(完整版)数学中考模拟试题一和答案
- 格式:pdf
- 大小:271.63 KB
- 文档页数:8
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
九年级数学模拟题(一)(考试时间120分钟,试卷满分150分)一、选择题(本大题共10个小题,每小题3分,共30分)1、-2的倒数是()A.2 B.-21C.21D.-22、左下图为主视方向的几何体,它的俯视图是()3、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D4、下列运算正确的是()A、x2x3 =x6B、(-2x)2 =4x2C、x2+x2=2x4D、(-2x)2 (-3x )3=6x55、下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.6、下列方程中是关于x的一元二次方程的是()A.(x-1)(x+2)=1 B.ax2+bx+c=0C.x2+21x=0 D.3x3-2xy-5y2=07、如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形P AOB的形状、大小随之变化,则P A2+PB2的值A.逐渐变大B.逐渐变小C.不变D.不能确定8、如图,A是反比例函数y=xk图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则K的值为()(第8题)ABP xyOA .1B .2C .3D .49、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx10、已知二次函数2y ax bx c =++ ()0a ≠ 的图像,如图所示,有下列5个结论: ⑴0abc >; ⑵b a c <+;⑶420a b c ++>;⑷23c b <;⑸()a b m am b +>+,()1m ≠的实数.其中,正确结论的个数为( )A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分) 11、要使式子aa 2+有意义,则a 的取值范围为_________. 12、根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .13、若m 2-5m +2=0,则2m 2-10m +2012= .14、如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于 .15、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到C B A ''的位置.若BC 的长为15cm ,那么顶点A •从开始到结束所经过的路径长为 ㎝.16、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF = __________.17、如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .18、在直角坐标系中,直线y =x +1与y 轴交于点A 1, 按 如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…, 点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在 x 轴上,图中阴影部分三角形的面积从左到右依次记 为S 1、S 2、S 3、…S n ,则S n 的值为____________ (用含n 的代数式表示,n 为正整数).三、解答题(本大题共2个题,第19题10分,第20题12分,共22分)19、先化简,再求值:4441x 1122++-÷x x x )--(,其中1311+⎪⎭⎫ ⎝⎛=-x20、如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A .(1)画出将△OAB 绕原点旋转180°后所得的△OA 1B 1,并写出 点A 1、B 1的坐标;(2)将△OAB 平移得到△O 2A 2B 2,点A 的对应点是A 2,点B 的对应点B 2的坐标为(22)-,在坐标系中作出△O 2A 2B 2,并写出点O 2、A 2的坐标;(3)△OA 1B 1与△O 2A 2B 2成中心对称吗?若是,找出对称中心,并写出对称中心的坐标.四、解答题(本大题共2个题,每题10分,共20分)21、有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为OxAB11 y(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率、22、数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(3≈1.73要求结果精确到0.1m)五、解答题(本大题共12分)23、如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.六、解答题(本大题14分)24、某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?(2)写出当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.七、解答题(本大题14分)ll l25、已知,在△ABC中,AB=AC.过A 点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.八、解答题(本大题14分)26、如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行与y轴交CD于点N.设点M的横坐标为t,MN的长度为,求与t之间的函数关系式,并求取最大值时,点M的坐标。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 84×10-5B. 8.4×10-6C. 84×10-7D. 8.4×1062.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a23.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个5.估计51的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A.4433π+ B.8433π+ C.4233π+ D. 23π+8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是( )A. 58B. 74C. 92D. 1129.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.1 3 D. -1310.