2020年七年级数学上册图形认识初步单元试题附答案
- 格式:docx
- 大小:255.94 KB
- 文档页数:5
人教版七年级上册数学图形的初步认识单元测试题(含答案)-第四章:图形的初步认识一、精心选一选1、正确选项为A。
因为直线AB和直线BA在同一直线上,是同一条直线。
2、正确选项为D。
因为图中有四个角,分别为∠A、∠B、∠C、∠D,且∠A和∠D、∠B和∠C互余,共有三对互余角。
3、正确选项为B。
因为只有图中的第二个图形可以沿着虚线折叠成一个棱柱。
4、正确选项为A。
因为通过同一平面内的任意三点,只能画出一条直线。
5、正确选项为C。
因为20.25度比2018分和2015分30秒都小,所以∠A>∠C>∠B。
6、不能折成正方形的是第二个图片。
7、展开后得到的图形如右图所示。
8、正确选项为A。
因为钝角与锐角的差是一个锐角,不可能是钝角。
9、时针和分针的夹角为75度。
10、∠α余角的补角为116度。
11、∠α与∠γ互补。
12、错误选项为C。
因为OC方向是___°。
13、错误选项为D。
因为所有说法都正确。
14、∠AOD - ∠AOC = ∠COD。
15、绕虚线旋转一周得到的几何体是圆柱体。
二、细心填一填1、直线上的两个点可以确定一条线段。
2、一个角的大小与其两边的长短有关。
3、线段只有两个端点。
4、同角或等角的补角相等。
5、两个锐角的和一定小于直角。
6、OA方向是___°,OB方向是北偏西15°,OC方向是南偏东30°,OD方向是东南方向。
7、正方体展开后可以得到六个正方形。
8、一个角的补角是与其相加和为90度的角。
9、时针和分针的夹角为150度。
10、∠α余角的补角为64度。
11、∠α与∠γ互补。
12、选项A中OA方向应为___°。
13、线段上只有有限个点。
14、∠AOD - ∠AOC = ∠COD。
15、圆锥体。
16.将几何体分类:柱体有(1)圆柱、(2)棱柱;锥体有(3)圆锥、(4)棱锥。
17.已知∠1和∠2互补,且∠2+∠3=180°,则∠1=90°,因为两个互补角的度数和为90°。
华师大版数学七年级上册第4章图形的初步认识单元考试题总分:100分,时间:90分钟;姓名:;成绩:;一、选择题(3分×10=30分)1.下列图形中,是三棱锥的是()2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()3.钟表上,8点30分时,时针与分针的夹角是()A.90°B.85°C.75°D.60°4.用一副三角板的内角(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)可以画出大于0°且小于180°的不同度数的角共有( )A.8种B.9种C.10种D.11种5.两条直线相交,只有1个交点,三条直线相交,最多有3个交点,四条直线相交,最多有6个交点,10条直线相交,最多有()个交点.A.45B.42C.40D.366.点A、B、C都在同一条直线上,AB=8cm,BC=10cm,则线段AC长为()A.18cm 或2cm B 、18cm C.2cm D 、8cm 或10cm7.下列四个生活中产生的现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵的位置,就能确定同一行树所在的直线;③从A 地到B 架设电线,总是尽可能沿着线段AB 方向架设;④把弯曲的公路改直,就能缩短路程。
其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②③D.③④8.如图,OC 平分∠AOD ,OD 平分∠BOC ,下列等式不成立的是( )A. ∠AOC=∠BODB.∠COD=21∠AOBC.∠AOC=21∠AODD.∠BOD=21∠BOC9.下列说法正确的是( )A 、一个锐角的余角比这个角的补角小90°;B 、如果一个角有补角,那么这个角必是钝角;C 、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为了补角;D 、如果∠α和∠β互为余角,∠β与∠θ互为余角,那么∠α与∠θ互为余角。
第四章《图形认识初步》整章水平测(A)一、耐心填一填,一锤定音!(每小题3分,共30分)1.45°= 直角= 平角.2.15°-10°7′= .3.7.205°= °′″.4.如图1,是的展开图.5.类似于长方体的形状的实物有等.6.如果∠1=4°18′,∠2=3°79′,∠3=4.4°,则∠1、∠2、∠3的大小顺序是.(由小到大排列).7.如图2,图中小于平角的角共有个,其中能用一个大写字母表示的角是.8.两个角互补且相等,则这两个角分别是、.9.线段AD=76,BD=70,CD=19,点B、C在线段AD上,则AB= ,BC= .10.钟表的时针在任一时刻所在的位置作为起始位置,它旋转出一个平角至少需分钟.二、精心选一选,慧眼识金!(每小题2分,共20分)1.平面上有任意四点,经过其中两点画一条直线,共可画()A.1条直线B.4条直线C.6条直线D.1条或4条或6条直线2.从3时15分到3时30分,时针转了()A.7.5°B.15°C.90°D.10°3.一个角的补角是它的3倍,这个角是()A.30°B.45°C.50°D.60°4.如图3,是从正面、左面、上面看某几何体得到的平面图形,则该几何体是()A.六棱锥B.六棱柱C.长方体D.正方体5.下图中,是三棱柱的平面展开图的是()6.下列说法中,正确的个数是()①角是由两条射线组成的图形.②一条射线就是一个周角.③两点确定一条直线.④如果线段AB=BC,那么点B叫做线段AC的中点.A.1 B.2 C.3 D.47.点C在线段AB上,不能判断点C是线段AB中点的式子是()A.AB=2AC B.AC+BC=AB C.12BC ABD.AC=BC8.如图4,由A测B的方向是()A.南偏东30°B.北偏西30°C.南偏东60°D.北偏西60°9.如图5,∠AOB+∠BOC=90°,∠BOC与∠COD互余,那么∠AOB与∠COD的关系是()A.∠AOB>∠COD B.∠AOB=∠COD C.∠AOB<∠COD D.无法确定10.