例题进行示范,让学生理解追及问题中速度、时间、距离的关系。
3. 练习:让学生独立完成一些追及问题的练习题,巩固所学知识。
4. 讨论与解答:学生互相讨论练习题的解题过程,教师解答学生的疑问。
5. 总结:总结追及问题的解题方法和技巧,强调重点和难点。
6. 作业布置:布置一些追及问题的作业题,让学生在课后进行巩固练习。
板书设计:1. 追及问题2. 副2023-2024学年数学五年级下册-沪教版3. 教学目标4. 教学难点5. 教学过程6. 练习题和答案7. 作业布置作业设计:1. 基础题:解决一些简单的追及问题,要求学生理解追及问题的基本概念和解题思路。
2. 提高题:解决一些稍微复杂的追及问题,要求学生运用所学的解题方法和技巧。
3. 挑战题:解决一些更复杂的追及问题,要求学生运用所学的知识进行推理和计算。
课后反思:通过本节课的教学,学生对追及问题的基本概念和解题方法有了更深入的理解。
在练习过程中,学生能够运用追及问题的解题方法解决实际问题,提高了他们分析问题和解决问题的能力。
但也发现一些学生在理解追及问题的条件和解题思路上还存在一些困难,需要进一步加强讲解和指导。
2019-2020年高一物理《追击和相遇问题》名师公开课专题讲解导学案设计两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
一、 追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
二、相遇⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。
⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
【典型例题】例1.在十字路口,汽车以20.5m s 的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m s 的速度匀速驶过停车线与汽车同方向行驶,求:(1) 什么时候它们相距最远?最远距离是多少?(2) 在什么地方汽车追上自行车?追到时汽车的速度是多大?例2.火车以速度1v 匀速行驶,司机发现前方同轨道上相距S 处有另一列火车沿同方向以速度2v (对地、且12v v )做匀速运动,司机立即以加速度a 紧急刹车,要使两车不相撞,a 应满足什么条件?例3、在某市区内,一辆小汽车在公路上以速度v 1向东行驶,一位观光游客正由南向北从斑马线上横过马路。
追及问题教学课件两物体在同向来线或者封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。
追及问题教学课件 1知识与技能1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.过程与方法1.培养学生分析问题、解决问题的能力,进一步体味方程模型的作用,提高学生应用数学的意识.2.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.情感、态度与价值观1.通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识、团队精神和克服艰难的勇气.2. 体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.教学重点会借助“线段图”分析复杂问题中的数量关系.教学难点1.怎样寻觅等量关系.2. 三种语言的转换.教学关键1. 使学生初步学会画“线段图”.2 .通过对具体问题情境的分析,准确的确定等量关系.教学方法自主探索、启示引导.教学手段多媒体教学.教学过程一、创设情景引入教学:1、情景设置:五年级学生组织一次社会考察活动,小巧早上从家走了一段路后,是她的爸爸发现她把考察表忘在家里,并即将追她给她送考察表.同学们,你们想一想最后会怎样?2、引出课题:追及问题3、回顾行程问题涉及的量及列方程解应用题的步骤二、解决问题深化认识:1、出示例题:小巧今天早上要在 7:50 之前赶到距家 1000 米的学校坐车去参加社会考察活动.小巧以 80 米/分的速度出发,5 分后,她的爸爸发现她忘了带考察表.于是,爸爸即将以 160 米/分的速度去追小巧,并且在途中追上了他.爸爸追上小明用了多长期?⑴学生尝试解答,并说出自己的思量过程。
