线性空间练习题参考答案
- 格式:doc
- 大小:322.50 KB
- 文档页数:5
第六章 线性空间习题解答P267.1设,,M N MN M MN N ⊆==证明:证明: 一方面.M N M ⊆ 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M ⊆2 证明: (1))()()(L M N M L N M =. (2))()()(L M N M L N M = 证明:(1).),(L N x M x L N M x ∈∈∈且则设 即.M x N x M x ∈∈∈或且 L x ∈且. 于是有)()(L M N M x ∈.另一方面,因为)(,)(L N M L M L N M N M ⊆⊆,所以)()()(L N M L M N M ⊆.(2) 一方面,))(,)(L M L N M N M L N M ⊆⊆,所以)()()(L M N M L N M ⊆.另一方面,.),()(L M x N M x L M N M x ∈∈∈∀且则若).(,L N M x M x ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N 总之有)()()(),(L N M L M N M L N M x ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n 1)的实系数多项式的全体,对于多项式的加法和数量乘法.(2) 设A 是n n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法. (4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕, )2)1(,(),(211111a k k kb ka b a k -+= . (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k =0. (7) 集合与加法同(6), 数量乘法为 k =.(8) 全体正实数R +,加法和数量乘法定义为: a b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, =(a,b)0. 取=(a+1,b), =(a-1, b), 则, V, 但是, + V.(5) 证明: 10显然V 非空. 02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++=12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)(,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl α(7)(k+l)α =((k+1)a1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+ 22211(2))2k l kl k l a ++--221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+⋅k l αα=⊕(8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+ 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠,但这里。
1.什么是线性空间?答:设V 是一个非空集合,P 是一个数域,在V 中定义了一个加法运算,在P 和V 的元素之间定义了一个数量乘法运算.如果上述两种运算满足以下规则,那么就称V 为P 上的一个线性空间(或称向量空间).1).+=+αββα;2).++=++αβγαβγ()(); 3).V 中有一个元素0,V α∀∈都有+0=αα,0称为V 的零元素; 4).V α∀∈,存在V β∈,使得+=0αβ,β称为α的负元素; 5).1=αα; 6).()()k l kl αα=; 7).()k l k l ααα+=+; 8).(+)=+k k k αβαβ;其中α,β,γ表示V 中的任意元素;k ,l 表示P 中的任意数.2.非空集合V在定义了加法和数乘运算之后成为P 上的一个线性空间,V 能否再定义另外的加法和数乘运算成为P 上的另一个线性空间? 答:有可能.例如,全体二元实数列构成的集合{(,)|,}V a b a b R =∈.1).定义(,)(,)(,),(,)(,)a b c d a c b d k a b ka kb ⊕=++=,则V 成为R 上的一个线性空间 2).定义2(1)(,)(,)(,),(,)(,)k k a b c d a c b d ac k a b ka kb a z+⊕=+++=+,则V 成为R 上的另一个线性空间.3.线性空间V 有哪些简单性质与结论? 答:1)零元素是唯一的;2)α的负元素是唯一的;3)000k k αα=⇔==或;4)=αα--(); 5)=k k k ααα-=--()()(); 6)()k a b ka kb -=-;7),V αβ∀∈,存在唯一的V γ∈,使得=αγβ+.证明:容易验证1)—3),4)因为+=0αα-(),所以α为(α-)的负元,即=αα--().5)()(()0,()()k k k k k k ααααα+-=+-=∴-=-.另一式子可类似证明.6)()(())()=()=k k k k k k k k αβαβαβαβαβ-=+-=+-+--. 7)(),+=αβαβγβααχβ+-=∴=-是方程的解.又若1γ也是+=αχβ的解,则1+=+αγαγ.两边左加α-,有1=γγ.所以方程+=αχβ在V 中有唯一解.4.判断一个非空集合M 不是线性空间有哪些基本方法? 答:1)M 是至少含两个元的有限集;2)M 关于定义的某一运算不封闭; 3)M 不满足8条规则中的任一条.5.线性空间的例子.答:1)数域P 按照数的加法和乘法构成自身上的一个线性空间.特别的,实数域R 和复数域 C 按照数的加法和乘法都是自身上的线性空间.2)已知数域⊆P 数域P ,按照数的加法和乘法,P 构成P 上的线性空间.3)三维空间中与已知向量的全体再添加零向量,对于向量的加法与数乘运算构成一个 实线性空间.4)分量属于数域P 的全体n 元数组,对于n 元数组的加法与数乘构成P 上的一个线性 空间,记作nP .5)无穷实数列的全体:12={()|1,2}i I x x x i ∞∈=,,R ,,对于121211221212()()()=(),x x y y x y x y k x x kx x k R +=++∈,,,,,,,(,,),k ,构成一个实线性空间.6)n 元齐次线性方程组0x =A 的解向量的全体,对于n 维向量的加法和数乘构成P 上的线性空间(为nP 的子空间).7)元素属于数域P 的m n ⨯矩阵的全体,对于矩阵的加法与数乘构成P 上的线性空间.8)数域P 上全体n 阶对称(反对称,上三角)矩阵对于矩阵的加法与数乘构成P 上的线性空间.9)设m n ⨯∈A P,则全体与A 可交换的矩阵的集合,对于矩阵的加法与数乘构成m n⨯P的一个线性空间.10)数域P 上全体满足条件trA=0(trA 表示A 的迹,即A 的主对角线元素之和)的n 阶矩阵的集合,对于矩阵的加法和数乘构成P 上的一个线性空间.11)数域P 上全体一元多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作x P[].12)次数小于n 的一元多项式及零多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作n x P[].13)集合W={()|()(1)0}n f x f x x f ∈=R[]且对于多项式的加法和数与多项式的乘法构成R 上的线性空间.14)数域P 上形如352113521n n a x a x a x a x ++++++的多项式的全体,对于多项式的加法和数与多项式的乘法构成P 上的线性空间.15)数域P 上多项式()g x 的倍式的全体:W={()|()|()}f x g x f x ,对于多项式的加法和数与多项式的乘法构成P 上的线性空间. 16)由0及数域P 上的m 元n 次多项式121211212(,)()m m m k k k m k k k m k k nf x x x a x xx k ++==∑,,为正整数的全体,对于多项式的加法及数与多项式的乘法构成P 上的线性空间,其中12mk k k a P ∈.17)对于在区间[,]a b 上的实函数的全体,对于函数的和及数与函数的积,构成R 上的线性空间.[,]a b 上的连续实函数全体为其子空间,记作[,]C a b .18)全体形如1122sin cos sin 2cos 2sin cos 2n n a a t b t a t b t a nt b nt +++++++的实函数,对于函数的和及数与函数的积,构成R 上的线性空间.6.下列集合关于指定运算均不构成线性空间:1)起点在原点,终点在不经过原点的直线上的空间向量的全体,按向量的加法与数乘运算;2)非齐次线性方程组AX=b(b ≠0)的解向量的全体,按向量的加法与数乘运算; 3)数域P 上次数不低于定数n 的多项式的全体并添上零多项式,按多项式的加法与数乘运算;4)有理数域定义运算:,;2k k βαβ∂∂⊕=+∂= 5)设P 为有理数域,对整数集定义运算:1,k βαβ∂⊕=+-∂=∂.证:1)集合不含零向量,所以不是线性空间.2)如果集合是空集,则不是线性空间. 如果集合非空,则由于不含零向量,所以也 不是线性空间.3)因两个次数不低于n 的多项式之和的次数可能低于n ,即关于多项式的加法不封闭,所以不是线性空间.4)因1(0)2∂∂=≠∂∂≠不满足线性空间定义中的规则5),所以不是自身上的线性空间.5)取3,1,k l ∂===则()3,k l +∂=而5k l ∂⊕∂=.故()k l +∂≠(k l ∂⊕∂),不满足线性空间定义中的规则7),所以集合不是线性空间.7.什么叫做向量的线性相关和线性无关? 答:设V 是数域P 上的线性空间,且()1,,,1i a V i s s ∈=≥,如果存在一组不全为零的数()1,,i k P i s ∈=,使得()11220s s k a k a k a +++=, (1)那么称向量组1,,s a a 是线性相关的,否则,称它们是线性无关的.注 ○1一个向量不是线性相关,就一定是线性无关,两者必居其一且仅居其一. ○21,,s a a 线性无关 ⇔(1)式仅当10s k k ===成立.8.设1,,n αα线性相关,是否对任意一组不全为零的1,,n k k 都有110n n k k αα++=?答:不一定,比如0α=是线性相关的,它对一切非零数k 都有0k α=.而()()1,0,2,0βγ==就不可能对一切非零数12,k k 使得120k k βγ+=.9.什么叫线性表出?什么叫做两个向量等阶? 答:设12,,,,m αααβ都是数域P 上的n 维向量,如果有P 中的m 个数1,,m k k ,使1122m m k k k βααα=+++,那么称β是12,,,m ααα的线性组合,或称β可以由12,,,m ααα线性表出(线性表示).如果向量组12,,,r ααα中每个向量都可以由向量组12,,,s βββ线性表出,且12,,,s βββ中的每个向量都可以由12,,,r ααα线性表出,那么称向量组12,,,r ααα与向量组12,,,s βββ是等价的.10.向量组之间的等价是不是一种等价关系? 答:是的.不难证明以下三条成立:1) 反身性:每一个向量组都与自身等价. 2) 对称性:如果12,,,r ααα与12,,,s βββ等价,那么12,,,s βββ也与12,,,r ααα等价.3) 传递性:如果12,,,r ααα与12,,,s βββ等价,而12,,,s βββ与12,,,t γγγ等价,那么12,,,r ααα与12,,,t γγγ等价.11.向量的线性相关性有哪些主要性质? 答:容易证明的有:1) 零向量是线性相关的.含零向量的向量组也是线性相关的 2) 单个非零向量是线性无关的. 3) 设向量组()12,,,2m m ααα≥,则它们线性相关⇔至少存在一个向量,它可以由其余向量线性表出.4) 向量组()I 中如果有部分向量线性相关,则()I 一定线性相关. 5) 向量组()I 线性无关,则()I 的任意一个部分组必线性无关. 6) 向量组12,,,r ααα可以由向量组12,,,s βββ线性表出,则12,,,r ααα线性无关r s ⇔≤.7) 任意1n +个n 维向量必线性相关.8) 两个线性无关的等价向量组,必含有相同个数的向量. 12.(){}12,,,|.n n i P c c c c P =∈()1,,,1,2,,n i i in a a P i mα=∈=,则12,,,m ααα线性相关'0A x ⇔=有非零解,其中()()'1,,ij m m n A a x x x ⨯==.7.设()()1,1,,,,,1,2,,n i i ik i k in a a a a P i m α+=∈=,令()1,,i ik βαα=()1,2,,i m =则 1)若12,,,m ααα线性相关⇒12,,,m βββ线性相关;2)若12,,,m ααα线性无关⇒12,,,m βββ线性无关.证:1)若存在不全为零的数1,,m l l ,使110m m l a l a ++=,则当然有110m m l l ββ++=.2)用反证法.若12,,,m ααα线性相关,则由1)知12,,,m βββ也线性相关,矛盾.13.如果12,,,m ααα线性无关,但12,,,,m αααβ线性相关,那么β可由12,,,m ααα线性表出,且表示法唯一.证:由假设存在一组不全为零的数11,,m k k +使1110m m m k k k ααβ++++=.若10m k +=,则由110m m k k αα++=,可证10m k k ===.这与假设矛盾,故10m k +≠,于是11m m l a l a β=++,其中1/,1,2,,i i m l k k i m +=-=.即β可由12,,,m ααα线性表出. 若1111m m m m l a l a s a s a β=++=++,则()()1110m mm l s ls αα-++-=.由12,,,m ααα线性无关,得()1,2,,i i l s i m ==,即表示法是唯一的.14.什么叫做极大线性无关组? 答:如果向量组的一个部分组满足 1) 此部分组线性无关;2) 原向量组每个向量都可由这个部分组线性表出,则称此部分组是原向量组的一个极大线性无关组.注:向量组与极大线性无关组是等价的.15.一个向量组的极大线性无关组是否唯一?答:一般不唯一.比如,()()()0,0,1,0,2,0αβγ===,则β是,,αβγ的极大线性无关组;γ也是,,αβγ的一个极大线性无关组.注:○1一个向量组有多个极大线性无关组时,这些极大线性无关组之间也互相等价.○2由5.可知两个极大线性无关组虽可不同,但它们所含向量的个数相等.16.什么叫做向量组的秩? 答:向量组的一个极大线性无关组所含向量的个数,称为向量组的秩.只含零向量的向量组,规定它的秩为0.17.设V 是数域P 上的线性空间,1,,n αα,1,,s V ββ∈,且1,,n αα线性无关,()()11,,,,s n A ββαα=,其中(),i j i j n s A P αα⨯=∈,再设()1,,s A c c =,其中1,,s c c 为A 的n 维向量.若A k =秩,且1,,i ik c c 为()1,,s A c c =的一个极大线性无关组,则1)由(1)式知()12,,,,1,2,,i n i c i s βααα==. (2)○1先证1,,i ik ββ线性无关.设110i k ik l l ββ++=,那么110i k ik l l ββ=++()()112112,,,,,,n i k n ikl c l c αααααα=++()()1211,,,,,.n i k ik l c l c ααα= (3)因为12,,,n ααα线性无关,由(3)知11,,0i k ik l c l c = (4) 在nP 中,1,,i ik c c 线性无关,由(4)知10k l l ===.○2其次,再任取{}12,,,s ββββ∈,那么i c 可由1,,i ik c c 线性表出,即11i i k ik c m c m c =++,于是()12,,,i n i c βααα= ()()1211,,,n i k ik m c m c ααα=++()()112112,,,,,,n i k n ik m c m c αααααα=++11i k ik m m ββ=++.综合○1、○2,即知1,,i ik ββ为1,,s ββ的一个极大线性无关组.2)由1)即得{}1,,=s k A ββ=秩秩.注:这解决了求抽象线性空间V 的向量组的秩的问题.同时还把求极大线性无关组的问题转化为求nP 中一个向量组的极大线性无关组的问题(而这是已知的). 18.设()4321642f x x x x x =++-+,()422234f x x x x =++-,()4323491622f x x x x x =+--+,()43473f x x x x =+-+,求()1f x ,()2f x ,()3f x ,()4f x 的极大线性无关组.解:把()i f x 都看成[]5P x 中元素,取[]5P x 中一组基2341,,,,x x x x ,那么()()234123461174041,,,1,,,,12901316124223f f f f x x x x ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭(1)令123461174041,,,,12901316124223C C C C ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭可求出1234,,,C C C C 的一个极大线性无关组为234,,C C C .于是(1)式中相应的()()()234,,f x f x f x 为()()()()1234,,,f x f x f x f x 的一个极大线性无关组.19.设1103301121,,,,24127142056A B C D F --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=====⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭为线性空间22R ⨯的一组基,那么()()111221221031213011,,,,,,,.21725421406A B C D F E E E E ⎛⎫ ⎪--⎪= ⎪ ⎪⎝⎭而1031213011321725421406⎛⎫ ⎪--⎪= ⎪ ⎪⎝⎭秩,所以向量组,,,,A B C D F 的秩等于3. 20.设1,,s αα的秩为r ,1,,r i i αα是1,,s αα中r 个向量,使得1,,s αα中每个向量都可被它们线性表出,则1,,ri iαα是1,,s αα的一个极大线性无关组.证:由假设可知1,,s αα可由1,,r i i αα线性表出,但1,,r i i αα可由1,,s αα线性表出是显然的,从而彼此等价.那么{}{}11,,=,,=r i i s r αααα秩秩.1,,r i i αα∴线性无关.21.如果向量组()I 可以由向量组()II 线性表出,那么()I 的秩不超过()II 的秩.证:当向量组()II 的秩为无穷时,结论显然成立.当()II m =秩时,由假设()I 的极大线性无关组也可由()II 的极大线性无关组线性表出,那么由5.之6)可证()()I II m ≤=秩秩. 注:由此可知等价的向量组具有相同的秩.22.设12,,,n n P ααα∈,n 维标准单位向量()()11,0,,0,,0,0,,1n εε==可被它们线性表出,则12,,,n ααα线性无关.证:1,,n αα显然可被1,,n εε线性表出,又1,,n εε可被1,,n αα线性表出,从而它们等价,于是由15.的注知()()11,,=,,=n n n ααεε秩秩.即知1,,n αα线性无关.注:○1这个命题的逆命题也是对的.○2在抽象的n 维线性空间V 中,此命题可改为:设1,,n ββ为V 的一组基,1,,r V αα∈且1,,n ββ可由1,,n αα线性表出,则1,,n αα也是V 的一组基.○3也可改述为:设1,,n αα是线性空间V 中的一组n 维向量,则1,,n αα线性无关⇔V 中任一n 维向量都可被它们线性表出.23.证明:向量组的任何一个线性无关组都可以扩充成一个极大线性无关组. 证:设n 维向量组()I 中一个线性无关组()12II :,,,s ααα,如果()I 中每个向量可经()II 线性表出,则()II 为()I 的一个极大无关组.否则至少有一个向量()I α∈不能由()II 线性表出,将添到()II 中成为向量组()III ,则()III 中向量是线性无关的.这样继续下去,经过有限步(不大于n )后,向量组()II 即可扩充为()I α∈的一个极大无关组.24.设向量组12,,,m ααα线性无关,12,,,,,m αααβγ线性相关.证明:或者β与γ中至少有一个可由12,,,m ααα线性表出,或者12,,,,m αααβ与12,,,,m αααγ等价.证:因12,,,,,m αααβγ线性相关,所以存在不全为零的数12,,,,,m k k k b c 使110m m k k b c ααβγ++++=.显然,,b c 不全为零,否则与12,,,m ααα线性无关矛盾.当0,0b c ≠=时,β可由12,,,m ααα线性表出;当0,0b c ≠≠时,β可由12,,,,m αααγ线性表出,γ可由12,,,,m αααβ线性表出,因而12,,,,m αααβ与12,,,,m αααγ等价.25.设12,,,n n P ααα∈且线性无关,则12,,,n A A A ααα线性无关⇔()=A n 秩.其中A是数域P 上的n n ⨯矩阵. 证:令()12,,,n B ααα=.因1,,n αα线性无关,所以0B ≠.必要性 设12,,,n A A A ααα线性无关,即()()11,,,,0n n A A A AB A B αααα===≠.所以0A ≠,即()=A n 秩.充分性 设()=A n 秩,即0A ≠,从而()()11,,,,0n n A A A AB A B αααα===≠.所以12,,,n A A A ααα线性无关.26. 设向量组12,,,s ααα的秩为r ,在其中任取m 个向量12,,,mi i i ααα,则{}12,,,m i i i r m s ααα≥+-秩.证:设12,,,m i i i ααα的秩为t ,现将它的一极大无关组(含t 个向量)扩充为1,,s αα的一个极大无关组(含s 个向量).因此扩充的线性无关向量的个数为r t -.因1,,s αα除向量组1,,m i i αα外,还有s m -个向量,因此,r t s m -≤-,即t r m s ≥+-.27.设123r βααα=+++,213r βααα=+++,,121r r βααα-=+++,则1)1,,r ββ与1,,r αα有相同的秩;2)1,,r αα的任意一个极大线性无关组也是11,,,,,r r ααββ的极大线性无关组.证:1)由假设知1,,r ββ可由1,,r αα线性表出.