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=1010,且CE:CF=4:3,那么该矩形的周长为()A. 48B. 64C. 92D. 9611.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C 的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,si n63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.112.如果关于x的分式方程2322m xx x+=--的解为非负数,且关于x的不等式组22{342(1)x mx x-≥+>+无解,则所有符合条件的整数m的个数为()A. 6B. 5C.4 D. 3二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2312743-⎛⎫--+ ⎪⎝⎭=________14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是17.甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发两小时,甲车到达B地后立即调头,并保持原速度与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(干米),甲车行驶的时间为x小时,y与x之间的函数图象如图所示,则当甲车重返A地时,乙车距离C地________千米.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++20.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 01570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y的几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出数量就比原来一周卖出的数量增加了 52m%,这样一天的利润达到了20000元,求m 的值.24.如图,平行四边形ABCD 中,CG ⊥AB 于点G ,∠ABF=45°,F 在CD 上,BF 交CD 于点E ,连接AE ,AE ⊥AD .(1)若BG=1,BC=10,求EF 的长度; (2)求证:CE+2BE=AB .25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数” (1)反比例函数2019y x=是闭区间[1,2019]上 “闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的”闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的”闭函数”,求此函数的解析式(用含m ,n 的代数式表示).四、解答题:(本大题1个小题,共8分),26.如图1,在平面直角坐标系xoy 中,二次函数23333y x =-x 轴的交点为A ,B ,顶点为C ,点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,连接BC 的直线交直线l 于K 点.(1)问:在四边形ABKD内部是否存在点P,使它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(2)若M,N分别为直线AD和直线l上的两个动点,连结DN,NM,MK,如图2,求DN+NM+MK和的最小值.答案与解析一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 8.4×10-5B. 8.4×10-6C. 84×10-7D. 8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a2【答案】C【解析】【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项的法则进行计算即可.【详解】A.2a与3b不是同类项,不能合并,故选项A错误;B.根据同底数幂的乘法法则得:a2·a4=a2+4=a6,故B错误;C.根据积的乘方的法则得:(-2a2b)3=-8a6b3,故C正确;D.a6÷a3+a2=a3+a2,a3和a2不是同类项,所以不能合并,故D错误.故选C.【点睛】本题考查了同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项,熟记法则是解题的关键.3.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°【答案】A【解析】【分析】由平行线性质得∠ACD=∠1=65°.由等腰三角形性质得∠DAC=∠ACD,再根据三角形内角和性质得到结果. 【详解】∵AB∥CD,∴∠ACD=∠1=65°.∵AD=CD,∴∠DAC=∠ACD=65°,∴∠2=180°﹣∠DAC﹣∠ACD=180°﹣65°﹣65°=50°.故选:A【点睛】本题考核知识点:平行线性质,等腰三角形性质.解题关键点:熟记平行线性质,等腰三角形性质.4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】第一个既是轴对称图形,又是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个既是轴对称图形,又是中心对称图形;第四个既是轴对称图形,又是中心对称图形.综上所述:既是轴对称图形又是中心对称图形的共有3个,故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.估计1的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】【分析】因为2.22=4.84,2.32=5.29,所以4<5,推出3<<4,由此即可解决问题.【详解】∵2.22=4.84,2.32=5.29,∴4<5,∴3<<4.故选B.【点睛】本题考查估算无理数的大小,解题的关键是学会利用逼近法解决问题.6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+【答案】C 【解析】【分析】设索长为x 尺,竿子长为y 尺,根据”索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设绳索长为x 尺,竿长为y 尺.根据题意,得 5152x y x y =+⎧⎪⎨=-⎪⎩ 故选C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A. 4433π+B. 8433π+C. 4233π+D. 23π+【答案】A【解析】【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S 阴影=S 扇形ADE -S 弓形AD =S 扇形ABC -S 弓形AD ,进而得出答案.