如图6,13AC AB=,14BD AB=,AE=CD,则CE为AB长的()A.16B.18C.112D.116三、用心做一做,马到成功!(本大题共70分)1.(本题10分)读句画图并填空:(1)画直线AB;(2)在线段AB上取一点O,用量角器画∠BOC=40°;(3)由图形可知,∠AOC= ;(4)画射线OC的反向延长线OD;(5)由图可知:∠AOD= ,∠DOB= .2.(本题10分)如图7,分别从正面、左面、上面观察该立体图形,能得到什么平面图形?3.(本题11分)如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.4.(本题12分)如图9,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.5.(本题12分)已知∠1和∠2互为补角,∠2度数的一半比∠1大45°,试求出∠1与∠2的度数.6.(本题15分)一个正方体小木块,六个面上分别标有1,2,3,4,5,6六个数字,我们从不同角度可以看到的正方体的一个面或几个面上的数字,最多可以有多少种不同的情况?参考答案:一、1.12,14 2.453' 3.7,12,184.圆锥 5.不惟一(略)6.123<<∠∠∠ 7.7;B ∠,C ∠ 8.90,909.6,51 10.360 二、1.D2.A 3.B 4.B 5.C 6.A 7.B 8.C 9.B 10.C 三、1.(3)140;(5)40,140.图略.2.略.3.渔船在C 处.4.90DOE =∠,76BOE =∠.5.130=∠,2150=∠.6.共有26种不同情况.。
七年级数学上册第四章测试卷(共100分)一、选择题(10×3=30分)1、.如图所示,该几何体的俯视图是()A. B. C. D.2、.下列说法上正确的是()A. 长方体的截面一定是长方形;B. 正方体的截面一定是正方形;C. 圆锥的截面一定是三角形;D. 球体的截面一定是圆。
3、立方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么该立方体盒子上,“强”相对的面上所写的文字是()A. 文B. 明C. 主D. 富4、如图,已知∠1=25°,∠AOC=90°,点B,O,D 在同一条直线上,则∠2 的度数为()A.105°B.115°C.125°D.65°CB2 1D O A5、有两根木棒,要挑出一根较长的木棒用于400 米接力比赛,选择的方法是()6、下列说法中错误的是()A.过两点有且只有一条直线B.把一条弯曲的公路改成直道可以缩短路程,利用的是两点之间线段最短C.若α+27°18′=90°,27.3°+β=90°,则α=βD.在线段、射线、直线中,直线最长7下列几何体中,同一个几何体的主视图与俯视图不同的是()A. B. C. D.8、某测绘装置上一枚指针原来指向南偏西50°(如图所示),把这枚指针按逆时针方向旋转周角,则指针的指向为()A、东偏南50°B、北偏东60°C、北偏西40°D、南偏东40°9、.已知AB=8cm,BC=3cm,且A,B,C三点在同一条直线上,则AC=()A. 11cmB. 5cmC. 8cm或3cmD. 5cm或11cm10、如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A. 五棱柱B. 六棱柱C. 七棱柱D. 八棱柱二、填空题(10×3=30分)1、1800-( 34054′+21033′)= 。
第4章图形的认识测试题(本试卷满分120分,含附加题20分)一、选择题(每小题3分,共30分)1. 把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2. 从左面观察图1所示的立体图形,能得到的平面图形是()A B C D 图13. 下列四个图中角的表示方法正确的是()4. 下列图形中,不是立体图形的是()A. 圆锥B. 六棱柱C. 圆D. 圆柱5.下列说法:①线段有两个端点,直线有一个端点;②角的大小与角的两边的长短无关;③线段上有无数个点;④同角或等角的补角相等;⑤两个锐角的和一定大于直角.其中错误的说法有()A.1个B.2个C.3个D.4个6.下列单位换算中,不正确的是()A. 1.5°=90′B. 120″=2′C. 2°5′=3900″D. 10.3°=36720″7. 已知M 是线段AB 的中点,下列结论错误的是( )A .AM+BM=AB B .AB=2AMC .BM=21AB D .AM=BM 8. 图2是一个正方体的展开图,把展开图折叠成正方体后,“你”字相对面上的字是( )A .我B .中C .国D .梦图2 图39. 如图3所示,把一张长方形报纸的一角斜折过去,使A 点落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD 的度数为( )A.85°B.90°C.75°D.80° 10.如图4,点C 在线段AB 上,BC:AC=1:3,AB=16 cm ,点M 从点A 出发,沿线段AB 方向以每 秒2 cm 的速度向点B 移动,有下列结论:①3秒时,点M 与线段AC 的中点重合;②6秒时,点M 与点C 重合;③3.5秒时,点M 、B 之间的距离为9 cm ;④7秒以前,CM <BM.以上结论正确的是( )A. ①②③B. ①③④C. ②③④D. ①②③④图4二、填空题(每小题4分,共24分)11. 西瓜可以近似看做常见的立体图形_______,从正面看西瓜得到的平面图形是_______.12.如图5,图中共有_________条线段.图5图613.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,其中相等的两角是________.14. 已知一个长方形的长为4,宽为2,若将该长方形绕它的长所在的直线旋转一周,得到的几何体是________,它的体积是________.(π取3)15.下列几何体:①圆柱;②六棱柱;③圆锥;④长方体.其中侧面展开图是长方形的几何体有:________.(填序号)16. 将一副三角尺按如图6所示的方式摆放,其中点B,F在直线MN上,BC是∠ABM的平分线,则∠MBC的度数为______.17. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.18. 如图7,射线OA的方向是________,射线OB的方向是_________,射线OC的方向是________.图7三、解答题(共46分)19. (6分)将图8所示的几何体与它的名称用线连接起来.图820. (8分)计算:已知∠A=8.6°,∠B=5°24′.(1)∠A与∠B的和等于多少分?(2)∠A 与∠B 的差等于多少度?21.(8分)图9是由7个小正方体组成的一个几何体,画出分别从正面、左面、上面看该几何体得到的平面图行.图922. (8分)如图10,已知D 是AB 的中点, E 是BC 的中点,BE=51AC=2 cm , 求线段DE 的长.图1023. (8分)如图11,AB 和CD 都是直线,已知∠AOE=90°,∠3=∠FOD ,∠1=27°20′,求∠2,∠3 的度数.图1124. (8分)如图12,在正方体ABCD-A 1B 1C 1D 1中.(1)分别写出以点B 为端点的线段;DA CB E(2)一只蚂蚁要从A点沿表面爬行到顶点B1,怎样爬行路线最短?为什么?(3)若由点A沿表面爬行到点C1呢?图12附加题(共20分)24. (10分)如图13,已知O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;图1326. (10分)(1)探索知识:在图14-①中,有3条射线,共有3个角;在图18-②中有_____条射线,共有_____个角;在图14-③中有_____条射线,共有_____个角;(2)猜想验证:仿照图14的画法,若图中有6条射线,则共有______个角;(3)归纳总结:仿照图14的画法,若图中有n(n≥2)条射线,则共有______个角.①②③图14参考答案一、1.C 2.A 3.D 4.C 5.B 6.D 7.A 8.D 9.B 10.D 二、11.球 圆 12.6 13.∠α与∠γ 14.16.30° 17. 5或11 18. 北偏东15° 北偏西40°南偏东45° 三、19. 如图1所示.图120.解:(1)∠A+∠B=8.6°+5°24′=516′+324′=840′.(2)∠A+∠B=8.6°-5°24′=8.6°-5.4°=3.2°.21.解:如图2所示.从正面看 从左面看 从上面看图222. 解:因为BE=51AC=2 cm ,所以AC=10 cm.又E 是BC 的中点,所以BC=2BE=4 cm.所以AB=AC-BC=10-4=6(cm ).因为D 是AB 的中点,所以DB=21AB=3 cm.所以DE=DB+BE=3+2=5(cm ).23.解:因为∠AOE=90°, 所以∠2=90°-∠1=90°-27°20′=62°40′.又∠AOD=180°-∠1=152°40′,∠3=∠FOD ,所以∠3=12∠AOD=76°20′.24. 解:(1)BA ,BC ,BB 1;(2)连接AB 1,沿AB 1路线爬行最短,因为两点之间,线段最短;(3)将正方体部分展开,连接AC 1,沿AC 1路线爬行最短.25. 解:(1)图中有9个小于平角的角.(2)因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD =AOC ∠21=25°.所以∠BOD=180°-25°=155°.(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE = ∠COE ,即OE 平分∠BOE .26. 解:(1)4 6 5 10(2)15(3)2)1(-n n。
2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图为一个长方体,则该几何体主视图的面积为cm2.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是平方厘米.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是cm.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB =.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是.20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是个.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.29.请你在右边的方格中画出如左图所示几何体的三视图:30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)参考答案与试题解析一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8:25时,时针与分针的夹角可以看成时针转过8时0.5°×25=12.5°,分针在数字5上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:25时分针与时针的夹角3×30°+12.5°=102.5°.故选:B.3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变【解答】根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和底面半径为边长的长方形的面积,所以表面积变大了.故选:B.4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识.故选:A.5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【解答】解:如图,由题意,∠BAC=30°+90°+20°=140°,故选:D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.【解答】解:物体的主视图画法正确的是:.故选:C.