但是()()1212+=1r r r βββααα++-+++()()12121=+1r r r αααβββ+++++- (1)用(1)式减去假设的每一个式子,可得11221212211,111121,111112.111r r r r r r r r r r r r r r r r αβββαβββαβββ-⎧=+++⎪---⎪-⎪=+++⎪---⎨⎪⎪-⎪=+++⎪⎩--- 即1,,r αα也可由1,,r ββ等价,所以{}{}11,,,,r r r ββαα=≤秩秩.2) 由1)知1,,r αα与11,,,,,r r ααββ等价,可知1,,r αα的一个极大线性无关组就是11,,,,,r r ααββ的一个极大线性无关组.28.设向量组1,,s αα中10α≠且每个()2,3,,i i s α=都不能由11,,i αα-线性表出,则1,,s αα线性无关.证:用反证法.如果1,,s αα线性相关,那么有不全为零的数12,,,s k k k 使1122=0s s k k k ααα+++ (1)从右至左,设第一个不为零的数是l k ,而10l s k k +===,则(1)式为1122=0l l k k k ααα+++.因10α≠,所以1l ≠,故112121111l l l k k kk k k αααα--=----.即l α可由121,,,l ααα-线性表出,此与题设矛盾.所以1,,s αα线性无关.29.如果()()()123,,f x f x f x 是线性空间[]P x 中三个互素的多项式,但其中任意两个都不互素,那么它们线性无关.证:用反证法.如果它们线性相关,即存在不全为零的数123,,k k k ,使()()()1122330k f x k f x k f x ++=.不妨设10k ≠,则()()()3212311=k k f x f x f x k k --+. 此式说明()()23,f x f x 的最大公因式就是()1f x 的因式,即()()()()()()()12323,=,f x f x f x f x f x .此与()()()()123,=1f x f x f x 及()()()23,1f x f x ≠矛盾,所以()()()123,,f x f x f x 线性无关.30.设12,,,m ααα线性无关,则122311,,,,m m m αααααααα-++++线性无关的充分必要条件是m 为奇数.证:令112223111,,,,m m m m m βααβααβααβαα--=+=+=+=+,由题设得()()1212,,,,,,m m A βββααα=,其中10110011n mA ⨯⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 按第一行展开,()12,110,m m A m +⎧=+-=⎨⎩为奇数;为偶数,而12,,,m βββ线性无关的充分必要条件是0A ≠,即m 为奇数31.设向量组12,,,m ααα线性相关,但其中任意1m -个向量都线性无关,则 1)等式1122=0m m k k k ααα+++中的系数()1,,i k i m =或者全为0,或者全不为0.2)当存在两个等式1122=0m m k k k ααα+++ (1) 1122=0m m l l l ααα+++ (2)其中10l ≠时,(1),(2)的对应系数成比例:1212mmk k k l l l ===. 证:1)当()1,,i k i m =全为0时,恒为等式的解.以下设有一个i k 不等于0,不失一般性,设10k =.此时其余的()2,,i k i m =都不为0.若等式化为()100j j j ik k α≠=≠∑,于是这1m -个向量线性相关,此与题设矛盾.2) 由于10l ≠,由1)知: 2,,m l l 均不为0.如果()1,,i k i m =全为0,那么结论成立.否则i k 全不为0,()()112i l k ⨯-⨯,得()()11212211100m m r l k k l l k k l ααα-+-++-=.由1),因1α的系数为0,所以2,,m αα的系数全为0,即121210m m l k k l l k k l =-==-,即1212mmk k k l l l ===.32.求向量组()11,2,2,3α=-,()22,4,1,3α=--,()31,2,0,3α=-,()40,6,2,3α=,()52,6,3,4α=-的一个极大线性无关组.解1(初等变换法)以12345,,,,ααααα为列作矩阵A ,对A 施行初等变换为阶梯型矩阵B :1210212102242660322121023000313333400000A B ----⎛⎫⎛⎫⎪ ⎪---⎪ ⎪=→= ⎪ ⎪---⎪ ⎪⎝⎭⎝⎭. 由B 可知:124,,ααα;134,,ααα;125,,ααα;135,,ααα均为原向量组的极大无关组. 注:用这种方法可以找到向量间的全部极大无关组.解2(子式法)因矩阵A 的4阶子式均为0,而3阶子式11022612022--=-≠,所以134,,ααα为一极大无关组.解3(逐一扩充法)因10α≠,所以1α线性无关,又因12,αα对应分量不成比例,故12,αα线性无关.因123,,ααα线性相关(这可由123,,ααα作成的矩阵的所有3阶子式为0看出),所以3α不收入.再观察124,,ααα,由于124,,ααα作成的矩阵有非零的3阶子式,所以124,,ααα线性无关,又因1245,,,αααα线性相关,所以124,,ααα为一极大无关组.33.什么叫做线性空间的基于维数?答:如果数域P 上的线性空间V 有n 个线性无关的向量12,,,n ααα,而且V 中每个向量都可以由它们线性表出,那么称这组向量为V 的一组基(基底).也称12,,,n ααα生成(或张成)线性空间V .12,,,n ααα为V 的一组生成元.基中所含向量的个数n 称为V 的维数,记作dim V n =或()V n =维.称V 为维线性空间.如果V 中有任意多个线性无关的向量,那么称V 为无限维线性空间,记为dim V =∞.如果{}0V =,那么称V 是零维的,记为dim 0V =.注:○1线性空间V 的基,实际上就是V 的一个极大线性无关组.○2一个线性空间V 有一组基1,,n αα,取()ij n nA α⨯=,当0A ≠时,令,其中为的列向量,令()1,,n A c c =,其中1,,n c c 为A 的列向量,令()1,,i n i c βαα=()1,2,,i n =则可知1,,n ββ也是V 的一组基.由此可知V 的基不是唯一的.○3两组基之间是互相等价的,因为向量组的两个极大线性无关组是互相等价的.34.几类重要的线性空间的维数与基是什么?答:1)数域P 看成自身上的线性空间,则1是它的一组基,dim 1P =. 2)复数域C 看成实数域R 上的线性空间,1,i 是C 的一组基,dim 2P =.3)实数域R 看成有理数域Q 上的线性空间,则dim P =∞.事实上,21,,,ππ是线性无关的.因为如果21,,,,n πππ线性相关的话,那么π是代数数了,而π是超越数.故对一切自然数n ,向量组21,,,,n πππ都线性无关,由n 的任意性,故dim P =∞.4)全体正实数R +,定义a b ab ⊕=,kk a a =,则R +为R 上的1维线性空间.任何一个非零向量都是其一组基.因1是其零向量,取定(),1,1R Ra ββα++∈≠∀∈≠,有()log log βαβαβαβ==,即α可由β线性表出,所以是一维的.5)数域P 上的全体n 元数组构成的线性空间nP 是n 维的,()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=是一组基.6)n 元齐次线性方程组0Ax =(A 为m n ⨯矩阵,()=A r 秩)的解空间是n r -维的,其基础解系是它的一组基.7)元素属于数域P 的m n ⨯矩阵的全体m nP⨯的维数是mn .以ij E 表示第i 行第j 列元素为1,其余元素为0的m n ⨯矩阵,则()1,2,,;1,2,,ij E i m j n ==为m n P ⨯的一组基.8)实数域上全体n 级实对称矩阵构成的线性空间的维数是()12n n +.()1ij ij E E i j n +≤≤≤为一组基. 9)实数域上全体n 级反对称矩阵构成的线性空间的维数是()12n n -.()1ij ij E E i j n -≤≤≤为一组基. 10)实数域上全体n 级上三角矩阵构成的线性空间的维数是()12n n +.()1ij E i j n ≤≤≤为一组基.11)全体形如1230n nX P X X ⨯⎛⎫∈⎪⎝⎭的矩阵(1X 为r r ⨯矩阵)构成的线性空间,因零块有()r n r -个元素,所以线性空间的维数是()2n r n r --.(),;,1,2,,ij E i r j r i r j n ≤≤≥=为一组基.12)全体n nA P⨯∈且满足0trA =(A 的迹为0)的矩阵构成的线性空间的维数是()()2211nn n n -+-=-,除nn E 外的一切,,1,2,,ij E i j n =为一组基.13)次数小于n 的一元多项式的全体加上零多项式构成的线性空间[]n P x 的维数是n ,且211,,,,n x x x -为一组基.14)线性空间()()[](){}|10n W f x f x R x f =∈=且的维数是1n -.且121,1,,1n n x x x -----是W 的一组基.15)数域P 上m 元n 次齐次多项式()()121211212,,,mmm k k k m k kk m i k k nfx x x x x x k α++==∑为正整数和零多项式构成的线性空间的维数是()()()()1211n n n m m +++--!,1212mk k k mx x x 1m i i k n =⎛⎫= ⎪⎝⎭∑为一组基.事实上,上述向量组线性无关是显然的,它的个数实际上是从m 种元素中每次取n 个元素的有重复的组合数,即()12nm x x x +++展开后不同类的项数:()()()()1111211n n m m n m n m n n n m C C C m -+-+-+++-===-!.16)分量属于复数域的全体n 元数组构成实数域R 上的线性空间的维数是2n .()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=,()11,0,,0η=,()20,1,,0η=,,()0,,0,1n η=为一组基(为虚数单位).17)线性空间V 中m 个向量生成的子空间()1,,m L αα的维数等于1,,m αα的秩,1,,m αα的任一极大无关组都是()1,,m L αα的一组基.36.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中210000,00A ωωω⎛⎫⎪== ⎪ ⎪⎝⎭解:因为212ω-=,31ω=,所以21,3;,31;,3 2.nn k n k n k ωωω=⎧⎪==+⎨⎪=+⎩从而2232100,3;00,,,31;00,3 2.n E n k A A E A A n k A n k ωω=⎛⎫⎧⎪ ⎪====+⎨ ⎪⎪ ⎪=+⎝⎭⎩设21230k A k A k E ++=,得1232123212300,0.k k k k k k k k k ωωωω++=⎧⎪++=⎨⎪++=⎩,(1)因系数行列式不为零,所以方程组(1)只有零解:1230k k k ===.说明2,,E A A 线性无关.由于A 的实系数多项式()f A 是2,,E A A 的线性组合,所以V 的维数是3. 2,,E A A 是V 的一组基.37.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中()120,,0i j in a a A a a i j a R a ⎛⎫⎪⎪=≠≠∈ ⎪ ⎪⎝⎭.解:易证对正整数k ,有11201100k kn n k n a a A k E k A k A a --⎛⎫ ⎪⎪==+++ ⎪ ⎪ ⎪⎝⎭. (1)事实上,由矩阵的相等得,101111110121221011,,.n k n n kn n k n n n n k k a k a a k k a k a a k k a k a a ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2)(2)式的系数行列式D 是范德蒙行列式,故()10ji i j nD aa ≤≤≤=-≠∏.所以方程组有唯一解011,,,n k k k -.这就证明了(1).再令10110n n k E k A k A --+++= (3)(3)式为(2)式右端为零的情形.由于0D ≠,所以只有零解:0110n k k k -====,说明1,,,n E A A -线性无关.由于A 的实系数多项式()f A 是21,,,,n E A A A -的线性组合,所以dim V n =,21,,,,n E A A A -为一组基.38.设V 为数域P 上的线性空间,V 为从V 中任取m 个元素组成的向量()12,,,m ααα的集合.1)按向量的加法和数乘运算,V 为P 上的线性空间; 2)当V 为无限维时,V 也是无限维; 3)当V 为n 维时,求V 的维数和一组基. 证:1)()0=00V ∈,,,V ∴非空.另外,V 关于加法和数乘运算封闭,且满足定义中的8条规则,所以V 是域P 上的线性空间. 2)当V 是无限维时,取12,,,n βββ为V 的n 个线性无关的向量,令(),0,,0i i ηβ=()1,2,,i n =,则12,,,n ηηη线性无关.由n 的任意性知,V 有任意个线性无关的向量,即V 是无限维的.3)当dim V n =,可推得dim V mn =. 事实上,设12,,,n εεε为V 的一组基.令()1,0,,0i i ηε=,()20,,,0i i ηε=,,()0,0,,ni i ηε=,1,2,,i n =,则这个m n ⨯个向量均线性无关.()12,,,m V αααα∀=∈,因()11,2,,nj ij i i k j m αε=∀==∑,所以()1212111,,,,,,m nnnm i i i i i i i i i k k k αααεεε===⎛⎫= ⎪⎝⎭∑∑∑()()()12111,0,,00,,,00,0,,nnni i i i i i im i i i i i k k k εεεεεε====+++∑∑∑1122111nnni i i i im im i i i k k k ηηη====+++∑∑∑.即α可由mn 个向量()1,,;1,,ij i n j m η==线性表出,所以它们是V 的一组基,dim V mn =.39.什么叫做向量的坐标?答:设V 为数域P 上的n 维线性空间,1,,n αα为V 的一组基.设V β∈,则()111221,,n n n n k k k k k βααααα⎛⎫ ⎪=+++= ⎪ ⎪⎝⎭.称()1,,n k k 为β在基1,,n αα下的坐标.注:○1同一个向量β,在不同基下的坐标一般是不相同的.○2同一个β,当基1,,n αα排列顺序不同时,坐标也不同.比如V 的一组基为123,,ααα,令12335βααα=++,那么β在基123,,ααα下的坐标为()1,3,5,而在下的坐标为()1,5,3.○3这里的坐标概念是解析几何中坐标概念的推广.在平面解析几何中,相当于取基()11,0e =,()20,1e =,在空间解析几何里,相当于取基()11,0,0η=,()20,1,0η=,()30,0,1η=.而代数中是把它们抽象化,并把上述情形作为特例. V 中的基1,,n αα相当于建立一个坐标系.β的坐标()12,,,n n k k k P ∈,相当于β在坐标系12,,,n ααα下的坐标.40.什么叫过渡矩阵?答:过渡矩阵相当于n 维线性空间V 的两组基之间的变换公式.下面给出定义.设1,,n αα与1,,n ββ为V 的两组基,那么()1,,i n i c βαα=,1,2,,k n =. (1)其中12,,1,2,,i i i ki ni c P k n αααα⎛⎫ ⎪ ⎪=∈= ⎪ ⎪⎝⎭.把(1)式改写为()()11,,,,n n A ββαα=. (2)其中()()1,,n n ij n n nA c c P α⨯⨯==∈.称A 为基1,,n αα到基1,,n ββ的过渡矩阵,并称(2)为基变换公式.注:○1如果0A ≠,即A 为可逆矩阵.○2由(2)式知()()111,,,,n n A ααββ-=, (3)即1A -为基1,,n ββ到基1,,n αα的过渡矩阵.○3求1,,n αα到1,,n ββ的过渡矩阵A ,只要求出每个i β在基1,,n αα下的坐标(1)即可.41.什么叫坐标变换公式? 答:设1,,n αα与1,,n ββ为V 的两组基,由基1,,n αα到基1,,n ββ的过渡矩阵为A .向量γ在基1,,n αα下的坐标为()1,,n x x .设γ在基1,,n ββ下的坐标为()1,,n y y ,那么111n n y x A y x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (1) 公式(1)称为坐标变换公式.42.设1,,n αα为线性空间V 的一组基.1)1121212,,,n n βαβααβααα==+=+++也是V 的一组基.2)当向量α在基1,,n αα下的坐标为(),1,,2,1n n -时,求α在基1,,n ββ下的坐标.证:1)因为()()11,,,,n n A ββαα=,其中1101A ⎛⎫ ⎪=⎪ ⎪⎝⎭,1A =, 所以1,,n ββ线性无关,从而为V 的一组基.2)设α在基1,,n ββ下的坐标为()1,,n x x ,由坐标变换公式知121110111112201111n n n x n n x A x -⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭. 43.在[]3P x 中,求221,,x x x x ++到基221,,x x x x -+的过渡矩阵. 解:因为21,,x x 为[]3P x 的基,所以()()()22221001,,1,,1101,,111x x x x x x x x A ⎛⎫⎪++=-= ⎪ ⎪-⎝⎭. (1) 于是()()()2221221001,,1,,=1,,110111x x x x x x A x x x x -⎛⎫⎪=++++- ⎪ ⎪-⎝⎭. (2) 又()()()22221001,,1,,0111,,011x x x x x x x x B ⎛⎫⎪-+== ⎪ ⎪-⎝⎭, (3) 将(2)代入(3)得()()()22221221001,,1,,1,,111120x x x x x x x x A B x x x x -⎛⎫⎪-+=++=++- ⎪ ⎪-⎝⎭. 所以100111120C ⎛⎫⎪=- ⎪ ⎪-⎝⎭为所求的过渡矩阵.44.已知()()()()12341,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,εεεε=⎧⎪=--⎪⎨=--⎪⎪=--⎩()()()()12341,2,3,1,2,1,0,1,1,1,0,1,2,1,1,2,ηηηη=⎧⎪=⎪⎨=--⎪⎪=-⎩分别是4P 的两组基,求i ε到()1,2,3,4i i η=的过渡矩阵.并求()1,1,0,1δ=-关于基1234,,,ηηηη的坐标.解:因为()11,0,0,0δ=,()20,1,0,0δ=,()30,0,1,0δ=,()40,0,0,1δ=是4P 的基,由i δ到()1,2,3,4i i ε=的过渡矩阵A 以及由δ到()1,2,3,4i i η=的过渡矩阵B 分别为1111111111111111A ⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭, 1212211130011112B ⎛⎫⎪- ⎪= ⎪ ⎪--⎝⎭由i ε到()1,2,3,4i i η=的过渡矩阵为1A B C -=,1741212141103443212C A B --⎛⎫⎪- ⎪==⎪ ⎪--⎝⎭. 令δ关于基()1,2,3,4i i η=的坐标为()1234,,,x x x x ,则121341112105413x x B x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 45.什么叫做线性子空间?答:设W 是数域P 上线性空间V 的非空子集,如果W 对于V 的两种运算(加法和数量乘法)也构成线性空间,则称W 为V 的一个线性子空间,简称子空间.46.什么叫做V 的平凡子空间?答:V 中仅含单个零向量的子空间称为零子空间,V 本身也是V 的一个子空间,这两个子空间称为V 的平凡子空间,V 除平凡子空间外的子空间(如果存在的话),称为V 的非平凡子空间.47.什么叫做生成子空间?答:V 中任意m 个向量的所有可能的线性组合(){}111,,|,1,2,,m m m i L k k k P i m αααα=++∈=构成V 的一个子空间,称为由1,,m αα张成(或生成)的子空间.注:这一记号非常重要.设V 是n 维的,若()1,,n V L αα=,则1,,n αα为V 的一组基.48.怎样判别子空间?答:设W 是V 的一个非空子集,则W 为V 的子空间的充要条件是:W 对于V 的两种运算是封闭的,即○1,W αβ∀∈都有W αβ+∈; ○2,W k P α∀∈∀∈,都有k W α∈. 条件○1与○2可以合并成一条:,W αβ∀∈及12,k k P ∀∈都有12k k W αβ+∈.49.生成子空间有哪些主要结论? 答:1)()()11,,,,s t L L ααββ=的充分必要条件是1,,s αα与1,,t ββ等价.2)()()()1111,,,,,,,,,s t s t L L L ααββααββ+=.3)()1,,s L αα的维数{}1,,s αα=秩4)n 维线性空间V 的子空间的一组基必可扩充为V 的一组基.50.常见到子空间有哪些?答:1)V 的两个平凡子空间.2)全体实函数组成的线性空间中,由所有实系数多项式组成一个子空间.3)[]n P X 是线性空间[]P X 的n 维子空间.4)线性变换:V V σ→的值域V σ是V 的子空间.设线性变换在某一组基下矩阵为A ,则其维数等于A 秩,σ的核()10σ-是V的子空间,其维数等于dim V A -秩5)线性变换:V V σ→的属于特征值λ的特征向量的全体添上零向量是V 的特征子空间,记作V λ.若dim V n =,设σ在某一组基下的矩阵为A ,则()dim V n E A λλ=--秩6)数域P 上n 元齐次线性方程组0AX =的解空间W 是nP 的子空间,dim W n A =-秩.7. 设1,,n εε为数域P 上线性空间V 的一组基,m n A P ⨯∈,A r =秩,()'11,,n n c c Pα⨯=∈则()'11|,,0ni i n i W c A c c ε=⎧⎫==⎨⎬⎩⎭∑是V 的n r -维子空间.证:1)先证W 是V 的子空间.其0W ∈知W 非空(这时取()()1,,0,,0n c c =即可).任取()11,,n n c c βεε⎛⎫ ⎪= ⎪ ⎪⎝⎭,()11,,n n d W d γεε⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,那么10n c A c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,10n d A d ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 12,k k P ∀∈,则()1112112,,n n n c d k k k k c d βγεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=+ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,111112120n n n n c d c d A k k k A k A c d c d ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.所以12k k W βγ+∈,从而W 为V 的子空间.2)设0Ax =的解空间为1W ,则1dim dim W W n A n r ==-=-秩.51.什么叫做交空间?答:设V 是数域P 上的线性空间,()V I λλ∈都是V 的子空间,则IV λλ∈⋂也是V 的子空间,并称它为()V I λλ∈的交空间. 注:○1显然IV λλ∈⋂也是V λ的子空间.○2子空间的交是线性空间的一种运算.52. 子空间的交有哪些性质?答:1)适合交换律:1221V V V V ⋂=⋂;2)适合结合律:()()123123V V V V V V ⋂⋂=⋂⋂;3)A ,B 分别为m n ⨯与s n ⨯矩阵,A C B ⎛⎫= ⎪⎝⎭.设123,,V V V 分别为0Ax =,0Bx =,0Cx =的解空间,则312V V V =⋂.53.什么叫做和空间?答:子空间的和是线性空间的第二种运算.设1V ,2V 都是V 的子空间,则{}121122|,V V ααααα=+∈∈也是V 的子空间,记作12V V +.一般的,设1,,n V V 都是V 的子空间,它们的和空间定义为{}1212++|,1,2,,n n i i V V V V i n ααααα+++==+∈=.注:○112112V V V V V ⋂⊆⊆+,12212V V V V V ⋂⊆⊆+.○2设W 是线性空间,且()W V I λλ⊆∈,则IW V λλ∈⊆⋂.○3设1V W ⊆,2V W ⊆,W 是线性空间,则12V V W +⊆.54.子空间的和有什么性质? 答:1)1221V V V V +=+;2)()()123123V V V V V V ++=++; 3)下面三条等价 (i )12V V ⊆,(ii)121V V V ⋂=, (iii )122V V V +=,55设1V ,2V 是V 的两个子空间,则1V È2V =1V +2V Û1V Í2V 或2V Í1V 。