【详解】连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=2,BN=23,S阴影=S扇形ADE-S弓形AD=S扇形ABC-S弓形AD=229046041423 3603602ππ⎛⎫⋅⨯⋅⨯--⨯⨯⎪⎝⎭=443 3π+故选A.【点睛】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A. 58B. 74C.92 D. 112【答案】C【解析】【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第8个图形的小圆个数为2+9×10=92,由此得出答案即可.【详解】通过观察图形可知:每个图形中,最上端和最下端各有一个小圆,是不变的.然后我们可以得出序号n 与图中小圆的个数有如下规律:序号 小圆个数1 1×2+22 2×3+23 3×4+24 4×5+2… …n n (n+1)+2∴第9个图形中小圆的个数为9×(9+1)+2=92.故选C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.13 D. - 13【答案】A【解析】【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°=3a ∴点A 的坐标是(3a ,a )同理可得 点B 的坐标是(3a ,-3a )∴k 1=3a×a=3a 2 , k 2=3a×(-3a )=-33a∴213333k a k a-==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处.已知折痕AE=1010,且CE :CF=4:3,那么该矩形的周长为( )A. 48B. 64C. 92D. 96【答案】D【解析】【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴AB BF CF CE=,∴934k BFk k=,∴BF=12k,∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或-2(舍弃),∴矩形的周长=48k=96,故选D.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.11.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE 确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.1【答案】D【解析】【分析】 如图作DH ⊥AB 于H ,延长DE 交BC 于F .则四边形DHBF 是矩形,在Rt △ADH 中求出DH ,再在Rt △EFB 中求出EF ,在Rt △EFC 中求出CF 即可解决问题【详解】如图作DH ⊥AB 于H ,延长DE 交BC 于F .在Rt △ADH 中,∵AD=260,DH :AH=1:2.4,∴DH=100(m ),∵四边形DHBF 是矩形,∴BF=DH=100,在Rt △EFB 中,tan63°=BF EF , ∴EF=63BF tan, 在Rt △EFC 中,FC=EF•tan72°, ∴CF=1001.96×3.08≈157.1, ∴BC=BF+CF=257.1(m ).故选D .【点睛】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.如果关于x 的分式方程2322m x x x+=--的解为非负数,且关于x 的不等式组22{342(1)x m x x -≥+>+无解,则所有符合条件的整数m 的个数为( )A. 6B. 5C.4 D. 3【答案】A【解析】【分析】 解不等式组和分式方程得出关于x 的范围及x 的值,根据不等式组有且仅有三个整数解和分式方程的解为非负数得出m 的范围,继而可得整数m 的个数.【详解】解关于x 的分式方程2322m x x x +=--, 解得m 3x 2-+=, ∵关于x 的分式方程2322m x x x +=--的解为非负数, ∴m 32-+≥0, ∴m≤3; 解不等式223x m -≥,得:x≥2m+6, 解不等式()421x x +>+,得:x <2, ∴不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩的解集为2m+6≤x <2,∵关于x 的不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩无解,∴2m+6≥2,解得m≥-2,∴--2≤m≤3,∴所有符合条件的整数m有:-2、-1、0、1、2、3共6个.故选A.【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m的范围是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2143-⎛⎫-+ ⎪⎝⎭=________.【答案】2【解析】【分析】根据实数的运算法则和运算顺序计算即可.【详解】原式=-3-4+32=2.故答案为:2.【点睛】此题考查了实数的运算,平方根、绝对值以及负整数指数幂,熟练掌握各自的性质是解本题的关键.14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.【答案】8【解析】【分析】利用因式分解将原式变形为含有xy、x-2y的因式,然后把x-2y=4,xy=4代入求值即可【详解】5xy-3x+6y=5xy-3(x-2y)=5×4-3×4=8.故答案为:8.【点睛】本题考查了求代数式的值.能够利用因式分解将原式变形为含有xy、x-2y的因式是解本题的关键.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.【答案】42【解析】【分析】连接CO,∠CDA=22.5°,由圆周角定理知∠EOC=45°,又因为OA⊥BC,OC=4,由锐角三角函数知CE=4×22=22,所以BC=42.【详解】如图,设OA与BC交于点E,连接OC∵∠CDA=22.5°∴∠COA=2∠CDA=45°又∵ OA⊥BC∴ BC=2BE,弧AB=弧AC∴∠AOB= ∠COA=45°∴2∴2故答案为:2.【点睛】本题主要考查了垂径定理,圆周角定理,连接OC运用垂径定理,特殊角的三角函数是解答此题的关键.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是 【答案】727【解析】 略17.甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发两小时,甲车到达B 地后立即调头,并保持原速度与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (干米),甲车行驶的时间为x 小时,y 与x 之间的函数图象如图所示,则当甲车重返A 地时,乙车距离C 地________千米.