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条【解答】解:由图可得,线段有:线段AB、线段AC、线段AD、线段BC、线段BD、线段CD,共6条.故选:D.8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球【解答】解:将长方形纸板绕它的一条边旋转,可得下面的几何体,故选:A.9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B符合题意;故选:B.10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为4.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.故x+y+z=4.故答案为:4.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于2或6.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故答案为2或6.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【解答】解:用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短,故答案为:两点之间线段最短.14.如图为一个长方体,则该几何体主视图的面积为20cm2.【解答】解:该几何体的主视图是一个长为5cm,宽为4cm的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是12.56平方厘米.【解答】解:∵正方形的边长是4厘米,∴剪出的最大的圆直径为4厘米,半径=2厘米,所以,圆的面积=πr2=3.14×22=12.56(平方厘米).故答案为:12.56.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是32cm.【解答】解:由题意得:这个直四棱柱的所有棱长之和是:4×2+4×2+4×4=8+8+16=32(cm),故答案为:32.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是190.【解答】解:∵在已知角内画射线,画1条射线,图中共有3个角,3=;画2条射线,图中共有6个角,6=;画3条射线,图中共有10个角,10=;…,∴画n条射线,图中共有个角,∴画18条射线所得的角的个数是=190,故答案为:190.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=72°.【解答】解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.故答案为:72°.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是1和7.【解答】解:由正方体展开图的特征得出,折叠成正方体后,点11所在的正方形分别和点7、点1所在的两个正方形相交,故点1与点7、点1重合.故答案为1和7;20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是4个.【解答】解:在俯视图上标出该位置摆放的小立方体的个数,如图所示:因此,组成这个几何体的小正方体的个数是4个.故答案为:4.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').【解答】解:(1)原式=36×(﹣)+(﹣8)÷4﹣(﹣1)=27﹣30﹣2+1=﹣4;(2)原式=179°60′﹣56°87'=179°60′﹣57°27'=122°33′.22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有9个小正方体.【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.【解答】解:∵MN=MB+BC+CN,∵MN=3cm,BC=1.5cm,∴MB+CN=3﹣1.5=1.5cm,∴AD=AB+BC+CD=2(MB+CN)+BC=2×1.5+1.5=4.5cm.答:AD的长为4.5cm.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.【解答】解:根据分析,可得.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.【解答】解:(1)由AB=10,M是AB的中点,所以AM=5,又AC=4,所以CM=AM﹣AC=5﹣4=1(cm).所以线段CM的长为1cm;(2)因为N是AC的中点,所以NC=2,所以MN=NC+CM,2+1=3(cm),所以线段MN的长为3cm.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.【解答】解:(1)设∠AOE的度数为x,由题意知∠A′OE=x,∠EOB=75°﹣x,∵OB平分∠A′OE,∴2∠EOB=∠A′OE,∴2(75°﹣x)=x,解得x=50,答:∠AOE的度数为50;(2)①如图2,当射线OB在∠A′OE内部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠EOB=∠A′OE,∴(90°﹣y)+75°﹣y=y,解得y=;②如图3,当射线OB在∠A′OE外部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOE+∠A′OE+∠A′OB=75°,∴y+y+(90°﹣y)=75°,解得y=30,答:∠AOE的度数为或30;(3)如图4,当∠A′OB=120°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=120°﹣75°=45°,又∵∠AOE=∠A′OE,∴∠AOE=22.5°,∴∠BOE=75°+22.5°=97.5°;如图5,当∠A′OB=120°,由图可得∠A′OA=360°﹣120°﹣75°=165°,又∵∠A′OE=∠AOE,∴∠AOE=82.5°,∴∠BOE=75°+82.5°=157.5°;当射线OE在CD下面时,如图6、7,∠BOE=22.5°或82.5°,综上,∠BOE的度数为157.5°或97.5°或22.5°或82.5°.