线性空间习题解答第六章线性空间习题解答P267.1设,,M N M N M M N N ?==I U 证明: 证明: 一方面.M N M ?I 另一方面, 由于M M ?,,N M ? 得.N M M I ? 2 证明: (1))()()(L M N M L N M I Y I Y I =.(2))()()(L M N M L N M Y I Y I Y =证明: (1) .),(L N x M x L N M x Y Y I ∈∈∈且则设即.M x N x M x ∈∈∈或且L x ∈且. 于是有)()(L M N M x I Y I ∈.另一方面,因为 )(,)(L N M L M L N M N M Y I I Y I I ??,所以)()()(L N M L M N M Y I I Y I ?.(2) 一方面, ))(,)(L M L N M N M L N M Y I Y Y I Y ??,所以)()()(L M N M L N M Y I Y I Y ?.另一方面, .),()(L M x N M x L M N M x Y Y Y I Y ∈∈∈?且则若).(,L N M x M x I Y ∈∈则若∈∈∈?x L x N x M x 所以且则.,.L N I 总之有)()()(),(L N M L M N M L N M x I Y I I Y I Y ?∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间.(1) 次数等于n(n 1)的实系数多项式的全体,对于多项式的加法和数量乘法. (2) 设A 是n n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法.(4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+=ο. (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k =0. (7) 集合与加法同(6), 数量乘法为k =.(8) 全体正实数R +,加法和数量乘法定义为: a b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, =(a,b)0. 取=(a+1,b),=(a-1, b), 则 , V, 但是,+V.(5) 证明: 10显然V 非空.02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++ =12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)( ,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==o o o o 的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-o o o2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl o α(7)(k+l)o α =((k+1)a 1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+22211(2))2k l kl k l a ++-- 221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+?k l αα=⊕o o (8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+o o 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠Q ,但这里。
线性空间试题向量空间⼀判断题(1) 平⾯上全体向量对于通常的向量加法和数量乘法: ,,k k R αα=∈o 作成实数域R 上的向量空间.( ) .(2) 平⾯上全体向量对于通常的向量加法和数量乘法: 0,,k k R α=∈o 作成实数域R上的向量空间. ( ).(3) ⼀个过原点的平⾯上所有向量的集合是3V 的⼦空间.( ).(4) 所有n 阶⾮可逆矩阵的集合为全矩阵空间()n M R 的⼦空间.( ).(5) 121{(,,,)|1,}nn i i i x x x x x R ==∈∑L 为n R 的⼦空间. ( ).(6)所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的⼦空间. ( ).(7)11{(,0,,0,)|,}n n x x x x R ∈L 为n R 的⼦空间. ( ). (8)若1234,,,αααα是数域F 上的4维向量空间V 的⼀组基, 那么122334,,,αααααα++是V的⼀组基.( ).(9)n 维向量空间V 的任意n 个线性⽆关的向量都可构成V 的⼀个基. ( ). (10)设12,,,n αααL 是向量空间V 中n 个向量, 且V 中每⼀个向量都可由12,,,n αααL线性表⽰,αααL 是V的⼀组基.( ).(11) 设12,,,n αααL 是向量空间V 的⼀个基,如果12,,,n βββL 与12,,,n αααL 等价, 则 12,,,nβββL 也是V的⼀个基.( ).(12)3x 关于基332,,1,1x x x x x +++的坐标为(1,1,0,0).( ).(13)设12,,,s V V V L 为n 维空间V 的⼦空间, 且12s V V V V =+++L .若12dim dim dim s V V V n+++=L ,则12sV V V +++L 为直和.( ).(14)设12,,,s V V V L 为n 维空间V 的⼦空间, 且12s V V V V =+++L . 若121230,()0,V V V V V =+=I I 121,()0,S s V V V V -+++=L L I 则12s V V V +++L 为直和.( ).(15) 设12,,,s V V V L 为n 维空间V 的⼦空间, 且12s V V V V =+++L . 若(){0},i j j iV V ≠=∑I 则12sV V V +++L 为直和.( ).12sV V V +++L 为直和.( ).(17) 设12,,,s V V V L 为n 维空间V 的⼦空间, 且12s V V V V =+++L . 零向量表法是唯⼀的, 则12s V V V +++L 为直和. ( ).(18) 设12,,,n αααL 是向量空间V 的⼀个基, f 是V 到W 的⼀个同构映射, 则W 的⼀个基是12(),(),,()n f f f αααL . ( ).(19) 设V 是数域F 上的n 维向量空间, 若向量空间V 与W 同构, 那么W 也是数域F 上的n 维向量空间. ( ).(20) 把同构的⼦空间算作⼀类, n 维向量空间的⼦空间能分成n 类.( ).答案 (1)错误 (2)错误 (3)正确 (4)错误 (5)错误 (6)正确 (7)正确 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)正确 (16)错误 (17)正确(18)正确 (19)正确 (20)错误⼆填空题(1) 全体实对称矩阵, 对矩阵的________________作成实数域R 上的向量空间.(2) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==o 构成R 上的向量空间.则此空间的零向量为___.(3) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==o 构成R 上的向量空间.则a R +∈的负向量为________.(4) 全体实⼆元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++-=+o 构成实数域R 上的向量空间. 则此空间的零向量为___.(5) 全体实⼆元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++-=+(7) 任⼀个有限维的向量空间的基________的, 但任两个基所含向量个数是________.(8) 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的⼀个基为_______. (9) 复数域C 看成它本⾝上的向量空间, 维数等于______, 它的⼀个基为_______. (10) 实数域R 上的全体n 阶上三⾓形矩阵, 对矩阵的加法和纯量乘法作成向量空间,它的维数等于_____.(11) 向量(0,0,0,1)ξ=关于基123(1,1,0,1),(2,1,3,1),(1,1,0,0)ααα===4(0,1,1,1)α=--的坐标为__________.(12) 223x x ++关于3[]F x 的⼀个基332,,1,1x x x x x +++的坐标为__________. (13) 三维向量空间的基12(1,1,0),(1,0,1),αα==则向量(2,0,0)β=在此基下的坐标为 _______.(14) V 和W 是数域F 上的两个向量空间, V 到W 的映射f 满⾜条件__________________________________________, 就叫做⼀个同构映射.(15) 数域F 上任⼀n 维向量空间V 都与向量空间______同构.(16) 设V 的⼦空间123,,,W W W 有1213230W W W W W W ===I I I , 则123W W W ++________直和.答案(1)加法和数量乘法 (2)1 (3)1a (4)(0,0) (5)2(,)a a b -- (6)1n + (7)不唯⼀, 相等 (8)2;1,i (9)1;1 (10)(1)2n n + (11)(1,0,1,0)- (12)(0,0,1,2) (13)(1,1,1)-(14)f 是V 到W 的双射; 对任意,,()()()V f f f αβαβαβ∈+=+; 对任意,,()()a F V f a af ααα∈∈= (15)n F (16)不⼀定是三简答题(1) 设().n V M R = 问下列集合是否为V 的⼦空间, 为什么1) 所有⾏列式等于零的实n 阶矩阵的集合1W ;2) 所有可逆的实n 阶矩阵的集合2W ;(2) 设()L R 是实数域R 上所有实函数的集合, 对任意,(),,f g L R R λ∈∈定义()()()(),()()(),f g x f x g x f x f x x R λλ+=+=∈对于上述运算()L R 构成实数域R 上向量空间. 下列⼦集是否是()L R 的⼦空间为什么1) 所有连续函数的集合1W ;2) 所有奇函数的集合2W ;3) 3{|(),(0)(1)};W f f L R f f =∈=(3) 下列集合是否为n R 的⼦空间为什么其中R 为实数域. 1) 11212{(,,,)|0,}n n i W x x x x x x x R α==+++=∈L L ;2) 21212{(,,,)|0,}n n i W x x x x x x x R α===∈L L ; 3) 312{(,,,)|n W x x x α==L 每个分量i x 是整数};(4)设,,A X b 分别为数域F 上,1,1m n n m 矩阵, 问AX b =的所有解向量是F 上的向量空间吗说明理由.((2,3,1),(1,4,2),(5,2,4))L R --?; 2)22(1,1,)[]L x x x x F x ---?(6) 实数域R 上m n ?矩阵所成的向量空间()m n M R ?的维数等于多少写出它的⼀个基. (7) 实数域R 上, 全体n 阶对称矩阵构成的向量空间的维数是多少(8) 若12,,,n αααL 是数域F 上n 维向量空间V 的⼀个基,122311,,,,n n n αααααααα-++++L 也是V 的⼀个基吗(9) 1,2,(1)(2)x x x x -+-+是向量空间2[]F x 的⼀个基吗(10) 取4R 的两个向量12(1,0,1,0),(1,1,2,0)αα==-.求4R 的⼀个含12,αα的基.(11) 在3R 中求基123(1,0,1),(1,1,1),(1,1,1)ααα==-=-到基123(3,0,1),(2,0,0),(0,2,2)βββ===-的过渡矩阵.(12) 在中4F 求向量(1,2,1,1)ξ=关于基123(1,1,1,1),(1,1,1,1),(1,1,1,1)ααα==--=--4(1,1,1,1)α=--的坐标.(13) 设1W 表⽰⼏何空间3V 中过原点之某平⾯1∏的全体向量所构成的⼦空间, 2W 为过原点之某平⾯2∏上的全体向量所构成的⼦空间, 则12W W I 与12W W +是什么 12W W +能不能是直和(14) 设1123212(,,),(,),W L W L αααββ==求12W W I 和12W W +. 其中123(1,2,1,2),(3,1,1,1),(1,0,1,1)ααα=--==-; 12(2,5,6,5),(1,2,7,3).ββ=-=--(15) 证明数域F 上两个有限维向量空间同构的充分必要条件是它们维数相等.(16)设{|,,},{(,)|,},a b V a b c R W d e d e R b c ??=∈=∈都是实数域R 的向量空间.问V与W 是否同构说明理由.(17) 设12,,,n αααL 为向量空间的⼀个基, 令12,1,2,,i i i n βααα=+++=L L 且 ()i i W L β=.证明 12n V W W W =⊕⊕⊕L .答案(1)1)1W 不是V 的⼦空间. 若1,,||A B W A B ∈+若未必等于零, 1W 对加法不封闭.2)2W 不是V 的⼦空间. 因为3,||0A W A ∈≠, 则||0A -≠, 但|()|0A A +-=, 对加法不封闭.(2)1) 1W 是()L R 的⼦空间. 因为两个连续函数的和及数乘连续函数仍为连续函数.2) 2W 是()L R 的⼦空间. 因为两个奇函数的和及数乘奇函数仍为奇函数. 3) 3W 是()L R 的⼦空间. 因为3W ⾮空, 且对任意3,,,f g W R λ∈∈有()(0)(0)(0)(1)(1)()(1);(0)((0))((1))()(1),f g f g f g f g f f f f λλλλ+=+=+=+===1) 是. 因1W 是齐次⽅程组120n x x x +++=L 的全体解向量.2) 2W 不是n R 的⼦空间. 因2W 对加法不封闭. 3) 3W 不是⼦空间. 因对数乘运算不封闭.(4)当0b ≠时, AX b =的所有解向量不能构成F 上的向量空间. 因n 维零向量不是AX b =的解向量. 当0b =时,0AX =的所有解向量能构成F 上的向量空间.(5)1) 维数是2. 因(2,3,1),(1,4,2)-线性⽆关, ⽽(5,2,4)2(2,3,1)(1,4,2)-=-+. 2) 维数是2. 因易证21,1x x --线性⽆关, 但22(1)(1)()0x x x x -+-+-=.(6) 解令ij E 表⽰i ⾏j 列位置元素是1其余是零的m n ?矩阵. 那么易证ij E 这m n ?个矩阵是线性⽆关的. 它们作成()m n M R ?的⼀个基, 故()m n M R ?的维数是m n ?.(7) ,,,1,2,3,,,,ii ij ji E E E i j n i j +=≠L 为全体n 阶对称矩阵构成的向量空间的⼀个基,其中共有12(1)n n ++++-L 个向量, 故此向量空间的维数(1)2n n +. (8) 解由121112(,,,)(,,,)n n n n A ααααααααα-+++=L L . 得1||1(1)n A +=+-. 当n 为偶数时, ||0A =, 故12231,,n αααααα+++线性相关, 它不构成基. 当n 为奇数时, ||0,A ≠ 故12231,,n αααααα+++线性⽆关, 它构成⼀个基.(9) 解在基21,,x x 之下有2122(1,2,(1)(2))(1,,)111001x x x x x x --??-+-+=.因上式右⽅的3阶矩阵为可逆, 所以1,2,(1)(2)x x x x -+-+线性⽆关, 它是2[]F x 的⼀个基.(10) 解取向量34(0,0,1,0),(0,0,0,1)εε==,由于1100010010,1210001-=-≠因此1234,,,ααεε线性⽆关, 所以向量组是4R 的⼀个基.(11) 解由123123123123(,,)(,,),(,,)(,,)A B αααεεεβββεεε==推出 1123123(,,)(,,)A B βββααα-=因此所求过渡矩阵为? ? ?=-= -- --.(12) 解取4F 的标准基1234,,,εεεε. 由1234,,,εεεε到1234,,,αααα的过渡矩阵为 1111111111111111A ?? ?--= -- --于是(1,2,1,1)ξ=关于基1234,,,αααα的坐标为1541124114114A -?? ?= --. (13) 解由于1W ,2W 皆过原点, 它们必相交, 因此或重合, 或不重合. 若1W 与2W 重合, 则 121121,W W W W W W =+=I . 若1W 与2W 不重合, 则12W W I 为⼀条过原点的直线, ⽽ 12W W V +=, 但12W W +不能是直和.(14) 解设112233112212k k k t t W W γαααββ=++=+∈I 为交空间的任意向量.由11223311220,k k k t t αααββ++--= 得齐次线性⽅程组123121212123121231232025206702530k k k t t k k t t k k k t t k k k t t +--+=??+--=??-++++=??-++--=? 由⾏初等变换知⽅程组的系数矩阵的秩为4, 解空间的维数为1, 且求得⽅程组的⼀般解为122232424896,,,7777k t k t k t k t =-=-=-=-因此维12()1W W =I , 维12()4W W +=.取27t =,令1267ξββ=-+便有12()W W L ξ=I , 另外显然121231(,,,)W W L αααβ+=.(15) 证明设数域F 上两个有限维向量空间V 与W 的维数均为n , 因,n n V F W F ??所以V W ?.反之, 若V W ?, 设dim 0,V n => 且f 是V 到W 的同构映射. 取V 的⼀个基12,,,n αααL , 易证12(),(),,()n f f f αααL 是W 的⼀个基, 故dim W n =.(16) V 与W 不同构. 因dim 3,dim 2V W ==, V 与W 的维数不相等. (17) 证明任取V α∈, 若1122n n a a a αααα=+++L , 那么12123211()()()n n n n n n n a a a a a a a a αβββαβ--=---+---+-+L L因此12n V W W W =+++L , 并且V 中向量依诸i W 表⽰唯⼀, 故 12n V W W W =⊕⊕⊕L四计算题(1) 解以123,,ααα及1234,,,ββββ为列做成矩阵A , 在对A 的⾏施⾏初等变换. 11232312311147202002421533161510011/20201001/21100111/2100000400A B -??---=→ ?-- ? ?---??-- ?= ? ? ?-?MM M M M M M M由于⾏初等变换不改变列向量间的线性关系. 由矩阵B 知,113323412,,2βααβααβαα=+=-+=+从⽽134(,,).L W βββ?但由B 还知134,,βββ线性⽆关, 故134,,βββ为W 的⼀组⽣成元.(2) 在向量空间4R 中, 求由向量123(2,1,3,1),(4,5,3,1),(1,1,3,1)ααα=-=-=--4(1,5,3,1)α=-⽣成的⼦空间的⼀个基和维数.(2) 解对下述矩阵施⾏⾏的初等变换241106391515151533330126181111042600001302.00000213----→→----- ? ? ? ?--?? ? ? ?此变换保持列向量间的线性关系, 由右⽅矩阵知13,αα是⼀个极⼤⽆关组, 因此1234(,,,)L αααα的维数实是2,⽽13,αα是它的⼀个基.(3) 在4R 中求出向量组12345,,,,ααααα的⼀个极⼤⽆关组,然后⽤它表出剩余的向量.这⾥123(2,1,3,1),(1,2,0,1),(1,1,3,0),ααα===--45(1,1,1,1),(0,12,12,5)αα==-.(3) 解对下述矩阵施⾏⾏的初等变换2111010311*******10150001300013101121010*******00001101511002----- ? ?→→---- ? ?----- ? ?→-- ? ?.由右⽅矩阵知234,,ααα是⼀个极⼤⽆关组, 并且有 1235234,253ααααααα=-=++. (4) 求3()M F 中与矩阵A 可交换的矩阵构成的⼦空间的维数及⼀个基, 其中100010.312A ??= ? ???(4) 解设这个⼦空间为,W 由于A I B =+, 这⾥000000311B ?? ?