【答案】120 【解析】 【分析】根据题意和函数图象可以求得甲乙两车的速度,然后根据题意和函数图象即可求得甲重返A 地时,乙车距离C 地的距离,本题得以解决.【详解】设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,()(52)300{(52)(75)a b b a-⨯+--==,得60{40a b ==,∴A 、B 两地的距离为:60×7=420千米, 设甲车从B 地到C 地用的时间为t 小时, 60t=40t+40×(7-2), 解得,t=10,∴当甲重返A 地时,乙车距离C 地:60×10-40×(7-2)-40×(420÷60)=120千米, 故答案为:120.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.【答案】2132【解析】【分析】过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,根据HL证明Rt△BAF≌Rt△EMG,可得∠ABF=∠MEG,所以再证明∠EPF=90°,由直角三角形斜边上的中线等于斜边的一半可得OI=12BE,由OD-OI≤DI,当O、D、I共线时,DI有最小值,即可求DI的最小值.【详解】如图,过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,∵四边形ABCD是正方形,∴AB=AD,∠A=∠D=∠DME=90°,AB∥CD,∴四边形ADME是矩形,∴EM=AD=AB,∵BF=EG,∴Rt△BAF≌Rt△EMG(HL),∴∠ABF=∠MEG,∠AFB=∠EGM,∴∠MGE=∠BEG=∠AFB ∵∠ABF+∠AFB=90°∴∠ABF+∠BEG=90°∴∠EIF=90°,∴BF⊥EG;∵△EIB是直角三角形,∴OI=12 BE,∵AB=6,AE=2,∴BE=6-2=4,OB=OE=2,∵OD-OI≤DI,∴当O、D、I共线时,DI有最小值,∵IO=12BE=2,∴∴,即DI的最小值为,故答案为:【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,三角形的三边关系,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点,在几何证明中常利用三角形的三边关系解决线段的最值问题.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++【答案】(1)-2b2;(2)4. 【解析】(1)根据整式的运算法则即可求出答案. (2)根据分式的运算法则即可求出答案.【详解】(1)原式22224444a b a ab b ab =----+22b =-;(2)原式24(3)416(4)34x x x x x x -+=⨯++-+4164(4)444x x x x x +=+=+++, =4.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证: (1)∠AEC=∠BED ; (2)AC=BD .【答案】见解析 【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可; (2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可. 证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC, ∵CE=DE, ∴∠ECD=∠EDC, ∴∠AEC=∠BED ; (2)∵E 是AB 的中点, ∴AE=BE,在△AEC和△BED中,AE=BE,∠AEC=∠BED,EC=ED,∴△AEC≌△BED(SAS),∴AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 0.1570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?【答案】(1)70;0.25;(2)补图见解析;(3)80≤x<90;(4)500人【解析】【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第五组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数2000乘以”优”等学生的所占的频率即可.【详解】(1)样本容量为10÷0.05=200,则m=200×0.35=70,n=50÷200=0.25;(2)补全直方图如下:(3)这 200 名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的 2000 名学生中成绩是”优”等的约有:2000×0.25=500(人).【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.【答案】(1)x≠0;(2)m=103;(3)见解析;(4)见解析;(5)k<-2.【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式,从而求出自变量x的取值范围;(2)根据表中数据的规律可得m的值;(3)根据表中数据,先描点,再连线即可得这部分的函数图象;(4)观察表中数据和函数图象的特征,写出其中一条性质即可.(5)从图象上可以看出,当x<0时,在直线y=-2的下方,函数y=x+ 1x图象与直线y=k有两个交点,即方程x+1x=k(x<0)有两个不相等的实数根,故可得k的取值范围.【详解】(1)根据分式有意义的条件是分母不等于零得,x≠0(2)当x=3时,y=x+1x=103.∴m=10 3(3)如图:(4)(答案不唯一)该函数无最大值,也无最小值;函数图象关于原点对称;当x<-1时,y随x增大而增大;⋯(5)∵x+1x=k(x<0)有两个不相等实数根,∴k<-2.故答案为:k<-2.【点睛】本题考查了反比例函数的性质、反比例函数的图象、正比例函数的性质以及正比例函数图象,解题的关键是:(1)由x在分母上找出x≠0;(2)代入x=3求出m的值;(3)连点成线,画出函数图象;(4)观察函数图象找出函数性质;(5)观察函数图象找出k的取值范围.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了52m%,这样一天的利润达到了20000元,求m的值.【答案】(1)最多降价80元, 才能使利润率不低于20%;(2)60.【解析】【分析】(1)设降价x元,则实际售价为”标价×折扣数-x”,然后根据题意列出不等式,解得x的取值范围,然后求出x的最大值即可;(2)设m%=a(则m=100a),分别表示出降价后一件商品的利润和销售数量,然后利用”一件利润×销售数量=总利润”列出方程,解方程得m的值即可.