初一数学(上册)第一单元有理数知识点归纳与单元测试题试卷
- 格式:doc
- 大小:568.00 KB
- 文档页数:24
人教版七年级上册数学第一章有理数单元测试卷一、单选题(共10小题,每小题3分,共30分)1.自2021年1月1日起,全市启动九类重点人群新冠疫苗接种工作.昌平设置46个疫苗接种点位,共配备医务人员1200多名.截至3月28日18时,昌平区累计新冠疫苗接种共完成1015000人次,整体接种秩序井然.将1015000用科学记数法表示应为()A.10.15×106B.1.015×106C.0.1015×107D.1.015×1072.12的相反数是()A.2B.﹣2C.12D.﹣123.下列四个数中,最小的数是()A.−|−3|B.(−3)2C.3D.04.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2bC.﹣a<b<2D.a<﹣2<﹣b5.下列说法中错误的是()A.正分数、负分数统称分数B.零是整数,但不是分数C.正整数、负整数统称整数D.零既不是正数,也不是负数6.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.11017.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是()A.32019-1B.32018-1C.32019−12D.32018−128.有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc<0;①a−b+c<0;①|a|a+|b|b+|c|c=3;①|a−b|−|b+c|+|a−c|=2a.A.4个B.3个C.2个D.1个9.如图,数轴上每个刻度为1个单位长,则A,B 分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A.A 点B.B 点C.C 点D.D 点10.若abc≠0,则|a|a+|b|b+c|c|的值为()A.±3或±1B.±3或0或±1C.±3或0D.0或±1二、填空题(共5小题,每小题3分,共15分)11.据报道,某节日期间某市地铁二号线载客量达到17340000人次,再创历史新高.将数据17340000用科学记数法表示为.12.“ ★”定义新运算:对于任意有理数a、b,都有,例如: 7★4=42−7−1=8,那么(−5)★(−3)=.13.如图,小强有5张写着不同的数字的卡片:从中取出2张卡片,最大的乘积是,最小的商是.14.三个有理数a、b、c满足abc>0,则|a|a+|b|b+|c|c的值为.。
第一章 有理数单元测试题 【1】姓名得分温馨提示:下面的数学问题是为了展示你最近的学习成果而设计的!只要你仔细审题,认真答题,遇到困难不轻易放弃,你就有出色的表现,放松一点,请相信自己的实力!一、精心选一选:(每题2分、计16分)1、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方2、下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C.12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3、下列各对数中,互为相反数的是 ( )A .()2.5-+与2.5-; B.()2.5++与2.5-;C.()2.5--与2.5; D.2.5与()2.5++4、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c5、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零;(D )两个加数不能同为负数6、654321-+-+-+……+2005-2006的结果不可能是:( )A 、奇数B 、偶数C 、负数D 、整数7、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定8、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-1二.填空题:(每题3分、计30分)9、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
初一数学上册《有理数》综合测试卷附解析第一章《有理数》单元综合测试题(附答案)一、选择题(每小题3分,共30分)1.下列说法正确的是()A.任何负数都小于它的相反数B.零除以任何数都等于零C.若,则D.两个负数比较大小,大的反而小2.假如一个数的绝对值等于它的相反数,那么那个数()A.必为正数B.必为负数C.一定不是正数D.不能确定正负3.当、互为相反数时,下列各式一定成立的是()A.B.C.D.4.的运算结果是()A.0B.C.D.5.为有理数,则下列各式成立的是()A.B.C.D.6.假如一个数的平方与那个数的绝对值相等,那么那个数是()A.0B.1C.-1D.0,1或-17.若3.0860是四舍五入得到的近似数,则下列说法中正确的是()A.它有四个有效数字3,0,8,6B.它有五个有效数字3,0,8,6,0C.它精确到0.001D.它精确到百分位8.已知,,则,,按从小到大的顺序排列为()A.B.C.D.9.下列各组运算中,其值最小的是()A.B.C.D.10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A.28B.33C.45D.57二、填空题(每小题3分,共24分)11.绝对值小于5的整数共有___________个。
12.当时,_______(填“>”“=”或“<”)。
13.假如与互为相反数,那么的倒数是____________。
14.在数轴上表示-5的点到原点的距离等于_____________。
15.假如由四舍五入得到的近似数是35,那么34.49,34.51,34.99,3 5.01这四个数中不可能是真值的为________________。
16.____________时,代数式的值是-2。
17.假如,且,那么______0,_______0。
18.若,则__________,__________。
三、解答题(共46分)19.(3分)有理数、、在数轴上的对应点分别为A、B、C,其位置如下图所示,试化简:20.(3分)把下列各数化简后在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来。
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