= ? ???因此与A 可交换的3阶⽅阵, 就是与B 可交换的3阶⽅阵, 从⽽ 3{()|}W X M F BX XB =∈=.任取,()ij C W C c ∈=. 由BC CB =, 可得1323112131330,33,c c c c c c ==++= 122232333c c c c ++=,于是C W ∈当且仅当C 的元素为齐次线性⽅程组123233333c c c c c c c c =--+??=--+?的解. 于是我们得到如下矩阵100010000300,030,100000000100--- 000000010,310010001 -它们构成W 的⼀个基, 故W 的维数是5.(5) 求实数域上关于矩阵A 的全体实系数多项式构成的向量空间V 的⼀个基与维数.其中2100100,.200A ωωω??-+ ?== ? ?(5) 解因31ω=, 所以22311,11A A I ωω???? ? ?=== ? ? ? ?????易证2,,I A A 线性⽆关. 于是任何多项式()(()[])f A f x R x ∈皆可由2,,I A A 线性表⽰, 故2,,I A A 为的⼀个基, dim 3V =.(6) 设1234(,,,)x x x x 为向量ξ关于基12(1,0,0,1),(0,2,1,0),αα==3(0,0,1,1),α=4(0,0,2,1)α=的坐标; 1234(,,,)y y y y 是ξ关于基1234,,,ββββ的坐标, 其中11y x =,221332442,,.y x x y x x y x x =-=-=-求基1234,,,ββββ.(6) 解因1122123412343344(,,,)(,,,)x y x y x y x y ξααααββββ???? ? ? ? ?== ? ? ? ? ? ?????且 11122233344410 00110001100101y x x y x x P y x x y x x? ? ? ?- ? ?==--则1122123412343344(,,,)(,,,)x x x x P x x x x ααααββββ112341234(,,,)(,,,)P ββββαααα-=故所求的基为1234(1,2,4,3),(0,2,4,2),(0,0,1,1),(0,0,2,1)ββββ====.(7) 设12,,,n αααL 是n 维向量空间V 的⼀个基,11212,,,n αααααα++++L L 也是V 的⼀个基,⼜若向量ξ关于前⼀个基的坐标为(,1,,2,1)n n -L , 求ξ关于后⼀个基的坐标.(7) 解基12,,,n αααL 到后⼀个基的过渡矩阵为1111011100110001P ??=L L LL L L L. 那么12111001101101120001211000111n n n y n n y P y --?????????? ??--- ? ? ? ? ? ?=== ? ??- ? ? ?? ?L LM L LL M M M L L故ξ关于后⼀个基的坐标为(1,1,,1)L .(8) 已知3R 的⼀个基为123(1,1,0),(0,0,2),(0,3,2)ααα===. 求向量(5,8,2)ξ=-关于这个基的坐标.(8) 解设112233x x x ξααα=++, 的⽅程组 11323538222x x x x x =?+=??+=-?解得1235,2,1x x x ==-=. 故ξ关于基123,,ααα的坐标(5,2,1)-.(9) 已知1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3)αααα=-===是4R 的⼀个基.求4R 的⼀个⾮零向量ξ, 使它关于这个基的坐标与关于标准基的坐标相同. (9) 解由标准基1234,,,εεεε到基1234,,,αααα的过渡矩阵为 20561 33611211013P ??= ?- ?设ξ关于两个基的坐标为1234(,,,)x x x x , 则11223344,x x x x P x x x x=即得齐次线性⽅程组134133412341345602360020x x x x x x x x x x x x x x ++=??+++=??-+++=??++=?解得1234x x x x ===-, 令40,x k k R =≠∈, 则(,,,)k k k k ξ=---即为所求. (10)已知4R 的⼀个基123(2,1,1,1),(0,3,1,0),(5,3,2,1)ααα=-==4(6,6,1,3)α=.求1234(,,,)x x x x ξ=关于基1234,,,αααα的坐标.(10) 解由标准基到所给基的过渡矩阵为2056133611211013P ??= ?- ?那么11221123412343344(,,,)(,,,)x x x x P x x x x ξεεεεαααα-==故ξ关于基1234,,,αααα的坐标为1234(,,,)y y y y , 这⾥11122213334444/91/3111/91/274/91/323/271/3002/37/271/91/326/27y x x y x x P y x x y x x ---???????? ? ? ? ?-- ? ? ? ?== ? ? ? ?- ? ? ? ? ? ? ?--?.五证明题(1) 设12,W W 为向量空间()V F 的两个⼦空间. 1)证明: 12W W I 是V 的⼦空间.2)12W W U 是否构成V 的⼦空间, 说明理由.(1) 证明1) 显然120W W ∈I , 即12W W ≠ΦI , 任取1212,,W W k F αα∈∈I , 易知1212112,W W k W W ααα+∈∈I I , 故12W W I 是V 的⼦空间.2) 不⼀定. 当12W W ?或21W W ?时, 12W W U 是V 的⼦空间. 但当1W 与2W 互不包含时,12W W U 不是V 的⼦空间. 因为总存在1112,W W αα∈?及2221,W W αα∈?使1212,W W αα∈U , ⽽1212W W αα+?U , 因为这时121122,W W αααα+?+?, 否则与选取⽭盾.(2) 设12,W W 为向量空间V 的两个⼦空间. 证明: 12W W +是V 的即含1W ⼜含2W 的最⼩⼦空间.(2) 证明易知12121122{|,}W W W W αααα+=+∈∈为V 的⼦空间, 且112212,.W W W W W W ?+?+设W 为V 的包含1W 与2W 的任⼀⼦空间, 对任意1122,W W ξξ∈∈,有12W ξξ+∈, 即12W W W +?, 故12W W +是V 的即含1W ⼜含2W 的最⼩⼦空间.(3) 设12,W W 为向量空间()V F 的两个⼦空间. ,αβ是V 的两个向量, 其中2W α∈, 但1W α?, ⼜2W β?. 证明:1)对任意2,k F k W βα∈+?;2)⾄多有⼀个,k F ∈使得1k W βα+∈. (3) 证明1) 任意,k F ∈若2k W βα+∈, 则2()k k W ββαα=+-∈⽭盾, 故1)成⽴.2) 当1W β∈时, 仅当0k =时, 有1k W βα+∈; 当1W β?时, 若存在1212,,k k F k k ∈≠使得111221,k W k W αβααβα=+∈=+∈, 则12121()k k W ααα-=-∈, 因此1W α∈, ⽭盾, 故2)成⽴.(4) 设12,W W 为向量空间V 的两个⼦空间. 证明若1212W W W W +=U , 则12W W ?或 21W W ?.(4) 证明因12W W U 含1W 与2W 中所有向量, 12W W +含⼀切形如121122(,)W W αααα+∈∈的向量, 因为1212W W W W +=U , 所以121W αα+∈或122W αα+∈. 若121W αα+∈, 令12ααβ+=, 则21αβα=-, 故21W W ?; 若122W αα+∈, 令12ααγ+=, 则12αγα=-, 故12W W ?.(5) 证明: n 维向量空间V 中, 任意n 个线性⽆关的向量都可作为V 的⼀个基.(5) 证明设12,,,n αααL 是V 中线性⽆关的向量, 取V 的单位向量12,,,n εεεL , 则12(,,,)n V L εεε=L , 且12,,,n αααL 中每⼀个可由12,,,n εεεL 线性表⽰. 由替换定理知12,,,n αααL 与12,,,n εεεL 等价, 所以V 中每⼀个向量可由12,,,n αααL 线性表⽰, ⼜ 12,,,n αααL 线性⽆关, 故12,,,n αααL 可作为V 的⼀个基.(6) 设V 为n 维向量空间, V 中有m 组线性⽆关的向量, 每组含t 个向量, 证明: V 中存在n t -个向量与其中任⼀组组成V 的⼀个基.(6) 证明设V 中m 组线性⽆关的向量分别为12,,,(1,2,,),i i it i m t n ααα=≤L L . 令 12(,,,)i i i it V L ααα=L , 则dim i V t n =<. 因存在1,(1,2,,)i V i m ξ?=L , 使121,,,,i i it αααξL 线性⽆关, 若1t n +<,令/121(,,,,)i i i it V L αααξ=L , 则/i V 也为V 的⾮平凡⼦空间, 同理存在/2,1,2,,i V V i m ξ=-=L , ⽽且1212,,,,,i i it αααξξL 线性⽆关, 如此继续下去, 可找到12,,,n t ξξξ-L 使得12,,,,i i it αααL 12,,,n tξξξ-L 线性⽆关, 故对每个i , 它们都是V 的⼀个基.(7) 设n 维向量空间V 的向量组12,,,n αααL 的秩为r , 使得11220n n k k k ααα+++=L 全体n 维向量12(,,,)n k k k L 的集合为W . 证明W 是nF 的n r -维⼦空间.(7) 证明显然12dim (,,,)n L r ααα=L , 今设每个i α在12(,,,)n L αααL 的某个基下的坐标为12[]i i i ir a a a α?? ? ?= ? ? ???M ,1,2,,i n =L那么由11220n n k k k ααα+++=L 可得1122[][][]0n n k k k ααα+++=L .它决定了⼀个含n 个未知量12,,,,n k k k r L 个⽅程的齐次线性⽅程组, 其系数矩阵12([],[],,[])n αααL 的秩为r , 故解空间即W 的维数为n r -.(8) 设12,,,n a a a L 是数域F 中n 个不同的数, 且12()()()()n f x x a x a x a =---L . 证明多项式组()()(1,2,,)()i i f x f x i n x a ==-L 是向量空间1[]n F x -的⼀个基.(8) 证明因1dim []n F x n -=, 所以只需证12,,n f f f L 线性⽆关. 设有12,,,n k k k F ∈L ,使1220n n k f k f k f +++=L (*) 由()0,,()0j i i i f a i j f a =≠≠, 因此将i a 带⼊(*)得()0i i i k f a =, 从⽽0,(1,2,)i k i n ==L 故12,,n f f f L 线性⽆关, 为1[]n F x -的⼀个基.(9) 设W 是n R 的⼀个⾮零⼦空间, ⽽对于W 的每⼀个向量12(,,,)n a a a L 来说, 或者120n a a a ====L , 或者每⼀个i a 都不等于零. 证明: dim 1.W =(9) 证明由W ⾮零, 我们总可以取12(,,,)n b b b W β=∈L , 且0β≠, 那么每个0i b ≠且β线性⽆关. 今对任意12(,,,)n a a a W α=∈L , 若0α=当然α可由β线性表⽰; 若0α≠⽽11a W b αβ-∈, 由于其第⼀个分量为0, 由题设知11ab αβ=. 故β可作为W 的⼀个基,且dim 1.W =(10) 证明: 22,,1x x x x x +-+是2[]F x 的⼀个基, 并求2273x x ++关于这个基的坐标. (10) 证明: 2dim []3,F x =22,,1x x x x x +-+由基21,,x x 表⽰的演化矩阵为001111110A ??=- ? ???但A 可逆, 故22,,1x x x x x +-+是2[]F x 的⼀个基.2273x x ++关于这个基的坐标(3,1,3)-,因为13371.23A -???? ? ?=- ? ? ? ?????(11) 若123,,W W W 都是V 的⼦空间, 求证: 11231213(())()()W W W W W W W W +=+I I I I .(11) 证明: 任意1123(())W W W W α∈+I I , 则1W α∈, 且123()W W W α∈+I , 因此1311233,,W W W ααααα=+∈∈I , 但1W α∈, 知313W W α∈I , 故 1213()()W W W W α∈+I I .反之, 任意1213()()W W W W β∈+I I , 12112213,,W W W W βββββ=+∈∈I I , 则1W β∈, 且123()W W W β∈+I , 故1123(())W W W W β∈+I I .(12) 设12,,,s W W W L 是n 维向量空间V 的⼦空间. 如果12s W W W +++L 为直和.证明:{0},,,1,2,,i j W W i j i j s =≠=I L .(12) 证明: 由12s W W W +++L 为直和, 有(){0},,,1,2,,i j i jW W i j i j s ≠=≠=∑I L , ⽽(){0},,,1,2,,i j i ji jW W W W i j i j s ≠?=≠=∑I I L . 故{0},,,1,2,,i j W W i j i j s =≠=I L .(13) 设12,W W 分别是齐次线性⽅程组120n x x x +++=L 与12n x x x ===L 的解空间.证明: 12nF W W =+.(13) 证明因120n x x x +++=L 的解空间的维数为1n -, 且⼀个基为12(1,1,0,,0),(1,0,1,0,,0),αα=-=-L L 1,(1,0,,0,1)n α-=-L L , ⼜12n x x x ===L。
第六章 线性空间—自测答案一.判断题1.两个线性子空间的和(交)仍是子空间。
2.两个线性子空间的并仍是子空间。
3.n 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。
4.线性空间中两组基之间的过渡阵是可逆的。
5.两个线性子空间的和的维数等于两个子空间的维数之和。
6.同构映射的逆映射仍是同构映射。
7.两个同构映射的乘积仍是同构映射。
8.同构的线性空间有相同的维数。
9.数域P 上任意两个n 维线性空间都同构。
10.每个n 维线性空间都可以表示成n 个一维子空间的和。
答案:错:2.5.8 对:1.3.4.6.7.9.10 二.计算与证明1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维数。
解:(1)0f =0110n a a a -∴++=……+ 0121n a a a a -∴=----……设11a k =,22a k =,…,11n n ak --=,故0121n a k k k -=----……,21121121()n n n f t k k k k t k t k t ---∴=---+++ 21121(1)(1)(1)n n t k t k tk --=-+-++-因此,W 中任一多项式可写成211,1,,1n t t t ---- 的线性组合,易知211,1,,1n t t t---- 线性无关,故为W 的一组基,且W 的维数为n -1. 2. 求22P ⨯中由矩阵12113A ⎛⎫= ⎪-⎝⎭,21020A ⎛⎫= ⎪⎝⎭,33113A ⎛⎫= ⎪⎝⎭,41133A ⎛⎫= ⎪-⎝⎭生成的子空间的基与维数。
解:取22P ⨯的一组基11122122,,,E E E E ,则有 12341112212221311011,,,)(,,,)12133033A A A A E E E E ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦( 设213110111213333A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,即为1234,,,A A A A 在11122122,,,E E E E 下的坐标矩阵,对其作初等行变换得矩阵1011011-1000000B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1234dim (,,,)2L A A A A rankB ∴==,12,A A 为一组基。
第六章 线性空间练习题参考答案一、填空题1.已知0000,,00V a bc a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫⎪⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫⎪⎪ ⎪⎝⎭.6.数域P 上n 级对称矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上(1)2n n -维线性空间,数域P 上n 级上三角矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.二、判断题1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A +B)X =0的解空间,则12V V V =.正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX =0,即满足0A X B ⎛⎫= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2V 中,即为12V V 中的向量.因此12V V V =.4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s ααα线性表出,则维(W)=s.正确.根据定理1.5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有.W αβ+∉错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题1.求所有与A 可交换的矩阵组成的nn P ⨯的子空间()C A 的维数与一组基,其中100020003A ⎛⎫⎪= ⎪ ⎪⎝⎭.解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即111213111213212223212223313233313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.111213111213212223212223313233313233232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此11223300()0000b C A b b ⎧⎫⎛⎫⎪⎪⎪=⎨⎬ ⎪⎪⎪ ⎪⎝⎭⎩⎭ 维数为3,基为112233,,E E E .2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有10111432131401238761001232210001T --⎛⎫⎛⎫⎪⎪- ⎪ ⎪=⎪ ⎪- ⎪⎪-⎝⎭⎝⎭因此1143210112379801231314633100128761232100132213221T ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 令1234114324012320012301x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭112341432114113611010123401274210012200122400013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题1.V 为定义在实数域上的函数构成的线性空间,令12{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.()()()()(),()22f x f x f x f x f x V f x +---∀∈=+. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所以12.V W W =⊕2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,或者120n a a a ====,或者每一个i α都不等于零,证明:维(W)=1.证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设1212(,,,),(,,,)n n a a a b b b αβ==是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈.由题设条件有1212110n n b a a b b a a b -==-=,即有1212n na a ab b b ===.即W 中的任二个非零向量均成比例,因此维(W)=1.。