【详解】(1)设降价x元,依题意,得:(1000×0.8-x)≥600×(1+20%),解得:x≤80.答:最多降价80元,才能使利润率不低于20%.(2)设m%=a,依题意,得:[1000(1+2a)-2400a-600]•50(1+52a)=20000,整理,得:5a2-3a=0,解得:a1=0(舍去),a2=35,∴m%=35,∴m=60.答:m的值为60.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,,求EF的长度;(2)求证:.【答案】()1EF 22=()2证明见解析. 【解析】 【分析】(1)根据勾股定理得到22BG CG +,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB ∥CD ,于是得到结论;(2)延长AE 交BC 于H ,根据平行四边形的性质得到BC ∥AD ,根据平行线的性质得到∠AHB=∠HAD ,推出∠GAE=∠GCB ,根据全等三角形的性质得到AG=CG ,于是得到结论. 详解】()1CG AB ⊥,AGC CGB 90∠∠∴==,BG 1=,BC 10= 22CG BG CG 3∴+=,ABF 45∠=, BG EG 1∴==,CE 2∴=,四边形ABCD 是平行四边形,AB//CD ∴,GCD BGC 90∠∠∴==,EFG GBE 45∠∠==,CF CE 2∴==, EF 2CE 22∴==()2如图,延长AE 交BC 于H ,四边形ABCD 是平行四边形,BC //AD ∴,AHB HAD ∠∠∴=,AE AD ⊥,AHB HAD 90∠∠∴==,BAH ABH BCG CBG 90∠∠∠∠∴+=+=,GAE GCB ∠∠∴=,在BCG 与EAG 中,90AGE CGB GAE GCB GE BG ⎧∠=∠=⎪∠=∠⎨⎪=⎩, BCG ∴≌()EAG AAS ,AG CG ∴=,AB BG AG CE EG BG ∴=+=++,2BG EG ==, CE 2BE AB ∴+=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数”。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×1033.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4度数为()A. 55°B. 60°C. 65°D. 75°5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a68.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 1709.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=10.关于二次函数y=﹣(x﹣m)2﹣m+1(m为常数),下列描述错误的是( )A. 当m=2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y=﹣x+1的图象上C. 当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≤2D. 当m=0时,函数图象的顶点及函数图象与x轴的两个交点构成的三角形是等腰直角三角形二.填空题(共6小题)11.因式分解:24ab a-=___________________.12.分别写有数字23、5、﹣4、0、﹣2五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.13.在平面直角坐标系中,点P在直线y=x+b的图象上,且点P在第二象限,P A⊥x轴于点A,PB⊥y轴于点B,四边形OAPB是面积为25的正方形,则直线y=x+b的函数表达式是_____.14.如图,点A,B,C在同一个圆上,∠ACB<90°,弦AB的长度等于该圆半径的2倍,则cos∠ACB的值是_____.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.16.如图,菱形ABCD边长为10,sin A=45,点M为边AD上的一个动点且不与点A和点D重合,点A关于直线BM的对称点为点A',点N为线段CA'的中点,连接DN,则线段DN长度的最小值是_____.三.解答题(共9小题)17.计算:|﹣23|+(2020﹣1)0﹣4sin60°﹣(﹣2)2.18.某校为了做好”营造清洁生活环境”活动宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.21.某公司需要采购A、B两种笔记本,A种笔记本单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.23.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═45x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A 出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据”18.9万”用科学记数法表示为1.89×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,该几何体是()A 直三棱柱 B. 长方体 C. 圆锥 D. 立方体【答案】A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为()A. 55°B. 60°C. 65°D. 75°【答案】C【解析】【分析】根据平行线判定定理得出a∥b,再根据平行线的性质得到结果.【详解】如图:∵∠1=∠2,∴a∥b(同位角相等,两直线平行),∴∠3=∠5(两直线平行,同位角相等),∴∠4=180º-∠5=180º-∠3=180º-115º=65º.故选C.5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩【答案】A【解析】【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2-2,根据等量关系列出方程组即可.【详解】设甲数为x,乙数为y,根据题意可列方程组:722 x yx y+=⎧⎨=-⎩,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次【答案】D【解析】【分析】直接利用概率的意义分别分析得出答案.【详解】关于”可能性是1%的事件在100次试验中发生的次数”,一定发生一次错误,符合题意.故选:D.【点睛】本题主要考查了概率意义,概率只表示可能性的大小,并不表示事件一定为必然事件.