*速度差×追及时间=相距路程*爸爸的走的总路程=小巧走的总路程⑵画线段图,验证你的思量是否正确?⑶如果我们把小巧和小巧爸爸相距的距离用 s 表示,小巧走的慢, 我们把她的速度用V 慢表示,小巧爸爸的速度用V 快表示,追及时间为 t,那末小巧走的路程用?表示;爸爸走的路程用?表示;(在线段图上表示出来)这几个量之间有什么关系呢?V 快 t- V 慢 t = s.V 快 t = s+ V 慢 t.V 快 t- s = V 慢 t其实这是同一个等量关系的不同变式.如何用语言叙述呢?(追及的路程就是两人的路程差)2、小结:黑板上的内容是追及问题的三种不同表示方法即文字表示;符号表示;图形表示.希翼同学灵便掌握,会进行三种语言的转换.3、变式 ,巩固三种语言的转换:变式 1:小巧今天早上要在 7:50 之前赶到距家 1000 米的学校坐车去参加社会考察活动.小巧以 80 米/分的速度出发,5 分后,她的爸爸发现她忘了带考察表.于是,爸爸即将追小巧,5 分钟后在途中追上了他.爸爸追小巧的速度是多少?* 学生审题,在小组内分工合作,找到的等量关系式,字母表达式, 并用线段图验证* 交流变式 2:小巧今天早上要在 7:50 之前赶到距家 1000 米的学校坐车去参加社会考察活动.小巧以 80 米/分的速度出发,过后,她的爸爸发现她忘了带考察表.于是,爸爸即将以 160 米/分的速度去追小明,5 分钟后在途中追上了他. (学生提问)小巧走多远后,爸爸才开始追的?小巧走多久后,爸爸才开始追的?*学生独立解答,并交流三、巩固认知提高能力:1、基础练习:数学书p 51,例 2,及试一试2、盐仓小学五年级学生步行到郊外旅行(1)班学生组成前队, 步行速度为4 千米/时,(2)班学生组成后队,速度为 6 千米/时.前队出发一小时后,后队才出发,同时后队派一位联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为 12 千米/时.* 有问题吗?以小组为单位进行讨论,你们小组所提出的问题,并解答.* 将问题问题罗列,有选择的进行解答。
教案:《追及问题》年级:四年级学科:数学教材版本:人教版教学目标:1. 让学生理解追及问题的概念,能够识别追及问题中的速度差、时间差等关键信息。
2. 培养学生运用追及问题的解决方法,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 追及问题的概念和解决方法。
2. 速度差、时间差在追及问题中的应用。
教学难点:1. 追及问题的解决方法的理解和运用。
2. 速度差、时间差的计算和应用。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的行程问题的解决方法。
2. 提问:如果两个物体同时出发,一个速度快,一个速度慢,会发生什么现象?3. 学生回答,教师总结:这种现象叫做追及问题。
二、探究(15分钟)1. 出示追及问题的情景图,引导学生观察和分析。
2. 提问:如何计算追及问题的答案?3. 学生思考并回答,教师总结:追及问题的解决方法是通过计算速度差和时间差来求解。
4. 引导学生运用追及问题的解决方法,解决实际问题。
三、练习(10分钟)1. 出示练习题,让学生独立完成。
2. 教师巡回指导,解答学生的疑问。
3. 选取几道题目进行讲解,强调速度差、时间差在追及问题中的应用。
四、巩固(5分钟)1. 出示追及问题的情景图,让学生运用追及问题的解决方法进行计算。
2. 教师巡回指导,解答学生的疑问。
五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结追及问题的解决方法。
2. 强调速度差、时间差在追及问题中的重要性。
六、作业(5分钟)1. 出示追及问题的练习题,让学生课后独立完成。
2. 布置学生思考:追及问题在实际生活中的应用。
教学反思:本节课通过情景图的引入,让学生直观地理解追及问题的概念。
通过探究和练习,学生能够掌握追及问题的解决方法,并能够运用速度差、时间差进行计算。
在教学过程中,教师应注重引导学生观察和分析,培养学生的逻辑思维能力和解决问题的能力。
(四年级)备课教员:第三讲追及问题一、教学目标:知识目标1、认识追及问题,能够借助“线段图”分析复杂问题中的数量关系。
2、能充分利用行程中的速度、路程、时间之间的关系,理解追及时间=路程差÷速度差能力目标在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
情感目标1.通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识、团队精神和克服困难的勇气。
2. 体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
二、教学重点:借助“线段图”,分析复杂问题中的各个量的关系。
三、教学难点:理解追击问题的基本公式并利用基本公式解决问题。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:初步了解什么是追及问题,并认识路程差、速度差和追及时间这三个量。
】师:两个运动的物体同时或不同时由两地出发相向(相背)而行,在途中相遇,是相遇问题。