第六章线性空间练习题参考答案一、填空题0 0 01.已知V a b c 0 a,b,c R 是R1 2的一个子空间,则维(V)3 30 c b 00 0 0 0 0 0 0 0 03V 的一组基是1 0 0 , 1 0 0 , 0 1 0 .0 0 0 0 1 0 0 1 0在P4中,若 1 (1, 2,0,1),1,1), 4 (0,1, k,1)线性无2 (1,1,1, 1),3 (1, k,关,则k的取值范围是k 3(以1, 2, 3, 4为行或者列构成的行列式不为零)3•已知a是数域P中的一个固定的数,而W {(a,x1,L ,x n) x i P,i 1,2,L ,n}是P n+1的一个子空间,贝U a = 0 ,而维(W)=巴4. 维数公式为dimV i dimV2 dim(V i V2) dim(V i I V2).5•设1, 2, 3是线性空间V的一组基,X i 1 X2 2 X3 3,则由基1, 2, 30 0 1到基2, 3, 1的过渡矩阵T = 1 0 0,而在基3, 2, 1下的坐标是0 1 00 1 1 (X3,X2,X1)由基1, 2, 3到基2 3, 3 1, 1 2的过渡矩阵为T二10 1. 阵全体构成数域P上凹卫维线性空间,数域P上n级对交矩阵全体构成数域1 1 06 •数域P上n级对称矩阵全体构成数域P上如B维线性空间,数域P上2n级反对称矩阵全体构成数域P上晋维线性空间,数域P上n级上三角矩2P上n维线性空间,数域P上n级数量矩阵全体构成数域P上_1_维线性空间.二、判断题1•设V P n n,则W {A A P nn,A 0}是V的子空间.错•行列式为零的两个方阵的和的行列式未必为零,因此W中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2. 已知V {(a bi,c di) a, b, c, d R}为R上的线性空间,且维(V)= 2.错.是子空间,但是是4维的,其基为(1,0),( i,0),(0,1),(0, i).A3. 设A,B P n n,V是X 0的解空间,V1是AX = 0的解空间,V2是B(A + B)X = 0 的解空间,则V V1 I V2 .正确• Vj V2中的向量既满足AX = 0,又满足(A + B)X = 0,因此也满足ABX = 0,即满足X 0,即为V中的向量.反之,V中的向量既在V中,又B在V2中,即为yi V2中的向量.因此V V1 I V2 .4. 设线性空间V的子空间W中每个向量可由W中的线性无关的向量组1, 2丄,s线性表出,则维(W) = S.正确.根据定理1.5. 设W是线性空间V的子空间,如果, V,但W且W,则必有W.错误.可能W.如取,为一对互为负向量,则0 W.6. W {(x1,x2,x3) R3|X3 0}是R3的子空间.正确. 基为( 1,0,0),(0,1,0),维数为 2.7. W {( x1,x2, x3) R3 | x21} 是R3的子空间.错误.不包含零向量8. W {( x1,x2,x3)R3 |x1x2X3}是R3的子空间正确.基为(1,1,1),维数为 1.9. W {( x1,x2,x3)R3 |x1 x2X3}是R3的子空间正确. 基为( 1 , 1 ,0),( 1 ,0 ,-1),维数为 2.、计算题1.求所有与A可交换的矩阵组成的P n n的子空间C(A)的维数与一组基,其中100A 0 2 0 .003解:设矩阵B (b j )3 3与A可交换,即有AB BA.即1 0 0 b11 b12 b13 b11 b12 b13 1 0 00 2 0 b21 b22 b23 b21 b22 b23 0 20 0 3 b31b32 b33 b31 b32b33 0 0 3b11 b12 b13 b11 2b12 3b132b21 2b222b23 b212b223b23 .3b31 3b32 3b33b312b32 3b33所以有ib ij b ij j ,(i j)b ij 0,i, j 1,2,3. 当i j时,b ij 0 ,因此b11 0 0C(A) 0b22 00 0 b33 维数为3,基为E11 , E22 ,E33 .2•在线性空间P4中,求由基1, 2, 3, 4到基1, 2, 3, 4的过渡矩阵,并求(1,4,2,3)在基1, 2, 3, 4下的坐标,其中1 (1,0,0,0),2 (4,1,0,0),3 ( 3,2,1,0),4 (2, 3,2,1)1 (1,1,8, 3),2 (0, 3,7, 2),3 (1,1,6, 2),4 (1,4, 1, 1)解:令过渡矩阵为T ,则有1 0 1 1 1 4 3 21 3 1 4 0 12 3T8 7 6 1 0 0 1 23 2 2 1 0 0 0 1因此1 4 32 1 1 0 1 1 23 7 9 80 1 2 3 1 3 1 4 6 3 3 1T0 0 1 2 8 7 6 1 2 3 2 10 0 0 1 3 2 2 1 3 2 2 1令1 1 4 32 X14 0 1 2 3 X22 0 0 1 2 X33 0 0 0 1 X4X1 1 4 3 2 1 1 1 4 11 36 1 101X2 0 1 2 3 4 0 1 2 7 4 21X3 0 0 1 2 2 0 0 1 2 2 4X4 0 0 0 1 3 0 0 0 1 3 3(1, 4,2,3) 在基1,2 ! , 3 ,4下的勺坐标为(- 101,2 1,-4四、证明题1.V为定义在实数域上的函数构成的线性空间,令W { f(x) f (x) V, f(x) f( x)},W { f(x) f (x) V, f(x) f( x)}证明:W i 、W 2皆为V 的子空间,且V W 1 W 2.证明:W i 、W 2分别为偶函数全体及奇函数全体构成的集合,显然 W i 、W 2均为非空的.由奇偶函数的性质可得 W i 、W 2皆为V 的子空间.以 V W 1 W 2.2.设W 是P n 的一个非零子空间,若对于 W 的每一个向量(a i ,a 2丄,a n )来 说,或者a i a 2 L a n 0,或者每一个i 都不等于零,证明:维(W) = 1.证明:由W 是P n 的一个非零子空间,可得 W 中含有非零向量设(a i ,a 2,L ,a n ),(^也丄,g)是W 中的任二个非零向量,由题意可得每一个 a i ,b i 都不等于零.考虑向量由题设条件有b i a 2 a i b 2 L b i a n a i b n 0 ,即有色 更 L 空.即W 中的b i b 2 b n 任二个非零向量均成比例,因此维(W)二i.f(x) V,f(x)f(x) f( x) 2 f(x) f( X)2而 f (x)f( x) W 1 f(x) f(x)2 ' 2W 2,因此VW 1 W 2.又 W 1 I W 2{0}.所b |a ib i (a i ,a 2丄,a n )印⑴庄丄,b n ) (0,呃 a4,L ,b i a na ib n ) W。
第六章 线性空间习题解答P267.1设,,M N M N M M N N ⊆==I U 证明: 证明: 一方面.M N M ⊆I 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M I ⊆ 2 证明: (1))()()(L M N M L N M I Y I Y I =.(2))()()(L M N M L N M Y I Y I Y =证明: (1) .),(L N x M x L N M x Y Y I ∈∈∈且则设 即.M x N x M x ∈∈∈或且L x ∈且. 于是有)()(L M N M x I Y I ∈.另一方面,因为 )(,)(L N M L M L N M N M Y I I Y I I ⊆⊆,所以)()()(L N M L M N M Y I I Y I ⊆.(2) 一方面, ))(,)(L M L N M N M L N M Y I Y Y I Y ⊆⊆,所以)()()(L M N M L N M Y I Y I Y ⊆.另一方面, .),()(L M x N M x L M N M x Y Y Y I Y ∈∈∈∀且则若).(,L N M x M x I Y ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N I 总之有)()()(),(L N M L M N M L N M x I Y I I Y I Y ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法.(2) 设A 是n ⨯n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法.(4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+=ο. (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k ⋅α=0. (7) 集合与加法同(6), 数量乘法为k ⋅α=α.(8) 全体正实数R +,加法和数量乘法定义为: a ⊕b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, β=(a,b)≠0. 取α=(a+1,b), γ=(a-1, b), 则α, γ∈V , 但是, α+ γ ∉V . (5) 证明: 10显然V 非空.02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++=12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)(,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==o o o o 的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-o o o2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl o α(7)(k+l)o α =((k+1)a 1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+ 22211(2))2k l kl k l a ++--221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+⋅k l αα=⊕o o (8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+o o 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠Q ,但这里。
第六章 线性空间一 判断题(1) 平面上全体向量对于通常的向量加法和数量乘法: ,,k k R αα=∈ 作成实数域R 上的向量空间. ( ) .(2) 平面上全体向量对于通常的向量加法和数量乘法: 0,,k k R α=∈ 作成实数域R 上 的向量空间. ( ).(3) 一个过原点的平面上所有向量的集合是3V 的子空间. ( ).(4) 所有n 阶非可逆矩阵的集合为全矩阵空间()n M R 的子空间. ( ).(5) 121{(,,,)|1,}nn i i i x x x x x R ==∈∑为n R 的子空间. ( ).(6)所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ).(7)11{(,0,,0,)|,}n n x x x x R ∈为n R 的子空间. ( ).(8)若1234,,,αααα是数域F 上的4维向量空间V 的一组基, 那么122334,,,αααααα++ 是V 的一组基. ( ).(9)n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ).(10)设12,,,n ααα是向量空间V 中n 个向量, 且V 中每一个向量都可由12,,,n ααα 线性表示, 则12,,,n ααα是V 的一组基. ( ).(11) 设12,,,n ααα是向量空间V 的一个基, 如果12,,,n βββ与12,,,n ααα等价, 则12,,,n βββ也是V 的一个基. ( ).(12) 3x 关于基332,,1,1x x x x x +++的坐标为(1,1,0,0). ( ).(13)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++.若12dim dim dim s V V V n +++=, 则12s V V V +++为直和. ( ). (14)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若121230,()0,V V V V V =+=121,()0,S s V V V V −+++= 则12s V V V +++为直和.( ).(15) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},i j j i V V ≠=∑ 则12s V V V +++为直和. ( ).(16)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},,i j V V i j =≠则12s V V V +++为直和. ( ).(17) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 零向量表法是唯一的, 则12s V V V +++为直和. ( ).(18) 设12,,,n ααα是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()n f f f ααα. ( ). (19) 设V 是数域F 上的n 维向量空间, 若向量空间V 与W 同构, 那么W 也是数域F 上的n 维向量空间. ( ).(20) 把同构的子空间算作一类, n 维向量空间的子空间能分成n 类. ( ). 答案 (1)错误 (2)错误 (3)正确 (4)错误 (5)错误 (6)正确 (7)正确 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)正确 (16)错误 (17)正确(18)正确 (19)正确 (20)错误二 填空题(1) 全体实对称矩阵, 对矩阵的________________作成实数域R 上的向量空间.(2) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间.则此空间的零向量为___.(3) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间. 则a R +∈的负向量为________.(4) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++−=+ 构成实数域R 上的向量空间. 则此空间的零向量为___.(5) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++−=+ 构成实数域R 上的向量空间. 则(,)a b 的负向量为________.(6) 数域F 上一切次数n ≤的多项式添加零多项式构成的向量空间[]n F x 维数等于_____.(7) 任一个有限维的向量空间的基________的, 但任两个基所含向量个数是________.(8) 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______.(9) 复数域C 看成它本身上的向量空间, 维数等于______, 它的一个基为_______.(10) 实数域R 上的全体n 阶上三角形矩阵, 对矩阵的加法和纯量乘法作成向量空间, 它的维数等于_____.(11) 向量(0,0,0,1)ξ=关于基123(1,1,0,1),(2,1,3,1),(1,1,0,0)ααα===4(0,1,1,1)α=−−的坐标为__________.(12) 223x x ++关于3[]F x 的一个基332,,1,1x x x x x +++的坐标为__________.(13) 三维向量空间的基12(1,1,0),(1,0,1),αα== 则向量(2,0,0)β=在此基下的坐标为 _______.(14) V 和W 是数域F 上的两个向量空间, V 到W 的映射f 满足条件__________________________________________, 就叫做一个同构映射.(15) 数域F 上任一n 维向量空间V 都与向量空间______同构.(16) 设V 的子空间123,,,W W W 有1213230W W W W W W ===, 则123W W W ++ ________直和.答案(1)加法和数量乘法 (2)1 (3)1a(4)(0,0) (5)2(,)a a b −− (6)1n + (7)不唯一, 相等 (8)2;1,i (9)1;1 (10)(1)2n n + (11)(1,0,1,0)− (12)(0,0,1,2) (13)(1,1,1)− (14)f 是V 到W 的双射; 对任意,,()()()V f f f αβαβαβ∈+=+; 对任意,,()()a F V f a af ααα∈∈= (15)n F (16)不一定是三 简答题(1) 设().n V M R = 问下列集合是否为V 的子空间, 为什么?1) 所有行列式等于零的实n 阶矩阵的集合1W ;2) 所有可逆的实n 阶矩阵的集合2W ;(2) 设()L R 是实数域R 上所有实函数的集合, 对任意,(),,f g L R R λ∈∈ 定义()()()(),()()(),f g x f x g x f x f x x R λλ+=+=∈对于上述运算()L R 构成实数域R 上向量空间. 下列子集是否是()L R 的子空间? 为什么? 1) 所有连续函数的集合1W ;2) 所有奇函数的集合2W ;3) 3{|(),(0)(1)};W f f L R f f =∈=(3) 下列集合是否为n R 的子空间? 为什么? 其中R 为实数域.1) 11212{(,,,)|0,}n n i W x x x x x x x R α==+++=∈; 2) 21212{(,,,)|0,}n n i W x x x x x x x R α===∈; 3) 312{(,,,)|n W x x x α==每个分量i x 是整数};(4)设,,A X b 分别为数域F 上,1,1m n n m ⨯⨯⨯矩阵, 问AX b =的所有解向量是F 上的向量空间吗? 说明理由.(5) 下列子空间的维数是几?1) 3((2,3,1),(1,4,2),(5,2,4))L R −−⊆;2)22(1,1,)[]L x x x x F x −−−⊆(6) 实数域R 上m n ⨯矩阵所成的向量空间()m n M R ⨯的维数等于多少? 写出它的一个基.(7) 实数域R 上, 全体n 阶对称矩阵构成的向量空间的维数是多少?(8) 若12,,,n ααα是数域F 上n 维向量空间V 的一个基,122311,,,,n n n αααααααα−++++ 也是V 的一个基吗?(9) 1,2,(1)(2)x x x x −+−+是向量空间2[]F x 的一个基吗?(10) 取4R 的两个向量12(1,0,1,0),(1,1,2,0)αα==−.求4R 的一个含12,αα的基.(11) 在3R 中求基123(1,0,1),(1,1,1),(1,1,1)ααα==−=−到基123(3,0,1),(2,0,0),(0,2,2)βββ===−的过渡矩阵.(12) 在中4F 求向量(1,2,1,1)ξ=关于基123(1,1,1,1),(1,1,1,1),(1,1,1,1)ααα==−−=−− 4(1,1,1,1)α=−−的坐标.(13) 设1W 表示几何空间3V 中过原点之某平面1∏的全体向量所构成的子空间, 2W 为过原点之某平面2∏上的全体向量所构成的子空间, 则12W W 与12W W +是什么? 12W W +能不能是直和? (14) 设1123212(,,),(,),W L W L αααββ==求12W W 和12W W +. 其中123(1,2,1,2),(3,1,1,1),(1,0,1,1)ααα=−−==−; 12(2,5,6,5),(1,2,7,3).ββ=−=−−(15) 证明 数域F 上两个有限维向量空间同构的充分必要条件是它们维数相等.(16)设{|,,},{(,)|,},a b V a b c R W d e d e R b c ⎛⎫=∈=∈ ⎪⎝⎭都是实数域R 的向量空间.问V 与W 是否同构? 说明理由.(17) 设12,,,n ααα为向量空间的一个基, 令12,1,2,,i i i n βααα=+++=且 ()i i W L β=.证明 12n V W W W =⊕⊕⊕.答案(1)1)1W 不是V 的子空间. 若1,,||A B W A B ∈+若未必等于零, 1W 对加法不封闭. 2)2W 不是V 的子空间. 因为3,||0A W A ∈≠, 则||0A −≠, 但|()|0A A +−=, 对加法不封闭.(2)1) 1W 是()L R 的子空间. 因为两个连续函数的和及数乘连续函数仍为连续函数. 2) 2W 是()L R 的子空间. 因为两个奇函数的和及数乘奇函数仍为奇函数.3) 3W 是()L R 的子空间. 因为3W 非空, 且对任意3,,,f g W R λ∈∈有()(0)(0)(0)(1)(1)()(1);(0)((0))((1))()(1),f g f g f g f g f f f f λλλλ+=+=+=+=== 故3,.f g f W λ+∈(3)1) 是. 因1W 是齐次方程组120n x x x +++=的全体解向量.2) 2W 不是n R 的子空间. 因2W 对加法不封闭.3) 3W 不是子空间. 因对数乘运算不封闭.(4)当0b ≠时, AX b =的所有解向量不能构成F 上的向量空间. 因n 维零向量不是 AX b =的解向量. 当0b =时,0AX =的所有解向量能构成F 上的向量空间.(5)1) 维数是2. 因(2,3,1),(1,4,2)−线性无关, 而(5,2,4)2(2,3,1)(1,4,2)−=−+. 2) 维数是2. 因易证21,1x x −−线性无关, 但22(1)(1)()0x x x x −+−+−=.(6) 解 令ij E 表示i 行j 列位置元素是1其余是零的m n ⨯矩阵. 那么易证ij E 这m n ⨯个矩阵是线性无关的. 它们作成()m n M R ⨯的一个基, 故()m n M R ⨯的维数是m n ⨯.(7) ,,,1,2,3,,,,ii ij ji E E E i j n i j +=≠ 为全体n 阶对称矩阵构成的向量空间的一个基,其中共有12(1)n n ++++−个向量, 故此向量空间的维数(1)2n n +. (8) 解 由121112(,,,)(,,,)n n n n A ααααααααα−+++=. 得1||1(1)n A +=+−. 当n 为偶数时, ||0A =, 故12231,,n αααααα+++线性相关, 它不构成基. 当n 为奇数时, ||0,A ≠ 故12231,,n αααααα+++线性无关, 它构成一个基.(9) 解 在基21,,x x 之下有2122(1,2,(1)(2))(1,,)111001x x x x x x −−⎛⎫ ⎪−+−+= ⎪ ⎪⎝⎭. 因上式右方的3阶矩阵为可逆, 所以1,2,(1)(2)x x x x −+−+线性无关, 它是2[]F x 的一个基.(10) 解 取向量34(0,0,1,0),(0,0,0,1)εε==,由于1100010010,12100001−=−≠ 因此1234,,,ααεε线性无关, 所以向量组是4R 的一个基.(11) 解 由123123123123(,,)(,,),(,,)(,,)A B αααεεεβββεεε==推出 1123123(,,)(,,)A B βββααα−=因此所求过渡矩阵为10113201001100021112210211111122A B −⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=−= ⎪ ⎪ ⎪ ⎪ ⎪−− ⎪⎝⎭⎝⎭ ⎪−− ⎪⎝⎭. (12) 解 取4F 的标准基1234,,,εεεε. 由1234,,,εεεε到1234,,,αααα的过渡矩阵为1111111111111111A ⎛⎫ ⎪−− ⎪= ⎪−− ⎪ ⎪−−⎝⎭于是(1,2,1,1)ξ=关于基1234,,,αααα的坐标为1541124114114A −⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪− ⎪ ⎪ ⎪⎝⎭ ⎪−⎪ ⎝⎭. (13) 解 由于1W ,2W 皆过原点, 它们必相交, 因此或重合, 或不重合. 若1W 与2W 重合, 则 121121,W W W W W W =+=. 若1W 与2W 不重合, 则12W W 为一条过原点的直线, 而12W W V +=, 但12W W +不能是直和.(14) 解 设112233112212k k k t t W W γαααββ=++=+∈为交空间的任意向量.