正确掌握概率的意义是解题关键.7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a6【答案】B【解析】【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【详解】解:A、b3÷b3=1,故此选项错误;B、b3•b3=b6,正确;C、a2+a2=2a2,故此选项错误;D、(a3)3=a9,故此选项错误.故选:B.【点睛】此题考查合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.8.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 170【答案】C【解析】【分析】根据众数定义:一组数据中出现次数最多的数据叫众数,可知165出现的次数最多.【详解】这组数据中165出现次数最多,有4次,所以这组数据的众数为165,故选:C.【点睛】此题主要考查了众数,关键是把握众数定义,难度较小.9.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=【答案】D【解析】【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB ,A 、当∠AED=∠B 时,△ABC ∽△AED ,故本选项不符合题意;B 、当∠ADE=∠C 时,△ABC ∽△AED ,故本选项不符合题意;C 、当AD AE =AC AB时,△ABC ∽△AED ,故本选项不符合题意; D 、当AD AB =AE AC 时,不能推断△ABC ∽△AED ,故本选项符合题意; 故选D .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.10.关于二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数),下列描述错误的是( )A. 当m =2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y =﹣x +1的图象上C. 当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≤2D. 当m =0时,函数图象的顶点及函数图象与x 轴的两个交点构成的三角形是等腰直角三角形【答案】C【解析】【分析】根据二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理逐项判断即可.【详解】∵二次函数2()1y x m m =---+(m 为常数)∴当x m =时,y 取得最大值,最大值为1m -+则当2m =时,最大值为211-+=-,选项A 正确∵此抛物线的顶点(,1)m m -+∴将x m =代入直线1y x =-+得:1y m =-+则顶点(,1)m m -+在直线1y x =-+上,选项B 正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则当12x -<<时,y 随x 的增大而增大,可得m 的取值范围为2m ≥,选项C 错误当0m =时,二次函数的解析式为21y x =-+此函数的顶点坐标为(0,1),与x 轴的交点分别为(1,0)-,(1,0)由等腰三角形的定义、勾股定理的逆定理得:这三个点构成等腰直角三角形,选项D 正确故选:C .【点睛】本题考查了二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理等知识点,熟练掌握二次函数的图象与性质是解题关键.二.填空题(共6小题)11.因式分解:24ab a - =___________________.【答案】(2)(2)a b b +-【解析】【分析】先提公因式a ,再利用平方差公式即可因式分解.【详解】解:224(4)(2)(2)ab a a b a b b -=-=+-,故答案为:(2)(2)a b b +-.【点睛】本题考查了提公因式法和公式法因式分解,解题的关键是灵活运用两种方法,熟悉平方差公式.12.分别写有数字23、4、0的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____. 【答案】25 【解析】【分析】直接利用无理数的定义结合概率求法得出答案.【详解】解:∵在标有23﹣4、0、这2张, ∴从中任意抽取一张,抽到无理数的概率是25, 故答案为:25. 【点睛】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键.13.在平面直角坐标系中,点P 在直线y =x +b 的图象上,且点P 在第二象限,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 是面积为25的正方形,则直线y =x +b 的函数表达式是_____.【答案】y =x +10.【解析】【分析】用正方形的面积,求得正方形的边长,得到PA ,PB 的长度,P 在第二象限,得点P 的坐标,代入直线解析式,可求得值,进而得到直线的表达式.【详解】解:∵四边形OAPB 是面积为25的正方形,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴P A =PB =5,∵点P 在第二象限,∴P (﹣5,5),∵点P 在直线y =x +b 的图象上,∴5=﹣5+b ,∴b =10,∴直线y =x +b 的函数表达式是y =x +10,故答案为:y =x +10.【点睛】本题考查了坐标系中线段长度与坐标之间的转化关系,待定系数法求解析式,求出点P 的坐标是解题的关键.14.如图,点A ,B ,C 在同一个圆上,∠ACB <90°,弦AB 的长度等于该圆半径的2倍,则cos ∠ACB 的值是_____.【答案】22. 【解析】【分析】 作直径AD ,连接BD ,通过同圆中同弧所对的圆周角相等,得ACB ADB ∠=∠,在Rt ABD ∆完成计算即可.【详解】解:作直径AD,连接BD,如图,∵AD为直径,∴∠ABD=90°,∵弦AB的长度等于该圆半径的2倍,∴22 ABAD=,在Rt△ADB中,sin∠ADB=22 ABAD=,∴∠ADB=45°,∴∠ACB=∠ADB=45°,∴cos∠ACB=22.故答案为22.【点睛】本题考查了圆周角定理的应用,直角三角形中三角函数值得计算,将ACB∠利用圆周角定理转化到直角三角形中,是解题的关键.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.【答案】二、四.【解析】【分析】根据函数图象,由1x =时,得到a b c ++的正负,即可得到答案.【详解】解:由二次函数的图象可知,当x =1时,y <0,即a +b +c <0,∴反比例函数y =a b c x++的图象所在的象限是第二、四象限, 故答案为:二、四.【点睛】本题考查了二次函数中a b c ++的正负判断,反比例函数系数对于图象象限的影响,熟练掌握这些知识点是解题的关键.16.