如果两个运动的物体同时或不同时由两地出发同向而行,慢的在前,快的在后,一段时间后会怎样?生:一段时间后快的会追上慢的。
师:没错,以前我们已经学习过了行程问题中的相遇问题,今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,在生活中也经常会遇到哦,下面我们就通过一个简单的故事来给大家讲叙怎样解决追及问题。
以前有一只兔子和一条狗,大家知道狗是会去追兔子的,狗想去抓住兔子,兔子在狗前面150米,兔子发现后,就赶紧跑,它一步跳2米,狗更快,一步跳3米,它们两个一起开始跑的,你们认为狗追上兔子需要跳多少步?(出示PPT)生:(自由回答)师:我们知道,狗跳一步要比兔子跳一步远3-2=1(米),也就是狗跳一步可以追上兔子1米,现在狗与兔子相距150米,因此,只要算出150米中有几个1米,那么就知道狗跳了多少步追上兔子的是多少步?生:是150÷1=15(步),这是狗跳的步数。
小学数学应用题典型详解追及问题学习教案教案:小学数学应用题典型详解——追及问题教学内容:本节课我们学习的是小学数学应用题中的追及问题。
追及问题是指在运动过程中,两个或多个物体相互追赶的问题。
本节课我们以人教版小学数学五年级下册第87页的例题和练习题为例进行学习。
教学目标:1. 学生能理解追及问题的概念,并能正确列出追及问题的数量关系式。
2. 学生能运用基本的数学运算方法解决追及问题。
3. 学生在解决追及问题的过程中,培养逻辑思维能力和解决问题的能力。
教学难点与重点:难点:学生对追及问题数量关系式的理解和运用。
重点:学生能正确列出追及问题的数量关系式,并能运用基本的数学运算方法解决问题。
教具与学具准备:教具:黑板、粉笔、多媒体教学设备学具:练习本、笔教学过程:一、实践情景引入(5分钟)教师通过讲解一个实际生活中的追及问题,引导学生思考和理解追及问题的实质。
二、例题讲解(10分钟)教师在黑板上写出例题,引导学生一起分析问题,讲解解题思路和方法。
三、随堂练习(10分钟)教师给出几道类似的追及问题练习题,学生独立完成,教师挑选几份作业进行讲解和分析。
五、板书设计(5分钟)教师根据本节课的内容,设计板书,突出追及问题的数量关系式和解题步骤。
六、作业设计(5分钟)小明和小华同时从同一地点出发,小明每分钟走50米,小华每分钟走60米,5分钟后小华追上了小明,问小华一共走了多少米?答案:小华一共走了300米。
2. 请结合生活实际,自己设计一个追及问题,并列出数量关系式和解答过程。
课后反思及拓展延伸:教师在课后反思本节课的教学效果,针对学生的掌握情况,进行针对性的辅导和讲解。
同时,教师可以给学生推荐一些相关的学习资源,拓展学生的知识面。
重点和难点解析:一、实践情景引入(5分钟)补充和说明:在实践情景引入环节,教师可以通过讲述一个发生在校园里的追及故事,例如:两名同学在学校的操场上进行跑步比赛,其中一名同学起步晚,但速度快,另一名同学起步早,但速度慢。
教学过程一、课堂导入追及问题是行程问题中的一种类型,它符合行程问题的数量关系式,也有它独特的分析思路和解题方法,这节课我们就来学习追及问题。
二、复习预习1、行程问题:包括相遇问题、追击问题、流水行船问题和火车过桥几大问题.2、行程问题的数量关系式:路程=时间×速度时间=路程÷速度速度=路程÷时间三、知识讲解1、追及问题的特点:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时间出发,向同一方向运动)慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
2、基本关系式:追及路程=追及时间×速度差追及时间=追及路程÷速度差速度差=追及路程÷追及时间四、例题精析.【例题1】【题干】一天早上,小康的爸爸步行去上班,每分钟走90米,5分钟后,小康发现爸爸忘了带公文包,于是骑车去追爸爸,每分钟行180米,经过多少分钟后小康能追上爸爸?【答案】90×5=450(米) 450÷(180-90)=450÷90=5(分钟)答:小康经过5分钟能追上爸爸。
【解析】分析:小康去追爸爸的时候,爸爸已经走了5分钟,也就是走了90×5=450(米),小康在追爸爸的时间里,爸爸也仍在走,小康也在追,那么小康必须用比爸爸快的速度,在追的这段时间里,走完爸爸和他同时走的路,还要再多走450米;又知小康每分钟比爸爸多行180-90=90(米),所以,小康每行1分钟就与爸爸拉近90米,他要比爸爸多行450米,就是求450里面有多少个90,用除法就求出用了多少分钟。
【例题2】【题干】一辆汽车和一辆摩托车同时从甲、乙两城出发,向一个方向前进。
汽车在前,每小时行50千米;摩托车在后,每小时行85千米,经过4小时摩托车追上汽车。
甲乙两城相距多少千米?【解答】(85-50)×4=140(千米)答:甲乙两城相距140千米。