由 11223311220,k k k t t αααββ++−−=得齐次线性方程组123121212123121231232025206702530k k k t t k k t t k k k t t k k k t t +−−+=⎧⎪+−−=⎪⎨−++++=⎪⎪−++−−=⎩ 由行初等变换知方程组的系数矩阵的秩为4, 解空间的维数为1, 且求得方程组的一般解为122232424896,,,7777k t k t k t k t =−=−=−=−因此维12()1W W =, 维12()4W W +=. 取27t =,令1267ξββ=−+便有12()W W L ξ=, 另外显然121231(,,,)W W L αααβ+=.(15) 证明 设数域F 上两个有限维向量空间V 与W 的维数均为n , 因,n n V F W F ≅≅所以V W ≅.反之, 若V W ≅, 设dim 0,V n => 且f 是V 到W 的同构映射. 取V 的一个基 12,,,n ααα, 易证12(),(),,()n f f f ααα是W 的一个基, 故dim W n =.(16) V 与W 不同构. 因dim 3,dim 2V W ==, V 与W 的维数不相等.(17) 证明 任取V α∈, 若1122n n a a a αααα=+++, 那么12123211()()()n n n n n n n a a a a a a a a αβββαβ−−=−−−+−−−+−+因此12n V W W W =+++, 并且V 中向量依诸i W 表示唯一, 故12n V W W W =⊕⊕⊕四 计算题(1) 设由123(1,2,2,2),(1,3,0,1),(2,1,2,5)ααα=−=−−=−−, 生成4R 的子空间.W 试从向量组1234(3,1,0,3),(2,1,0,3),(3,4,2,16),(1,7,4,15)ββββ==−=−−=−中找出W 的生成元.(1) 解 以123,,ααα及1234,,,ββββ为列做成矩阵A , 在对A 的行施行初等变换.11232312311147202002421533161510011/20201001/21100111/2100000400A B −⎛⎫⎪−−−⎪=→⎪−− ⎪⎪−−−⎝⎭⎛⎫⎪−− ⎪= ⎪ ⎪ ⎪−⎝⎭由于行初等变换不改变列向量间的线性关系. 由矩阵B 知,113323412,,2βααβααβαα=+=−+=+从而134(,,).L W βββ⊆但由B 还知134,,βββ线性无关, 故134,,βββ为W 的一组生成元.(2) 在向量空间4R 中, 求由向量123(2,1,3,1),(4,5,3,1),(1,1,3,1)ααα=−=−=−−4(1,5,3,1)α=−生成的子空间的一个基和维数.(2) 解 对下述矩阵施行行的初等变换241106391515151533330126181111042600001302.00000213−−−−⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪−−−−− ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎛⎫⎪⎪⎪ ⎪⎪⎝⎭此变换保持列向量间的线性关系, 由右方矩阵知13,αα是一个极大无关组, 因此1234(,,,)L αααα的维数实是2,而13,αα是它的一个基.(3) 在4R 中求出向量组12345,,,,ααααα的一个极大无关组,然后用它表出剩余的向量.这里123(2,1,3,1),(1,2,0,1),(1,1,3,0),ααα===−−45(1,1,1,1),(0,12,12,5)αα==−.(3) 解 对下述矩阵施行行的初等变换211101010********011230311230311211015110150001300013101121010500026000001101511002−−−⎛⎫⎛⎫⎪ ⎪−− ⎪ ⎪→→ ⎪ ⎪−−−− ⎪ ⎪⎪ ⎪⎝⎭⎝⎭−−⎛⎫⎛⎫ ⎪⎪−−− ⎪ ⎪→ ⎪ ⎪−− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.由右方矩阵知234,,ααα是一个极大无关组, 并且有 1235234,253ααααααα=−=++.(4) 求3()M F 中与矩阵A 可交换的矩阵构成的子空间的维数及一个基, 其中 100010.312A ⎛⎫⎪= ⎪ ⎪⎝⎭(4) 解 设这个子空间为,W 由于A I B =+, 这里 000000311B ⎛⎫ ⎪= ⎪ ⎪⎝⎭因此与A 可交换的3阶方阵, 就是与B 可交换的3阶方阵, 从而 3{()|}W X M F BX XB =∈=.任取,()ij C W C c ∈=. 由BC CB =, 可得1323112131330,33,c c c c c c ==++=122232333c c c c ++=,于是C W ∈当且仅当C 的元素为齐次线性方程组2111313322123233333c c c c c c c c =−−+⎧⎨=−−+⎩的解. 于是我们得到如下矩阵100010000300,030,100000000100⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 000000010,310010001⎛⎫⎛⎫ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭它们构成W 的一个基, 故W 的维数是5.(5) 求实数域上关于矩阵A 的全体实系数多项式构成的向量空间V 的一个基与维数.其中2100100,.200A ωωω⎛⎫−+ ⎪== ⎪ ⎪⎝⎭(5) 解 因31ω=, 所以22311,11A A I ωω⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭易证2,,I A A 线性无关. 于是任何多项式()(()[])f A f x R x ∈皆可由2,,I A A 线性表示, 故2,,I A A 为的一个基, dim 3V =.(6) 设1234(,,,)x x x x 为向量ξ关于基12(1,0,0,1),(0,2,1,0),αα==3(0,0,1,1),α=4(0,0,2,1)α=的坐标; 1234(,,,)y y y y 是ξ关于基1234,,,ββββ的坐标, 其中11y x =,221332442,,.y x x y x x y x x =−=−=−求基1234,,,ββββ.(6) 解 因1122123412343344(,,,)(,,,)x y x y x y x y ξααααββββ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且111222333444100011000110011y x x y x x P y x x y x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪− ⎪ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪− ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭⎝⎭则1122123412343344(,,,)(,,,)x x x x P x x x x ααααββββ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是 12341234(,,,)(,,,)P ααααββββ=, 即 112341234(,,,)(,,,)P ββββαααα−=故所求的基为1234(1,2,4,3),(0,2,4,2),(0,0,1,1),(0,0,2,1)ββββ====.(7) 设12,,,n ααα是n 维向量空间V 的一个基,11212,,,n αααααα++++也是V 的一个基,又若向量ξ关于前一个基的坐标为(,1,,2,1)n n −, 求ξ关于后一个基的坐标.(7) 解 基12,,,n ααα到后一个基的过渡矩阵为111101110011001P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. 那么12111001101101120001211000111n n n y n n y P y −−⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪−−− ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪⎪ ⎪− ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故ξ关于后一个基的坐标为(1,1,,1).(8) 已知3R 的一个基为123(1,1,0),(0,0,2),(0,3,2)ααα===. 求向量(5,8,2)ξ=−关于这个基的坐标.(8) 解 设112233x x x ξααα=++, 的方程组 11323538222x x x x x =⎧⎪+=⎨⎪+=−⎩解得1235,2,1x x x ==−=. 故ξ关于基123,,ααα的坐标(5,2,1)−.(9) 已知1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3)αααα=−===是4R 的一个基.求4R 的一个非零向量ξ, 使它关于这个基的坐标与关于标准基的坐标相同.(9) 解 由标准基1234,,,εεεε到基1234,,,αααα的过渡矩阵为 2056133611211013P ⎛⎫ ⎪⎪= ⎪− ⎪ ⎪⎝⎭设ξ关于两个基的坐标为1234(,,,)x x x x , 则11223344,x x x x P x x x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即得齐次线性方程组134133412341345602360020x x x x x x x x x x x x x x ++=⎧⎪+++=⎪⎨−+++=⎪⎪++=⎩解得1234x x x x ===−, 令40,x k k R =≠∈, 则(,,,)k k k k ξ=−−−即为所求.(10)已知4R 的一个基123(2,1,1,1),(0,3,1,0),(5,3,2,1)ααα=−==4(6,6,1,3)α=.求1234(,,,)x x x x ξ=关于基1234,,,αααα的坐标.(10) 解 由标准基到所给基的过渡矩阵为 2056133611211013P ⎛⎫ ⎪⎪= ⎪− ⎪ ⎪⎝⎭那么11221123412343344(,,,)(,,,)x x x x P x x x x ξεεεεαααα−⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故ξ关于基1234,,,αααα的坐标为1234(,,,)y y y y , 这里11122213334444/91/3111/91/274/91/323/271/3002/37/271/91/326/27y x x y x x P y x x y x x −−−⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−− ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎝⎭⎝⎭.五 证明题(1) 设12,W W 为向量空间()V F 的两个子空间. 1)证明: 12W W 是V 的子空间.2)12W W 是否构成V 的子空间, 说明理由. (1) 证明1) 显然120W W ∈, 即12W W ≠Φ, 任取1212,,W W k F αα∈∈, 易知1212112,W W k W W ααα+∈∈, 故12W W 是V 的子空间.2) 不一定. 当12W W ⊆或21W W ⊆时, 12W W 是V 的子空间. 但当1W 与2W 互不包含时,12W W 不是V 的子空间. 因为总存在1112,W W αα∈∉及2221,W W αα∈∉使1212,W W αα∈, 而1212W W αα+∉, 因为这时121122,W W αααα+∉+∉, 否则与选取矛盾.(2) 设12,W W 为向量空间V 的两个子空间. 证明: 12W W +是V 的即含1W 又含2W 的最小子空间.(2) 证明 易知12121122{|,}W W W W αααα+=+∈∈为V 的子空间, 且112212,.W W W W W W ⊆+⊆+设W 为V 的包含1W 与2W 的任一子空间, 对任意1122,W W ξξ∈∈,有12W ξξ+∈, 即12W W W +⊆, 故12W W +是V 的即含1W 又含2W 的最小子空间..(3) 设12,W W 为向量空间()V F 的两个子空间. ,αβ是V 的两个向量, 其中2W α∈, 但1W α∉, 又2W β∉. 证明: 1)对任意2,k F k W βα∈+∉;2)至多有一个,k F ∈使得1k W βα+∈. (3) 证明1) 任意,k F ∈若2k W βα+∈, 则2()k k W ββαα=+−∈矛盾, 故1)成立.2) 当1W β∈时, 仅当0k =时, 有1k W βα+∈; 当1W β∉时, 若存在1212,,k k F k k ∈≠使得111221,k W k W αβααβα=+∈=+∈, 则12121()k k W ααα−=−∈, 因此1W α∈, 矛盾, 故2)成立.(4) 设12,W W 为向量空间V 的两个子空间. 证明 若1212W W W W +=, 则12W W ⊆或21W W ⊆.(4) 证明 因12W W 含1W 与2W 中所有向量, 12W W +含一切形如121122(,)W W αααα+∈∈的向量, 因为1212W W W W +=, 所以121W αα+∈或122W αα+∈. 若121W αα+∈, 令12ααβ+=, 则21αβα=−, 故21W W ⊆; 若122W αα+∈, 令12ααγ+=, 则12αγα=−, 故12W W ⊆.(5) 证明: n 维向量空间V 中, 任意n 个线性无关的向量都可作为V 的一个基.(5) 证明 设12,,,n ααα是V 中线性无关的向量, 取V 的单位向量12,,,n εεε, 则12(,,,)n V L εεε=, 且12,,,n ααα中每一个可由12,,,n εεε线性表示. 由替换定理知12,,,n ααα与12,,,n εεε等价, 所以V 中每一个向量可由12,,,n ααα线性表示, 又 12,,,n ααα线性无关, 故12,,,n ααα可作为V 的一个基.(6) 设V 为n 维向量空间, V 中有m 组线性无关的向量, 每组含t 个向量, 证明: V 中存在n t −个向量与其中任一组组成V 的一个基.(6) 证明 设V 中m 组线性无关的向量分别为12,,,(1,2,,),i i it i m t n ααα=≤. 令12(,,,)i i i it V L ααα=, 则dim i V t n =<. 因存在1,(1,2,,)i V i m ξ∉=, 使121,,,,i i it αααξ线性无关, 若1t n +<,令/121(,,,,)i i i it V L αααξ=, 则/i V 也为V 的非平凡子空间, 同理存在/2,1,2,,i V V i m ξ=−=, 而且1212,,,,,i i it αααξξ线性无关, 如此继续下去, 可找到12,,,n t ξξξ−使得12,,,,i i it ααα12,,,n t ξξξ−线性无关, 故对每个i ,它们都是V 的一个基.(7) 设n 维向量空间V 的向量组12,,,n ααα的秩为r , 使得11220n n k k k ααα+++=全体n 维向量12(,,,)n k k k 的集合为W . 证明W 是n F 的n r −维子空间.(7) 证明 显然12dim (,,,)n L r ααα=, 今设每个i α在12(,,,)n L ααα的某个基下的坐标为12[]i i i ir a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,1,2,,i n =那么由11220n n k k k ααα+++=可得1122[][][]0n n k k k ααα+++=.它决定了一个含n 个未知量12,,,,n k k k r 个方程的齐次线性方程组, 其系数矩阵12([],[],,[])n ααα的秩为r , 故解空间即W 的维数为n r −.(8) 设12,,,n a a a 是数域F 中n 个不同的数, 且12()()()()n f x x a x a x a =−−−. 证明多(8) 证明 因1dim []n F x n −=, 所以只需证12,,n f f f 线性无关. 设有12,,,n k k k F ∈,使1220n n k f k f k f +++= (*)由()0,,()0j i i i f a i j f a =≠≠, 因此将i a 带入(*)得()0i i i k f a =, 从而0,(1,2,)i k i n ==故12,,n f f f 线性无关, 为1[]n F x −的一个基.(9) 设W 是n R 的一个非零子空间, 而对于W 的每一个向量12(,,,)n a a a 来说, 或者120n a a a ====, 或者每一个i a 都不等于零. 证明: dim 1.W =(9) 证明 由W 非零, 我们总可以取12(,,,)n b b b W β=∈, 且0β≠, 那么每个0i b ≠且β线性无关. 今对任意12(,,,)n a a a W α=∈, 若0α=当然α可由β线性表示; 若0α≠而11a W b αβ−∈, 由于其第一个分量为0, 由题设知11ab αβ=. 故β可作为W 的一个基,且dim 1.W =(10) 证明: 22,,1x x x x x +−+是2[]F x 的一个基, 并求2273x x ++关于这个基的坐标.(10) 证明: 2dim []3,F x =22,,1x x x x x +−+由基21,,x x 表示的演化矩阵为 001111110A ⎛⎫ ⎪=− ⎪ ⎪⎝⎭但A 可逆, 故22,,1x x x x x +−+是2[]F x 的一个基.2273x x ++关于这个基的坐标(3,1,3)−,因为13371.23A −⎛⎫⎛⎫⎪ ⎪=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(11) 若123,,W W W 都是V 的子空间, 求证:11231213(())()()W W W W W W W W +=+.(11) 证明: 任意1123(())W W W W α∈+, 则1W α∈, 且123()W W W α∈+, 因此1311233,,W W W ααααα=+∈∈, 但1W α∈, 知313W W α∈, 故 1213()()W W W W α∈+.反之, 任意1213()()W W W W β∈+, 12112213,,W W W W βββββ=+∈∈, 则1W β∈, 且123()W W W β∈+, 故1123(())W W W W β∈+.(12) 设12,,,s W W W 是n 维向量空间V 的子空间. 如果12s W W W +++为直和.证明:{0},,,1,2,,ij W W i j i j s =≠=.(12) 证明: 由12s W W W +++为直和, 有(){0},,,1,2,,ij i jW W i j i j s ≠=≠=∑, 而(){0},,,1,2,,i j ij i jW W W W i j i j s ≠⊆=≠=∑. 故{0},,,1,2,,i j W W i j i j s =≠=.(13) 设12,W W 分别是齐次线性方程组120n x x x +++=与12n x x x ===的解空间.证明: 12n F W W =+.(13) 证明 因120n x x x +++=的解空间的维数为1n −, 且一个基为12(1,1,0,,0),(1,0,1,0,,0),αα=−=−1,(1,0,,0,1)n α−=−, 又12n x x x ===即方程组12231000n n x x x x x x −−=⎧⎪−=⎪⎨⎪⎪−=⎩的系数矩阵的秩为1n −, 其解空间的维数为1, 且一个基为(1,1,,1)β=, 但121,,,n αααβ−线性无关, 它是n F 的一个基, 且12dim dim dim n F W W =+, 故12n F W W =+.(14) 证明 每一个n 维向量空间都可以表成n 个一维子空间的直和. (14) 证明: 设12,,,n ααα是n 维向量空间V 的一个基, 那么12(),(),,()n L L L ααα都是一维子空间.显然 12()()()n V L L L ααα=+++于是由V 中向量在此基下表示唯一, 立得结论.(15) 证明n 维向量空间V 的任意一个真子空间都是若干个1n −维子空间的交.(15) 证明: 设W 是V 的任一子空间, 且设12,,,s ααα为W 的一个基, 将其扩充为V 的一个基12,,,s ααα1,,,s n αα+, 那么令12111(,,,,,,,,,)i s s s i s i n W L ααααααα++−++=于是这些,1,2,i W i n s =−, 均为1n −维子空间, 且12n s W W W W −=.(16)设:f V W →是数域F 上向量空间V 到W 的一个同构映射, 1V 是V 的一个子空间.证明: 1()f V 是W 的一个子空间.(16) 证明: 因1(0)()f f V ∈, 所以1()f V 非空. 对任意//1,()f V αβ∈, 由于f 是1V 到1()f V 的满射, 因此存在1,V αβ∈, 使//(),()f f ααββ==, 对任意,a b F ∈, 有 1a b V αβ+∈, 于是//1()()()()f a b af bf a b f V αβαβαβ+=+=+∈, 故1()f V 是W的一个子空间.(17) 证明: 向量空间[]F x 可以与它的一个真子空间同构.(17) 证明: 记数域F 上所有常数项为零的多项式构成的向量空间V , 显然[]V f x ⊂, 且V 中有形式()xf x , 这里()f x ∈[]F x .定义:[];F x V σ()()f x xf x →, 显然σ是[]F x 到V 的双射, 且对于任意(),()f x g x ∈[],,,F x a b F ∈(()())(()())()()(())(())af x bg x x af x bg x axf x bxg x a f x b g x σσσ+=+=+=+故σ是[]F x 到V 的同构映射. 从而V 是[]F x 的一个真子空间, []F x V ≅.(18) 设,αβ是复数, {()[]|()0},{()[]|()0}V f x R x f W g x R x g αβ=∈==∈=,证明: ,V W 是R 上的向量空间, 并且V W ≅.(18) 证明: 易证,V W 是R 上的向量空间,设V 中次数最低的多项式为()h x , 则对任意()f x V ∈, 都有()[]s x R x ∈, 使()()()f x h x s x =, 因此{()()|()[]}V h x s x s x R x =∈同理, 设W 中次数最低的多项式为()k x , 则{()()|()[]}W k x s x s x R x =∈. 定义:()()()()h x s x k x s x σ易证σ是V 到W 的同构映射, 故V W ≅.(19) 证明 实数域R 作为它自身上的向量空间与全体正实数集R +对加法: a b ab ⊕=, 与纯量乘法: kk a a =构成R 上的向量空间同构.