如图,菱形ABCD 的边长为10,sin A =45,点M 为边AD 上的一个动点且不与点A 和点D 重合,点A 关于直线BM 的对称点为点A ',点N 为线段CA '的中点,连接DN ,则线段DN 长度的最小值是_____.【答案】65﹣5.【解析】【分析】通过构造三边关系来求DN 的最小值,根据A ,A'关于直线BM 对称,BA ′=10,取BC 的中点K ,NK 是A BC'∆的中位线,NK=5,作DH⊥BC,根据sin A =45可求出DH=8,CH=6,在Rt △DHK 中,由勾股定理求得DK 的值,看△DNK 根据三角形的三边关系即可求出答案.【详解】解:如图,连接BA ′,取BC 的中点K ,连接NK ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AB =BC =CD =AD =10,∠A =∠DCB ,∵A ,A ′关于BM 对称,∴BA′=BA=10,∵CN=NA′,CK=BK,∴NK=12BA′=5,∵sin∠A=sin∠DCH=45=DHCD,∴DH=8,∴CH6,∴CK=KB=5,∴HK=CH=CK=1,∴DK∵DN≥DK﹣NK,∴DN5,∴DN5,5.【点睛】本题考查了线段最值问题,属于压轴题,构造三角形三边关系方法是:①两边为定值,第三边是要求的线段;②往往取特殊点中点构造三角形,解决本题的关键是构造三角形,利用三角形三边关系.三.解答题(共9小题)17.计算:|﹣1)0﹣4sin60°﹣(﹣2)2.【答案】-3【解析】【分析】利用去绝对值,零指数幂,三角函数,乘方运算法则进行计算即可得到答案.【详解】解:|﹣1)0﹣4sin60°﹣(﹣2)2=﹣4×24= 3=﹣3.【点睛】本题考查实数的混合运算,熟练掌握运算法则是解题的关键.18.某校为了做好”营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.【答案】(1)100;(2)20、7.2;(3)见解析;(4)2450人【解析】【分析】(1)根据”及格”人数及其所占百分比可得总人数;(2)总人数乘以”优秀”对应的百分比可得其人数,再求出”不及格”人数,继而用360°乘以”不合格”人数所占比例即可得;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中”优秀”和”良好”人数和所占比例.【详解】(1)抽取的学生总人数为28÷28%=100(人);(2)抽取的学生中,等级为”优秀”的人数为100×20%=20(人),则”不及格”人数为100−(28+50+20)=2(人),所以扇形统计图中等级为”不合格”部分圆心角的度数为360°×2100=7.2°,故答案为:20、7.2;(2)补全条形图如下:(4)估计成绩等级为”优秀”和”良好”的学生共有3500×5020100=2450(人).【点睛】本题考查的是样本估计总体、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.【答案】20【解析】【分析】根据角平分线的定义和平行四边形的性质证出∠BAE=∠BEA,得出AB=BE=4,求出BC=6,即可得出结论.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=4,∵BE=3,EC=2,∴BC=BE+EC=4+2=6,∴▱ABCD的周长=2(AB+BC)=2(4+6)=20.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.【答案】1 3【解析】【分析】画树状图(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中甲、乙两名学生恰好选择同一场馆的结果数为3,所以甲、乙两名学生恰好选择同一场馆的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.【答案】(1)A种笔记本和B种笔记本的单价各是15元和5元;(2)11.【解析】【分析】(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意列方程即可得到结论;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意列不等式即可得到结论.【详解】解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,30010010 x x=-,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.【答案】(1)证明见解析;(2)32 3233π.【解析】【分析】(1)连接OB,交CA于E,,根据圆周角定理求出∠BOA=60°,根据∠BCA=∠OAC=30°和三角形内角和定理求出∠AEO=90°,即OB⊥AC,根据BD∥AC,得到∠DBE=∠AEO=90°,可得BD是⊙O的切线; (2)根据平行线的性质得到∠D=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【详解】(1)证明:如图示,连接OB ,交CA 于E ,∵∠C =30°,∠C =12∠BOA , ∴∠BOA =60°, ∵∠BCA =∠OAC =30°,∴∠AEO =90°,即OB ⊥AC ,∵BD ∥AC ,∴∠DBE =∠AEO =90°,∴BD 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA =90°,∴∠D =∠CAO =30°,∵∠OBD =90°,OB =8,∴BD 3=3,∴S 阴影=S △BDO ﹣S 扇形AOB =12×8×3﹣2608360π⨯=3323π, 故答案为:323233π. 【点睛】本题考查了切线的判定,平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,熟悉相关性质是解题的关键.23.如图,在平面直角坐标系中,直线y =kx +b 与x 轴交于点A (5,0),与y 轴交于点B ;直线y ═45x +6过点B 和点C ,且AC ⊥x 轴.点M 从点B 出发以每秒2个单位长度的速度沿y 轴向点O 运动,同时点N 从点A 出发以每秒3个单位长度的速度沿射线AC 向点C 运动,当点M 到达点O 时,点M 、N 同时停止运动,设点M 运动的时间为t (秒),连接MN .(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.【答案】(1)y=﹣65x+6,点C的坐标为(5,10);(2)t=65;(3)线段CD的长度不变化,CD=12495由见解析【解析】【分析】(1)先求出点C和点B的坐标,再根据待定系数法,即可求得答案;(2)分别用含t的代数式表示OM和AN的长,列出关于t的方程,即可求解;(3)过点D作EF∥x轴,交OB于E,交AC于F,由△BDM∽△ADN,得23DE BMDF AN==,从而得DF的长,由△BDE∽△ADF,得EO=F A=185,从而得CF的长,进而即可求解.