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.【解答】解:物体的主视图、左视图、俯视图.如图所示:29.请你在右边的方格中画出如左图所示几何体的三视图:【解答】解:如图30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.【解答】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,把正确选项的代号填在题后的括号内).1.下列说法中错误的有( )(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个B.2个C.3个D.4个2.下列图中角的表示方法正确的个数有( )A.1个B.2个C.3个D.4个3.下面左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图是( )A. B. C. D.(第3题)4.经过同一平面内任意三点中的两点共可以画出( )A.一条直线B.两条直线C.一条或三条直线D.三条直线5.若∠A=20 o 18′, ∠B=20 o 15′30〞, ∠C=20.25 o,则 ( )A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C >∠BD.∠C >∠A >∠B6.如左图所示的正方体沿某些棱展开后,能得到的图形是( )(第6题)7.如图下列说法错误的是( )A.OA方向是北偏东40°B.OB方向是北偏西15 °C.OC方向是南偏西30°D.OD方向是东南方向.(第7题)8.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )二、填空题(本大题共7小题,每小题3分,共21分)9.要在墙上钉一根木条,至少要用两颗钉子,这是因为: .10.如图所示,小于平角的角有个.11.一个角余角是23°13′6″,则这个角的度数是 .12.如图将一副直角三角板叠在一起,使直角顶点重合于点O, 则∠AOB+∠DOC=°.13.在时刻8:30,时钟上的时针和分针的夹角是.14.如果某时刻灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的方向.15.天天宾馆在重新装修后,准备在大厅的主楼道上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼道宽2米,其侧面如图所示.问购买这种地毯至少需要 元.三、(本大题共3小题,第16题6分,第17,18题各5分,共16分)16.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图:(1)画直线AB ;(2)作射线BC ;(3) 连接AD ,作线段AD 的反向延长线AE ;(4) 在平面内找一点F ,使点F 到A 、B 、C 、D 四点距离和最短. 17.如图,已知线段a 、b ,画一条线段,使它等于2a -b .(保留作图痕迹,不写画法).18.计算:50°24′×3+98°12′25″÷5四、(本大题共2小题,每小题7分,共14分)19.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长.20.一个角的余角比它的补角的31还少20°,求这个角.五、(本大题共3小题,第21,22小题各8分,第23小题9分,共25分)21.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面 与右面标注的式子相等.⑴ 求x 的值.⑵ 求正方体的上面和底面的数字和.22.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA 度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.36m(第10题) (第12题) (第15题)(第21题)(2)若OE平分∠BOC,OF、OG三等分∠COD,求∠EOG.(第22题)23.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.⑴求线段MN的长;⑵若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由.-=cm,M、N分别为AC、BC的中点,你能猜想MN ⑶若C在线段AB的延长线上,且满足AC CB b的长度吗?请画出图形,写出你的结论,并说明理由.⑷你能用一句简洁的话,描述你发现的结论吗?参考答案一、选择题:1.C2.B3.D4.C5.A6.B7.A8.C二、填空题:9.两点确定一条直线; 10.9 ; 11. 66°46′54″; 12.180; 13.75;14. 南偏西40 ; 15.540.三、16.略. 17.略. 18.170°50′29″四、19.解:(1)当D 在AC 上时,BD =7cm ;(2)当D 在CB 上时,BD =3cm.20.解:设这个角为x °,则可得:1(90)(180)203x x -=--,解得:x =75. 答:略.五、21.解:(1)32x x =-,解得:1x =.(2)1+3=4.22.解:(1)∠BOC =72°;(2)∠EOG =108°.23.解:(1) MN =7;(2)MN =12a ,11()22MN AC CB a =+=; (3)MN =12b ,11()22MN AC CB b =-=;画图略. (4)C 在线段AB 上,12MN AB =; C 在线段AB 延长(反向延长)线上,12MN AC BC =-.。