(19) 证明: 定义:(1)x xa a σ>显然σ是R 到R +的映射.1),x y R ∈, 若x y ≠, 则x y a a ≠, 所以σ为单射;任意b R +∈, 因log ,log ba b a b a R =∈, 则(log )ba b σ=, 即σ为满射.从而σ为双射.2) 任,,()()()x y x y x y x y R x y a a a a a x y σσσ+∈+===⊕=⊕. 3) 任,()()()kx x k x k R kx a a k a k x σσ∈====,于是σ是R 到R +的同构映射. 故R R +≅.(20) 设V 是数域F 上无限序列12(,,)a a 的集合, 其中i a F ∈, 并且只有有限i a 不是零.V 的加法及F 中的数与V 中元的纯量乘法同n F , 则V 构成F 上的向量空间. 证明: V 与[]F x 同构.(20) 证明: 取[]F x 的一个基21,,,x x , 则[]F x 中任一多项式01()n n f x a a x a x =+++关于这个基有唯一确定的坐标01(,,,,0,)n a a a V ∈.定义:()f x σ01(,,,,0,)n a a a则σ是[]F x 到V 的一个同构映射, 故[]F x V ≅.线性变换一 判断题(1) 在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=−, 则σ是3R 的一个线性变换. ( ). (2) 在向量空间[]n R x 中, 2(())()f x f x σ=, 则σ是[]n R x 的一个线性变换. ( ). (3) 取定()n A M F ∈, 对任意的n 阶矩阵()n X M F ∈, 定义()X AX XA σ=−, 则σ是()n M F 的一个线性变换. ( ).(4) σ是向量空间V 的线性变换, 向量组12,,,m ααα线性相关, 那么12(),(),,()m σασασα也线性相关. ( ).(5) 在向量空间[]n R x 中, 则微商'(())()f x f x σ=是一个线性变换. ( ). (6) 在向量空间3R 中, 已知线性变换1231223312313(,,)(,,),(,,)(,0,).x x x x x x x x x x x x x στ=++=则12321233(2)(,,)(,,)x x x x x x x x στ−=−+−. ( ).(7) 对向量空间V 的任意线性变换σ, 有线性变换τ, 使(στιι=是单位变换). ( ). (8) 向量空间2R 的两个线性变换σ,τ为12121(,)(,)x x x x x σ=−;12122(,)(,)x x x x x τ=−则212212()(,)(,).x x x x x στσ−=−+(9) 在实数域F 上的n 维向量空间V 中取定一组基后, V 的全体线性变换和F 上全体n阶矩阵之间就建立了一个一一对应. ( ).(10)在取定基后, V 的每个可逆线性变换对应于可逆矩阵, 但逆变换未必对应于逆矩阵.( ).(11) 线性变换在不同基下对应的矩阵是相似的. ( ). (12) 相似矩阵不一定是同一线性变换在不同基下的矩阵. ( ). (13) 域F 上的向量空间V 及其零子空间, 对V 的每个线性变换来说, 都是不变子空间.( ).(14) 除零变换外, 还存在向量空间V 的线性变换, 能使V 的任意子空间对该变换不变.( )(15) 向量空间V 的线性变换1σ的不变子空间W , 也是V 的另一线性变换2σ的不变子空间, 这里21σσ≠. ( ).(16) 向量空间V 的线性变换σ的象与核都是σ的不变子空间. ( ). (17) 线性变换σ的特征向量之和, 仍为σ的特征向量. ( ). (18) 属于线性变换σ同一特征根0λ的特征向量的线性组合仍是σ的特征向量. ( ). (19) 数域F 中任意数λ都是F 上的向量空间V 的零变换的特征根. ( ). (20) σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ).参考答案:(1)正确 (2)错误 (3)正确 (4)正确 (5)正确 (6)正确 (7)错误 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)错误 (16)正确 (17)错误 (18)正确 (19)错误 (20)错误二 填空题(1) 设V 和W 是数域F 上的向量空间, 而:V W σ→是一个线性映射, 那么σ是单射的充要条件是____________.(2) 设V 和W 是数域F 上的向量空间, 而:V W σ→是一个线性映射, 那么σ是满射的充要条件是____________.(3) σ是向量空间V 的线性变换, 若满足________________, 则称σ是可逆变换. (4) 向量空间V 的任意线性变换σ, 都有(0)_______,()______.σσα=−=(5)σ是n 维向量空间V 的一个位似变换: (),k σξξ=那么σ关于V 的__________基的矩阵是kI .(6) 在3V 的基123{,,}εεε下σ的矩阵是 111213212223313233a a a A a a a aa a ⎛⎫⎪= ⎪ ⎪⎝⎭那么σ关于基3121{,,2}εεεε+的矩阵是_____________.(7) 在3F 中的线性变换12312231(,,)(2,,)x x x x x x x x σ=−+, 那么σ关于基123(1,0,0),(0,1,0),(0,0,1)εεε===的矩阵是________________.(8)设12,σσ分别是向量空间2R 中绕原点逆时针旋转12,θθ角的线性变换, 那么21σσ关于基12(1,0),(0,1)αα==的矩阵是___________________.(9) 对于域F 上向量空间V 的数乘变换来说______________不变子空间. (10)2维平面上的旋转变换σ,_________非平凡的不变子空间.(11) 若线性变换σ与τ是_____________, 则τ的象与核都是σ的不变子空间. (12) 相似矩阵有_____的特征多项式.(13)0()0I A X λ−=的___________都是A 的属于0λ的特征向量. (14) A 与对角阵相似, ()[]f x F x ∈, 则()f A 必与某一______________. (15) 设V 是数域F 上的n 维向量空间, (),L V σσ∈的不同的特征根是12,,,t λλλ, 则σ可对角化的充要条件是_____________.(16) 设σ是实数域F 上的n 维向量空间V 的线性变换, 如果V 的任意一维子空间都是σ的不变子空间, 那么σ可以_____________.(17) 设σ是实数域F 上的n 维向量空间V 的线性变换, σ可对角化的充要条件是 1)σ的特征多项式的根都在F 内; 2)_______________________________;(18) 设()n A M F ∈, 如果A 的特征多项式在F 内有______________, 那么A 可对角化. (19) 设σ是实数域F 上的n 维向量空间V 的线性变换, λ是σ的一个特征根, 则dim ____V λλ的重数.(20) 矩阵327024005⎛⎫ ⎪⎪ ⎪⎝⎭的特征根是______________.答案(1)ker(){0}σ= (2)Im()W σ= (3)存在V 的线性变换τ, 使σττσι== (4)0,α−(5)任意 (6)131112112321222133313231222a a a a a a a a a a a a +⎛⎫⎪+ ⎪ ⎪+⎝⎭ (7)210011100−⎛⎫⎪ ⎪ ⎪⎝⎭(8)12121212cos()sin()sin()cos()θθθθθθθθ+−+⎛⎫⎪++⎝⎭ (9)每个子空间都是 (10)没有 (11)可交换的(12)相同 (13)非零解向量 (14)对角阵相似 (15)1dim i ti V n λ==∑ (16)对角化 (17)对于σ的特征多项式的每一个根λ, 特征子空间V λ的维数等于λ的重数 (18)n 个不同的 单根 (19)≤ (20)3, 2, 5三. 单选题:1.向量空间()n V F 的零变换θ的象及核的维数分别是( )。
习 题 七A 组1.填空题(1)向量组(1,1,0,1),(1,2,3,0),(2,3,3,1)--生成的向量空间的维数是 . 解 2.(2)设全体三阶上三角形矩阵构成的线性空间为V ,则它的维数是 . 解 6.(3)次数不超过2的多项式的全体构成线性空间[]2P x ,其中的元素2()1f x x x =++在基1,1,(1)(2)x x x ---下的坐标是 .解 T (3,4,1).(4)设1231010,1,1110⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα是向量空间3V 的一个基,则向量111⎛⎫ ⎪= ⎪ ⎪⎝⎭α在该基下的坐标是 .解 T111,,222⎛⎫⎪⎝⎭.(5)二维向量空间2R 中从基1211,01⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭αα到另一个基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵是 .解 2312⎛⎫⎪--⎝⎭.(6)三维向量空间中的线性变换(,,)(,,)T x y z x y x y z =+-在标准基1(1,0,0)=e ,2(0,1,0)=e ,3(0,0,1)=e 下对应的矩阵是 .解 110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭.2. 选择题(1)下列说法中正确的是 . (A )任何线性空间中一定含有零向量;(B )由r 个向量生成的子空间一定是r 维的;(C )次数为n 的全体多项式对于多项式的加法和数乘构成线性空间;(D )在n 维向量空间V 中,所有分量等于1的全体向量的集合构成V 的子空间. (2)下列说法中错误的是 .(A )若向量空间V 中任何向量都可以由向量组12,,,n ααα线性表示,则12,,,n ααα是V 的一个基;(B )若n 维向量空间V 中任何向量都可以由向量组12,,,n ααα线性表示,则12,,,n ααα是V 的一个基;(C )若1n -维向量空间V 中任何向量都可以由向量组12,,,n ααα线性表示,则12,,,n ααα不是V 的一个基;(D )n 维向量空间V 的任一个基必定含有n 个向量.(3) 下列3维向量的集合中, 是3R 的子空间. (A ){}123123123(,,)0;,,x x x x x x x x x ⋅⋅≤∈R ; (B ){}222123123123(,,)1;,,x x x x x x x x x ++=∈R ; (C ){}123123123(,,);,,x x x x x x x x x ==∈R ; (D ){}123123123(,,);,,x x x x x x x x x ≥≥∈R . (4)在2V 中,下列向量集合构成子空间的是 . (A )(0,0),(0,1),(1,0)组成的集合; (B )(0,0)组成的集合;(C )所有形如(,1)x 的向量组成的集合; (D )满足1x y +=的所有(,)x y 组成的集合. (5)2V 的下列变换 不是线性变换. (A )(,)(0,0)T x y =;(B )(,)(,)T x y ax by cx dy =++,,,,a b c d 是实数; (C )(,)(,1)T x y x y =+; (D )(,)(0,)T x y x y =-.解 (1)A ; (2)A ; (3)C ; (4)B ;(5)C . 3.验证:(1)主对角线上元素之和等于0的2阶矩阵的全体1S ;(2)2阶对称矩阵的全体2S ,对于矩阵的加法和乘数运算构成线性空间,并写出每个空间的一个基.解 (1)任取11,S S ∈∈A B ,,ac be d af b ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭A B ,其中,,,,,a b c d e f 表示任意实数,则对于任意的,k λ∈R ,有线性运算的封闭性成立:1ka bkc e k S kd fka b λλλλλ++⎛⎫+=∈⎪+--⎝⎭A B .1S 的一个基是100100,,010010⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. (2)任取22,S S ∈∈A B ,对于任意的,k λ∈R ,都满足运算成立:T T T 2()k k k S λλλ+=+=+∈A B A B A B .2S 的一个基是100001,,000110⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.4.验证:与向量T (0,1,0)不平行的全体3维数组向量,对于数组向量的加法和乘数运算不构成线性空间.证明 与向量T (0,1,0)不平行的全体3维数组向量的集合记作V ,T T (1,1,1),(1,0,1)V ==∈αβ,但T(0,1,0)V -=∉αβ,所以V 不是线性空间.5.设U 是线性空间V 的一个子空间,证明:若U 与V 的维数相等,则U =V . 证明 设12,,,r ααα是U 的一个基,因为U V ⊆,所以12,,,r V ∈ααα.对于任意的V ∈α,必定可被12,,,r ααα线性表示,否则与“U 与V 的维数相等”矛盾.由α的任意性知V U ⊆,从而U =V .6. 判断22⨯R的下列子集是否构成子空间,说明理由.(1) 110,,0a W a b c b c ⎧⎫⎛⎫⎪⎪=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ; (2) 100,,,00a b W a b c a b c c ⎧⎫⎛⎫⎪⎪=++=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R . 解 (1)不构成.由于1100000W ⎛⎫==∈ ⎪⎝⎭A B 但 1200000W ⎛⎫+=∉ ⎪⎝⎭A B ,即1W 对矩阵加法不封闭.(2) 构成.任取1122221200,0000a b a b W W c c ⎛⎫⎛⎫=∈=∈ ⎪⎪⎝⎭⎝⎭A B , 有1112220,0a b c a b c ++=++=,121212000a a b bc c ++⎛⎫+= ⎪+⎝⎭A B . 于是1212120a a b b c c +++++=,1212212000a a b bW c c ++⎛⎫+=∈ ⎪+⎝⎭A B . 对任意k ∈R ,111000ka kb k kc ⎛⎫= ⎪⎝⎭A ,1110ka kb kc ++=,所以2k W ∈A .2W 对矩阵加法和数乘运算封闭,所以2W 构成子空间.7. 判断22⨯R的下列子集是否构成子空间,说明理由.(1)由所有行列式为零的矩阵所组成的集合1W ; (2)由所有满足2=A A 的矩阵组成的集合2W . 解 (1) 不构成.取10,00⎛⎫=⎪⎝⎭A 0001⎛⎫= ⎪⎝⎭B ,1,W ∈A B ,但是10,1,01⎛⎫+=+= ⎪⎝⎭A B A B 因此1W +∉A B ,加法不封闭.(2) 不构成.取单位矩阵1001⎛⎫= ⎪⎝⎭E ,2=E E ,2W ∈E ,但2(2)42=≠E E E ,所以22W ∉E ,数乘不封闭.8. 在3R 中求向量T (2,7,6)=-α在基T T T123(2,0,1),(1,3,2),(2,1,1)=-==-ααα下的坐标. 解 设所求坐标为T123(,,)x x x ,则1232312322270362x x x x x x x x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭, 解得T T 123(,,)(1,2,1)x x x =-. 9.3R 中两个基为T T T 123(1,1,1),(1,0,1),(1,0,1)==-=ααα;T T T 123(1,2,1),(2,3,4),(3,4,5)===βββ,求由基123,,ααα到基123,,βββ的过渡矩阵. 解 设123123(,,)(,,)=P βββααα,则1123123(,,)(,,)-=P αααβββ1111123234100234011111145100-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.10.在3R 中,取两个基T T T 123(1,0,0),(0,1,0),(0,0,1)===e e e ;T T T 123(1,0,0),(1,1,0),(1,1,1)===ααα,(1)求由基123,,e e e 到基123,,ααα的过渡矩阵;(2)已知由基123,,ααα到基123,,βββ的过渡矩阵为110011001-⎛⎫⎪=- ⎪ ⎪⎝⎭A ,求123,,βββ; (3)已知α在基123,,βββ下的坐标为T (1,2,3),求α在基123,,ααα下的坐标.解 (1)因为123123111(,,)(,,)011001⎛⎫⎪= ⎪ ⎪⎝⎭e e e ααα,所以基123,,e e e 到基123,,ααα的过渡矩阵为111011001⎛⎫⎪= ⎪ ⎪⎝⎭P .(2)由于123123*********(,,)(,,)011011010001001001-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A βββααα,故 T T T 123(1,0,0),(0,1,0),(0,0,1)===βββ.(3)设α在基123,,ααα下的坐标为T 123(,,)x x x ,则有112323(,,)x x x ⎛⎫⎪= ⎪ ⎪⎝⎭αααα,又12312311(,,)2(,,)233⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A αβββααα,从而123111011201121300133x x x --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪==-=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A . 11.在3R 中取两个基T T 11T T 22T T33T T 44(1,0,0,0),(2,1,1,1),(0,1,0,0),(0,3,1,0),(0,0,1,0),(5,3,2,1),(0,0,0,1),(6,6,1,3).⎧⎧==-⎪⎪==⎪⎪⎨⎨==⎪⎪⎪⎪==⎩⎩e e e e αααα (1)求前一个基到后一个基的过渡矩阵;(2)求向量T 1234(,,,)x x x x 在后一个基下的坐标; (3)求在两个基下有相同坐标的向量.解 (1) 因为123412342561336(,,,)(,,,)11211013⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭e e e e αααα,所以前一个基到后一个基的过渡矩阵为2056133611211013⎛⎫ ⎪⎪= ⎪- ⎪ ⎪⎝⎭A . (2) 设向量T 1234(,,,)x x x x 在后一个基下的坐标为T1234(,,,)y y y y ,则1112221234333444(,,,)x y y x y y x y y x y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A αααα,所以,11112221333444256133611211013y x x y x x y x x y x x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A 123412927331129231900182773926x x x x --⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪= ⎪⎪- ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭. (3) 设向量T 1234(,,,)x x x x =α在两个基下有相同的坐标,则112212343344(,,,)x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭e e e e E α,112212343344(,,,)x x x xx x x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A ααααα,所以 1234()x x x x ⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪⎝⎭A E 0,解得T (1,1,1,1),k k =-∈R α. 12.说明xOy 平面上变换x x T y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A 的几何意义,其中(1) 1001-⎛⎫=⎪⎝⎭A ; (2) 0001⎛⎫= ⎪⎝⎭A ;(3) 0110⎛⎫=⎪⎝⎭A ; (4) 0110⎛⎫= ⎪-⎝⎭A .解 (1)1001x x x x T y y y y --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A ,关于y 轴对称;(2)00001x x x T y y y y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A ,投影到y 轴;(3)0110x x x y T y y y x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A ,关于直线y x =对称;(4)0110x x x y T y y y x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A ,顺时针旋转90.13.n 阶对称矩阵的全体V 对于矩阵的线性运算构成一个(1)2n n +维线性空间.给定n 阶矩阵P ,以A 表示V 中的任一元素,变换T ()T =A P AP称为合同变换.证明合同变换T 是V 中的线性变换.证明 设,V ∈A B ,k ∈R ,则T T ,==A A B B ,所以T ()+=+A B A B ,T ()k k =A A .从而+A B 与k A 是对称矩阵.又因为T T T ()()()()T T T +=+=+=+A B P A B P P AP P BP A B ,T T ()()()T k k k kT ===A P A P P AP A ,所以T 是V 中的线性变换.14.设3R 中123,,ααα是一个基,且线性变换T 在此基下的矩阵为460350361⎛⎫⎪=-- ⎪ ⎪--⎝⎭A ,(1)证明123312,,2-++-+αααααα也是3R 的一个基; (2)求线性变换T 在此基下的矩阵.证明 (1)令112323312,,2=-++==-+βαααβαβαα,可解得1123,=--αβββ 212322=--αβββ, 32=αβ,这说明了123,,ααα和123,,βββ可以相互线性表示,从而它们等价,所以123,,βββ是3R 的一个基.(2)设线性变换T 在基123,,βββ下的矩阵是B ,并设从基123,,ααα到基123,,βββ的过渡矩阵是P ,则1-=B P AP ,由条件知102101110--⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,得1120121110-⎛⎫⎪=-- ⎪ ⎪--⎝⎭P ,从而 1200010001--⎛⎫⎪== ⎪ ⎪⎝⎭B P AP .15.