【详解】(1)∵AC⊥x轴,点A(5,0),∴点C的横坐标为5,对于y═45x+6,当x=5时,y=45×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),∵直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),∴5k b0b6+=⎧⎨=⎩,解得,6k5b6⎧=-⎪⎨⎪=⎩,∴直线y=kx+b的函数表达式为:y=﹣65x+6,综上所述,直线y=kx+b的函数表达式为y=﹣65x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∵当OM=AN时,OM∥AN,∴四边形EOAF为平行四边形,∴MN∥x轴,∴6﹣2t=3t,解得,t=65,∴当MN∥x轴时,t=65;(3)线段CD的长度不变化,理由如下:过点D作EF∥x轴,交OB于E,交AC于F,∵EF∥x轴,BM∥AN,∠AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∵BM∥AN,∴△BDM∽△ADN,∴23 DE BMDF AN==∵EF=5,∴DE=2,DF=3,∵BM∥AN,∴△BDE∽△ADF,∴23 BE DEFA DF==,∴23 BEEO=,∵OB=6,∴EO=F A=185,∴CF=AC﹣F A=325,∴CD=22DF CF=12495.【点睛】本题主要考查一次函数的图象和待定系数法,矩形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,添加合适的辅助线,构造相似三角形,是解题的关键.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.【答案】22)①75°;②15°;③证明见解析【解析】【分析】(1)根据题意利用相似三角形的判定与性质通过证明△ABP ∽△CBQ ,可得AB AP BC CQ =; (2)①根据题意由直角三角形的性质可求∠CBQ=75°,即可求解;②根据题意直接由三角形的外角性质进行分析即可求解;③由题意在EF 上截取EH=EB ,连接BH ,由”AAS ”可证△BHF ≌△BEQ ,可得EQ=HF ,进而即可得出结论.【详解】解:(1)∵AC =BC ,∠ACB =90°,∴AB BC ,∠ABC =45°=∠BAC∵将△ABC 绕点B 逆时针方向旋转得到△PBQ ,∴∠ABC =∠PBQ =45°,AB =BP ,BC =BQ ,∴∠ABP =∠CBQ ,AB BP BC BQ==, ∴△ABP ∽△CBQ ,∴AB AP BC CQ=,;(2)①∵QD ⊥BC ,∴∠QDB =90°,且∠BQD =15°,∴∠CBQ =75°,∴旋转角α为75°;②∵∠DBE =∠CBQ ﹣∠PBQ =75°﹣45°=30°,∴∠DEB =60°,∠ABP =75°,∴∠BEQ =120°,∵EF 平分∠BEQ ,∴∠BEF =60°,∵∠ABP =∠F+∠BEF ,∴∠F =75°﹣60°=15°;③如图,在EF 上截取EH =EB ,连接BH ,∵EB=EH,∠BEF=60°,∴△BEH是等边三角形,∴BE=BH=EH,∠BHE=60°,∴∠BHF=∠BEQ=120°,且∠F=∠BQD=15°,BE=BH,∴△BHF≌△BEQ(AAS)∴EQ=HF,∴EQ+EB=HF+EH=EF.【点睛】本题是四边形综合题,考查全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解答本题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.【答案】(1)抛物线的函数表达式为21433y x x =-++;(2)①2518;②13159±. 【解析】【分析】 (1)根据题意首先求出A 、D 的坐标,再利用待定系数法即可解决问题;(2)①如图1,过点Q 作QF ⊥AP 于点F ,则AF =PF =12AP =12(5﹣2t ),AQ =t ,证得OD ∥QF ,得出AO AD AF AQ=,可求出t 的值; ②如图2,过点C 作CM ⊥AQ 于点M ,过点Q 作QN ⊥x 轴于点N ,证明△AOD ∽△CMD ,求出CM ,则S 1可用t 表示,证明△AOD ∽△AQN ,求出QN ,则S 2可用t 表示,则可得出t 的方程,解方程即可得出答案.【详解】解:(1)∵直线3344y x =+与y 轴交于点D , ∴x =0时,y =34, ∴D (0,34), ∵直线3344y x =+与x 轴交于点A , ∴y =0时,3344x +=0, ∴x =﹣1,∴A (﹣1,0),∵抛物线y =ax 2+x+c 经过点A (﹣1,0),C (0,43),∴1043a c c -+=⎧⎪⎨=⎪⎩, 解得:1343a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为21433y x x =-++; (2)①如图1,过点Q 作QF ⊥AP 于点F ,若AQ =PQ ,则AF =PF =12AP =12(5﹣2t ),AQ =t , ∵OD ⊥AP ,QF ⊥AP ,∴OD ∥QF , ∴AO AD AF AQ=, ∵D (0,34),A (﹣1,0), ∴OD =34,AO =1, ∴AD 220A DO +22314⎛⎫+ ⎪⎝⎭54, ∴5141(52)2tt =-, 解得:t =2518.∴t=2518时,△APQ是以AP为底边的等腰三角形.②如图2,过点C作CM⊥AQ于点M,过点Q作QN⊥x轴于点N,∵∠ADO=∠CDM,∠AOD=∠CMD=90°,∴△AOD∽△CMD,∴AD AO CD CM=,∵CD=OC﹣OD=4373412-=,AD=54,OA=1,∴514712CM=,∴CM=7 15,∴S△ACQ=S1=12AQ×CM=17215t⨯⨯=730t,∵OD⊥x轴,QN⊥x轴,∴OD∥QN,∴△AOD∽△AQN,∴AD OD AQ ON=,∴5344t QN =,∴QN=35t,∴S△APQ=S2=12AP×QN=13(52)25t t-=23325t t-,∵S 1+S 2=602675, ∴27336023025675t t t +-=, ∴213395t ⎛⎫-= ⎪⎝⎭,解得:t =139即当S =602675时,t 的值为139±. 【点睛】本题考查二次函数综合题,考查待定系数求函数解析式,等腰三角形的性质,三角形的面积,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质及方程思想是解题的关键.。
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。
中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。