2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.242.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm4.下面图形中,平面图形是()A.B.C.D.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是cm.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是.13.一个五棱柱的面数为个,棱数为条,顶点数为个.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是.16.如图所示,是一个立体图形的展开图,这立体图形是.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm2.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.2020年人教版七年级数学上册《第4章几何图形初步》单元测试卷参考答案与试题解析一.选择题(共10小题)1.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.2.如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A.B.C.D.【分析】根据面动成体的原理即可解.【解答】解:圆台是梯形绕直角腰旋转而成.故选:A.【点评】考查了点、线、面、体,解决本题的关键是掌握各种面动成体的特征.3.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm2,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm【分析】根据立方根的定义和长方体的体积公式解答.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.【点评】本题考查了立方根的定义和长方体的体积公式,解题的关键掌握立方根的定义.4.下面图形中,平面图形是()A.B.C.D.【分析】根据平面图形和立体图形是区别即可解答.【解答】解:选项A是圆锥,选项B是圆柱,选项C是四棱柱,选项D是三角形,三角形是平面图形.故选:D.【点评】本题考查了平面图形和立体图形的认识,掌握定义是解题的关键.5.如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【分析】根据四棱柱的展开图解答.【解答】解:由图可知,这个几何体是四棱柱.故选:D.【点评】本题考查了展开图折叠成几何体,熟记四棱柱的展开图的形状是解题的关键.6.下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、是“田”字格,故不能折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个面,所以也不能折叠成一个正方体;D、可以折叠成一个正方体.故选:D.【点评】本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中有“我”字的一面相对面上的字是国.故选:A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个直棱柱有八个面,所有侧棱长的和为24cm,则每条侧棱的长是4cm.【分析】先根据这个棱柱有8个面,求出这个棱柱是6棱柱,有6条侧棱,再根据所有侧棱的和为24cm,即可得出答案.【解答】解:∵这个棱柱有八个面,∴这个棱柱是6棱柱,有6条侧棱,∵所有侧棱的和为24cm,∴每条侧棱长为24÷6=4(cm);故答案为:4【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱.【分析】根据面动成体可得长方形ABCD绕CD边旋转可得答案.【解答】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故答案为:圆柱.【点评】此题主要考查了点线面体,是基础题,熟悉常见几何体的形成是解题的关键.13.一个五棱柱的面数为7个,棱数为15条,顶点数为10个.【分析】根据五棱柱的形状可得答案.【解答】解:一个五棱柱的面数为7个,棱数为15条,顶点数为10个.故答案为:7,15,10.【点评】此题主要考查了认识立体图形,关键是掌握五棱柱的形状.14.若两正方体所有棱长之和为48,表面积之和为72,则体积之和为40.【分析】根据正方体的棱有12条,设其中一个正方体的棱长为x,则另一个为4﹣x,根据正方体的表面积公式列方程解答即可.【解答】解:设其中一个正方体的棱长为x,则另一个为4﹣x,根据题意得,6x2+6(4﹣x)2=72,解得,,故这两个正方体的棱长分别为2+,2﹣,体积之和为:=(2++2﹣)[﹣(2+)(2﹣)+]=40.故答案为:40【点评】此题考查正方体的表面积公式的灵活应用,根据正方体一个面的面积求出正方体的棱长是解决此类问题的关键.15.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是3:4.【分析】根据圆的周长公式C=πd或C=2πr,圆的周长和半径(直径)成正比例,已知两个圆的周长之比是3:4,两个圆的直径的比也是3:4;由此解答.【解答】解:∵甲乙两圆的周长之比是3:4,∴甲乙两圆的直径之比是3:4.故答案为:3:4.【点评】考查了认识平面图形,此题主要根据圆的周长计算方法进行判断,两个圆的周长之比等于两个圆的半径(直径)的比.16.如图所示,是一个立体图形的展开图,这立体图形是圆锥.【分析】根据圆锥表面展开图的特点解题.【解答】解:如图所示,是一个立体图形的展开图,这个立体图形是圆锥.故答案为:圆锥.【点评】本题考查圆锥表面展开图,记住圆锥的表面展开图的特征是解题的关键.17.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是100cm2.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.18.