函数集合{}23210210(),,xV a x a x a e a a a ==++∈R α对于函数的线性运算构成三维线性空间.在3V 中取一个基2123,,x x x x e xe e ===ααα,求微分运算D 在这个基下的矩阵. 解 因为21123()220x x D x e xe =+=++αααα, 2123()0x x D e xe =+=++αααα,3123()00x D e ==++αααα,所以微分运算D 在这个基下的矩阵为100210011⎛⎫ ⎪⎪ ⎪⎝⎭.16.二阶对称矩阵的全体12312323,,x x V x x x x x ⎧⎫⎛⎫⎪⎪==∈⎨⎬⎪⎝⎭⎪⎪⎩⎭R A 对于矩阵的线性运算构成三维线性空间.在3V 中取一个基123100100,,001001⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A A A ,在3V 中定义合同变换1011()1101T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A A ,求T 在基123,,A A A 下的矩阵.解 因为11123101110101111()110111000111T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====++ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A A A A A ,2223101110011101()2110111100112T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====+ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A A A A ,333101110001100()110111010101T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A A A ,123123100((),(),())(,,)110121T T T ⎛⎫ ⎪= ⎪ ⎪⎝⎭A A A A A A ,所以T 在基123,,A A A 下的矩阵为100110121⎛⎫⎪⎪ ⎪⎝⎭.17.设A 是一个正定矩阵,向量1212(,,,),(,,,)n n x x x y y y ==αβ.在nR 中定义内积 [],αβ为[]T ,=A αβαβ.证明在这个定义之下,n R 是一个Euclid 空间.证明 按定义证明满足以下四条性质即可. (1)对称性 [][]T T T T T T ,(),=====A A A A αβαβαββαβαβα.(2)线性加性 [][][]TT T ,(),,+=+=+=+A A A αβγαβγαγβγαγβγ.(3)线性齐性 [][]T T ,()(),k k k k ===A A αβαβαβαβ.(4)非负性 由于A 是正定矩阵,所以[]T ,=A αααα是个正定二次型,从而[],0≥αα,当且仅当=0α时[],0=αα.18.设V 是一个n 维Euclid 空间,≠0α是V 中一固定向量,证明:[]{}1,0,V V ==∈x x αx 是V的一个子空间.证明 因为1V ∈0,所以1V 非空.再证1V 对两种运算封闭.任给121,V ∈x x ,即[][]12,0,,0==x αx α,根据V 的线性加性有[][][]1212,,,+=+=x x αx αx α000+=,从而可知121V +∈x x .另一方面,由[][]11,,0k k ==x αx α可知,11k V ∈x .此即证得[]{}1,0,V V ==∈x x αx 是V 的一个子空间.B 组1.求二阶矩阵构成的线性空间22⨯R中元素0123⎛⎫= ⎪-⎝⎭A 在基10111⎛⎫= ⎪⎝⎭G ,21011⎛⎫= ⎪⎝⎭G ,31101⎛⎫= ⎪⎝⎭G ,41110⎛⎫= ⎪⎝⎭G 下的坐标.解 设11223344k k k k =+++A G G G G ,则234134124123 0,1, 2, 3,k k k k k k k k k k k k ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 解得12340,1,2,3k k k k ==-=-=,所求坐标为T (0,1,2,3)--. 2.在二阶矩阵构成的线性空间22⨯R 中,(1)求基123410010000,,,00001001⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭E E E E到基123421035366,,,11102113⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭F F F F的过渡矩阵;(2)分别求向量11122122a a a a ⎛⎫=⎪⎝⎭M 在基1234,,,E E E E 和基1234,,,F F F F 下的坐标; (3)求一个非零向量A ,使得A 在这两个基下的坐标相等. 解 (1)因为112342=+-+F E E E E , 21234030=+++F E E E E , 31234532=+++F E E E E , 41234663=+++F E E E E ,即1234123420561336(,,,)(,,,)11211013⎛⎫ ⎪⎪= ⎪- ⎪ ⎪⎝⎭F F F F E E E E , 所以,基1234,,,E E E E 到基1234,,,F F F F 的过渡矩阵为2056133611211013⎛⎫ ⎪⎪= ⎪- ⎪ ⎪⎝⎭P . (2)显然11121111222132242122a a a a a a a a ⎛⎫==+++⎪⎝⎭M E E E E ,得到M 在基1234,,,E E E E 下的坐标为T 11122122(,,,)a a a a .设M 在基1234,,,F F F F 下的坐标为T 1234(,,,)y y y y ,则111212342122(,,,)a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M E E E E 1122123412343344(,,,)(,,,)y y y y y y y y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭F F F F E E E E P , 得111112121213212142222411119391412327932712003371126279327y a a y a a y a a y a a -⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪-- ⎪⎝⎭P 1112212211122122112211122122411193914123279327123371126279327a a a a a a a a a a a a a a ⎛⎫+-- ⎪ ⎪ ⎪+-- ⎪= ⎪ ⎪- ⎪ ⎪ ⎪--++ ⎪⎝⎭.(3)解方程111221221111122122122111222211122122411193914123279327123371126279327a a a a a a a a a a a a a a a a a a ⎛⎫+-- ⎪ ⎪⎛⎫⎪+-- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎪ ⎪--++ ⎪⎝⎭,得11122122a a a a ===-,所以11,011k k ⎛⎫=≠ ⎪-⎝⎭A .3. 设T 是四维线性空间V 的线性变换,T 在V 的基1234,,,αααα下的矩阵为1222265200120026----⎛⎫ ⎪⎪= ⎪-- ⎪ ⎪⎝⎭A 求T 在V 的基11212323434,,,==-+=-+=-+βαβααβααβαα下的矩阵.解 12341234(,,,)(,,,)=P ββββαααα,其中1100011000110001-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪⎝⎭P , 所求矩阵11300240000130024-⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭B P AP . 4. 设12,,,n ααα是n R 的一个基.(1) 证明11212312,,,,n ++++++ααααααααα也是n R 的一个基;(2) 求由基12,,,n ααα到基11212312,,,,n ++++++ααααααααα的过渡矩阵;(3) 求向量α在基12,,,n ααα下的坐标T 12(,,,)n x x x 和在基1α,12+αα,123++ααα,,12n +++ααα下的坐标T 12(,,,)n y y y 间的变换公式.解 (1) 因为()()1121231212111011,,,,,,,001n n ⎛⎫⎪⎪++++++= ⎪⎪⎝⎭αααααααααααα,所以111011001⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P ,10=≠P ,P 可逆,从而向量组1α,12+αα,123++ααα,,12n +++ααα与向量组12,,,n ααα等价,而12,,,n ααα是n R 的一个基,所以1α,12+αα,123++ααα,,12n +++ααα也是n R 的一个基.(2) 由基12,,,n ααα到基1α,12+αα,123++ααα,,12n +++ααα的过渡矩阵为111011001⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P . (3) 坐标变换公式为11111222211100000110001110010001100011000100001100001n n n n y x x x y x x x y x x x ---⎛⎫⎪- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪===⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭- ⎪ ⎪⎝⎭P . 5. 设12,,,n ααα是V 的一个基,且()()1212,,,,,,n n =A βββααα,证明12,,,n βββ是V的一个基的充分必要条件是矩阵A 为可逆矩阵.证明 由于12,,,n ααα线性无关,注意到()()112211221212,,,,,,n n n n n n k k kkk k k k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+++== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A ββββββααα,可得12,,,n βββ是V 的一个基⇔12,,,n βββ线性无关⇔1122n n k k k +++=0βββ时,必定有120n k k k ====⇔()1212,,,0n n k kk ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ααα时,必定有120n k k k ====⇔12n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A 0时,必定有120n k k k ====⇔齐次线性方程组=Ax 0只有零解 ⇔0≠A ⇔A 是可逆矩阵.6. 设12,V V 是线性空间V 的两个不同的子空间,且1V V ≠,2V V ≠,证明在V 中存在向量α,使得12,V V ∉∉αα同时成立.证明 由于1V V ≠,2V V ≠,于是在V 中存在向量,αβ,使得12,V V ∉∉αβ成立. 若2V ∉α,则α即为所求. 若2V ∈α,则对任意数k ,有2k V +∉αβ.否则,由于2V ∈α和2k V +∈αβ,可得2()k k V +-=∈αβαβ,与假设矛盾.于是,取12k k ≠,则11k V +∈αβ与21k V +∈αβ不能同时成立,否则12121()()()k k k k V +-+=-∈αβαβα,有1V ∈α,矛盾.故11k V +∉αβ与21k V +∉αβ至少有一个成立,不妨设11k V +∉αβ,又12k V +∉αβ,因此1k +αβ即为所求. 7. 设12,,,n ααα与12,,,n βββ是n 维线性空间V 的两个基,证明(1)在两组基下坐标完全相同的全体向量的集合1V 是V 的子空间; (2)设基12,,,n ααα到基12,,,n βββ的过渡矩阵是P ,若()R r -=E P ,则1dim V n r =-;(3)若V 中的每个向量在这两个基下的坐标完全相同,则1122,,,n n ===αβαβαβ.证明 (1)设1,V ∈αβ,即11221122n n n n x x x x x x =+++=+++ααααβββ, 11221122n n n n y y y y y y =+++=+++βαααβββ.则111222111222()()()()()()n n n n n n x y x y x y x y x y x y +=++++++=++++++αβαααβββ,1122n n k kx kx kx =+++αααα1122n n kx kx kx =+++βββ,即+αβ,k α在这两个基下的坐标也完全相同,于是1V +∈αβ,1k V ∈α,从而1V 是V 的子空间.(2)设α是1V 中任一向量,则12112212(,,,)n n n n x xx x x x ⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭ααααααα,12112212(,,,)n n n n x xx x x x ⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭αββββββ1212(,,,)n n x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ααα.于是,α在两个基下的坐标存在关系=x Px ,T 12(,,,)n x x x =x ,即()-=E P x 0.由于()R r -=E P ,故此齐次线性方程组的解向量的全体构成n r -维空间,从而α的全体即1V 的维数是n r -. (3)i α(1,2,,)i n =在基12,,,n ααα下的坐标为T (0,0,,0,1,0,,0)(第i 个分量为1,余皆为0),即11100100i i i i n -+=++++++αααααα, 1,2,,i n =.而由条件,i α(1,2,,)i n =在基12,,,n βββ下的坐标也是T (0,0,,0,1,0,,0),即11100100i i i i n -+=++++++αβββββ,1,2,,i n =,从而有i i =αβ,1,2,,i n =.。
第六章 线性空间练习题参考答案
一、填空题
1.已知0000,,00V a b
c a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪
=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭
是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
.
2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,
,}n i W a x x x P i n =∈=
是P n+1的一个子空间,则a = 0 ,而维(W)=n
4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.
5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123
,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫ ⎪
⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)
x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫
⎪
⎪ ⎪⎝⎭
.
6.数域P 上n 级对称矩阵全体构成数域P 上
(1)
2
n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上
(1)
2
n n -维线性空间,数域P 上n 级上三角矩
阵全体构成数域P 上
(1)
2
n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.
二、判断题
1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.
错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)
2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .
3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫
= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A
+B)X =0的解空间,则12V V V =.
正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX
=0,即满足0A X B ⎛⎫
= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2
V 中,即为12V V 中的向量.因此12V V V =.
4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组
12,,,s ααα线性表出,则维(W)=s.
正确.根据定理1.
5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有
.W αβ+∉
错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.
正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.
8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.
9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题
1.求所有与A 可交换的矩阵组成的n
n P ⨯的子空间()C A 的维数与一组基,其
中
100020003A ⎛⎫
⎪= ⎪ ⎪⎝⎭
.
解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即
1112
131112
132122232122
233132
33313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫
⎪⎪
⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.
11
121311121321222321
222331
32
3331
32
33232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫
⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此
1122
330
0()00
00b C A b b ⎧⎫
⎛⎫⎪⎪
⎪=⎨⎬ ⎪⎪⎪ ⎪⎝
⎭⎩⎭ 维数为3,基为112233,,E E E .
2.在线性空间P 4
中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中
1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有
10111
43213140
12387610
0123
2210
001T --⎛⎫⎛⎫
⎪
⎪
- ⎪ ⎪
=
⎪ ⎪
- ⎪
⎪
-⎝⎭⎝⎭
因此
1
1
43210112379801231314633100128761232100
132213221T ------⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
--
⎪ ⎪ ⎪
==
⎪ ⎪ ⎪- ⎪ ⎪ ⎪
--⎝⎭
⎝⎭⎝⎭
. 令
123411432401232001230
1x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪
⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
1
1234143211411361101012340127421001220012240
0013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪
-- ⎪ ⎪ ⎪ ⎪⎪ ⎪
===
⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题
为定义在实数域上的函数构成的线性空间,令
12{()(),()()},{()(),()()}
W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--
证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕
证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.
()()()()
(),()22
f x f x f x f x f x V f x +---∀∈=+
. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所
以12.V W W =⊕
2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,
或者120n a a a ==
==,或者每一个i α都不等于零,证明:维(W)=1.
证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设
1212(,,,),(,,,)n n a a a b b b αβ==
是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量
11112112121211(,,
,)(,,
,)(0,,
,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈.
由题设条件有1212110n n b a a b b a a b -=
=-=,即有12
12n n
a a a
b b b =
==.即W 中的任二个非零向量均成比例,因此维(W)=1.。