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.三.解答题(共8小题)19.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?【分析】(1)根据圆锥的体积公式解答即可;(2)根据圆柱的侧面积公式即可求出r,再根据圆的面积公式解答即可;(3)求出一个圆柱形的粮仓的体积,然后用麦的体积去除以一个圆柱形的粮仓的体积即可解答.【解答】解(1)(米),V=≈24×3.14=75.36(立方米),麦这堆小麦的体积是75.36立方米;(2),(米),(平方米),所以该粮仓的底面积是4π平方米;(3)(立方米),,所以至少需要6个这样的粮仓.【点评】本题主要考查了圆柱和圆锥的体积公式、圆柱的侧面积公式,熟练掌握公式是解答本题的关键.20.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.【点评】本题考查圆柱体的体积的求法,注意分情况讨论.21.三棱柱有9条棱、6个顶点、5个面,三棱锥有6条棱、4个顶点、4个面;四棱柱有12条棱、8个顶点、6个面,四棱锥有8条棱、5个顶点、5个面等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明.【分析】简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.依此即可求解.【解答】解:∵10+15﹣24=1,不符合欧拉公式V+F﹣E=2,∴不能组成一个有24条棱,10个面,15个顶点的多面体.【点评】考查了欧拉公式,公式描述了简单多面体顶点数、面数、棱数特有的规律.解题的关键是熟练掌握欧拉公式.22.棱长为a的正方体,摆放成如图所示的形状,动手试一试,并回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,由几个正方体构成?(2)如图形所示物体的表面积是多少?【分析】(1)分别数出各层正方体的个数,再相加即可求解;(2)每个方向上均有6个等面积的小正方形,求出1个正方形面积,再乘36即可求解.【解答】解:(1)第一层1个,第一层3个,第一层6个,1+3+6=10(个).答:由10个正方体构成;(2)每个正方形面积为a2,左面:6小正方形,前面:6小正方形,右面:6小正方形,后面:6小正方形,上面:6小正方形,下面:6小正方形.物体的表面积为:6×6a2=36a2(平方单位).答:如图形所示物体的表面积是36a2平方单位.【点评】本题考查了立体图形的有关知识,关键是要注意立体图形的各个面,及每个面的正方形的个数.23.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.24.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.25.如图,已知∠AOB=60°,∠AOD是∠AOB的补角.(1)在∠AOB的外部画出它的余角∠AOC,并用直尺和圆规作出∠AOD的平分线OE;(不写作法,保留作图痕迹)(2)在完成画图和作图后所得的图形中,与∠EOD互余的角有∠COE、∠AOC.【分析】(1)按要求作图;(2)根据∠AOB=60°,分别计算各角的度数,可作解答.【解答】解:(1)如图所示:(2)∵OC⊥BD,∴∠BOC=∠COD=90°,∵∠AOB=60°,∴∠AOC=30°,∠AOD=120°,∵OE平分∠AOD,∴∠AOE=∠DOE=60°,∴与∠EOD互余的角有:∠COE、∠AOC.故答案为:∠COE、∠AOC.【点评】本题考查了角平分线的定义、余角以及角的计算,还考查了基本作图﹣角平分线、过直线上一点作已知直线的垂线;注意基本作图时要认真、准确.26.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.【分析】(1)利用尺规作∠C的平分线即可解决问题;(2)结论:FH=HC.只要证明∠HCF=∠HFC即可;(3)只要证明△EAD∽△HCD,可得∠ADE=∠CDH,推出∠EDH=∠ADC=90°即可;【解答】解:(1)如图所示:(2)结论:FH=HC.理由:∵FH∥BC,∴∠HFC=∠FCB,∵∠FCB=∠FCH,∴∠FCH=∠HFC,∴FH=HC.(3)∵AD是Rt△ABC斜边BC上的高,∴∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵∠AEF=∠B+∠ECB,∠AFE=∠CAD+∠ACF,∠ACF=∠ECB,∴∠AEF=∠AFE,∴AE=AF,∵FH∥CD,∴=,∵AF=AE,CH=FH,∴=,∴=,∵∠BAD=∠DCH,∴△EAD∽△HCD,∴∠ADE=∠CDH,∴∠EDH=∠ADC=90°,∴ED⊥DH.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,本题综合性比较强,属于中考常考题型.。
《图形认识初步》一、选择题(每小题3分,共30分)1.下列空间图形中是圆柱的为()2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()A.①②③④ B.①③②④ C.②④①③ D.④③①②3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美 B.丽 C.云 D.南BAC D第2题图A. B. C. D.BAC图2A B C D图 3第5题图7.如图所示的立体图形从上面看到的图形是()8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( )A.∠1B.∠2C.(∠1-∠2)D.(∠1+∠2)二、填空题(每小题2分,共20分)1.长方体由个面,条棱,个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.(2012•山东菏泽中考)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.4.(1)度分秒。
(2)= 度。
5.如图甲,用一块边长为10 cm的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.2121212148.32///0422372第7题图第5题图8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有个.三、解答题 1.计算:(1)22°18′×5;(2)90°-57°23′27″.2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β的值3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。
七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。
《图形认识初步》
一、选择题(每小题3分,共30分)
1.下列空间图形中是圆柱的为()
2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()
A.①②③④ B.①③②④ C.②④①③ D.④③①②
3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()
4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()
5.如图所示,从A地到达B地,最短的路线是()
A.A→C→E→B
B.A→F→E→B
C.A→D→E→B
D.A→C→G→E→B
6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方
体中与“建”字所在的面相对的面上标的字是()
A.美 B.丽 C.云 D.南
7.如图所示的立体图形从上面看到的图形是()
B
A
C D
第2题图
A. B. C. D.
B
A
C
图2
A B C D
图3
第5题图
8.如果∠1与∠2互为补角,且∠1∠2,
那么∠
2的余角是( )
A.∠1
B.∠
2 C.(∠1-∠2) D.(∠1+∠2)
二、填空题(每小题2分,共20分)
1.长方体由 个面, 条棱, 个顶点.
2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.
3.(2012•山东菏泽中考)已知线段AB =8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC =_______cm .
4.(1) 度 分 秒。
(2)= 度。
5.如图甲,用一块边长为10 cm 的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .
6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.
7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.
8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表21212121 048.32///0422372第5题图
面都涂上颜色(底面不涂色),则第n个几何体中只有两个面
...涂色的小立方体共有个.
三、解答题
1.计算:
(1)22°18′×5;(2)90°-57°23′27″.
2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β的值
3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.
4.⑴已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度。
⑵根据⑴的计算过程与结果,设AC+BC=,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律.
⑶若把⑴中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由。
5.(6分)如图所示,线段AD=6 cm,线段AC=BD=4 cm ,E、F分别是线段AB、CD的中点,求线段EF的长.
6.(2012•浙江宁波中考)用同样大小的黑色棋子按如图所示的规律摆放:
3
1
10
a
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2 013颗黑色棋子?请说明理由.
参考答案
一、选择题
1.A 2.A 3.D 4.A 5.D 6.C 7.C 8.A
二、填空题
1. 6,12,8 2.四棱锥,圆柱,三楞柱 3.4 4.,
5.38° 6.35° 7.5 8.8n -4
三、解答题
1.(1)111°30′;(2)32°36′33″.
2. 45°.
3. 这个角为40度。
(提示:设这个角为,则它的余角为,补角为,根据题意,得,解得)
4.⑴8.(提示:因为点M 、N 分别是AC 、BC 的中点,所以,,)
⑵.若点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,则;⑶若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论不成立.因为射线CA 、
CB \\\0482*******.720x 0)90(x -0
)180(x -)90(310)180(x x -=+-40=x 12MC AC =12CN BC =MN MC CN =+538=+=12MN a =12
MN AB =
没有中点.
5.(1)图中有9个小于平角的角;
(2)155°(提示:因为OD 平分∠AOC,∠AOC =50°,所以∠AOD ==25°,所以∠BOD=180°-25°=155°)
(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE =∠COE,即OE 平分∠BOE.
6.(1)略,(2)55,
n (n+1),(n 为正整数). AOC 212
1。