初一数学七年级人教版上册第1章《有理数》单元综合测试题一.选择题1.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为()A.957×108B. 95.7×109C.9.57×1010D.0.957×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将957亿用科学记数法表示约为:9.57×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算结果为正数的是()A. ﹣32B. ﹣3÷2C. ﹣1+2D. 0×(﹣2018)【答案】C【解析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.解:∵-32=-9,-3÷2=-32,-1+2=1,0×(-2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A. 20B. ﹣20C. 10D. 8【答案】A【解析】观察四个数,不难得出,选择﹣4与﹣5相乘,得到的积最大.﹣4与﹣5乘积最大,为20.故选A.【点评】本题主要掌握有理数的乘法运算法则,两数相乘,同号得正,异号得负,并把绝对值相乘.4.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A. 2个B. 3个C. 4个D. 5个【答案】C【解析】①最大的负整数是1,故不正确;②2和-2的绝对值相等,则数轴上表示数2和-2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选C.【考点】1.有理数的乘方;2.有理数;3.数轴;4.绝对值;5.有理数大小比较.5.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A. 2个B. 3个C. 4个D. 5 个【答案】B【解析】根据正数与负数的定义求解.解:在-112,15,-10,0,-(-5),-|+3|中,负数有-112、-10、-|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.6.如图,在数轴上点A最可能表示的数的绝对值是()A. ﹣2.5B. 2.5C. ﹣3.5D. 3.5【答案】B【解析】根据数轴的定义即可求出答案.解:由数轴可知:点A表示的数为a,∴-3<a<-2,∴在数轴上点A最可能表示的数的绝对值是2.5.故选:B.【点评】本题考查数轴的性质,解题的关键是正确理解数轴的定义,本题属于基础题型.7.a,b,c三个数的位置如图所示,下列结论不正确的是()A. a+b<0B. b+c<0C. b+a>0D. a+c>0【答案】C【解析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.解:根据数轴上点的位置得:-4<b<-3<-1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点评】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.8.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|( )A. b﹣2c+aB. b﹣2c﹣aC. b+aD. b﹣a【答案】D【解析】观察数轴,可知:c<0<b<a,进而可得出b﹣c>0、c﹣a<0,再结合绝对值的定义,即可求出|b﹣c|﹣|c﹣a|的值.观察数轴,可知:c<0<b<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c﹣a|=b﹣c﹣(a﹣c)= b﹣c﹣a+c=b﹣a.故选D.【点评】本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b﹣c|﹣|c﹣a|的值是解题的关键.9.下列结论成立的是( )A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.【答案】B【解析】若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则a,b的大小不能确定.A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.【点评】本题考查了的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.10.若ab≠0,则aabb+的值不可能是()A. 0B. 1C. 2D. ﹣2 【答案】D【解析】当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,由此即可判断.解:当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,故选:D.【点评】本题考查有理数的加法法则以及乘法法则,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二.填空题11.计算:|-3|-1=__.【答案】2【解析】根据有理数的加减混合运算法则计算.解:|﹣3|﹣1=3-1=2.故答案为:2.【点评】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.【答案】4.【解析】分析:在数轴上点向右平移几个单位,则就加上几;在数轴上点向左平移几个单位,则就加上几.详解:根据题意可得:-1+5=4.【点评】本题主要考查的是数轴上点的平移法则,属于基础题型.理解平移的性质是解决这个问题的关键.13.145-的倒数是_____.【答案】521.【解析】求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可,是小数的化成分数后据此求出,据此解答.解:145-=145,1 4 5的倒数是521.故答案为:5 21.【点评】本题主要考查求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可.14.已知:|m﹣n|=n﹣m,|m|=4,|n|=3,则m﹣n=_______【答案】-1或-7【解析】根据绝对值的代数意义和有理数的减法法则,结合已知条件分析解答即可.∵|m-n|=n-m,|m|=4,|n|=3,∴m≤n,m=±4,n=±3,∴m=-4,n=±3,∴当m=-4,n=3时,m-n=-4-3=-7;当m=-4,n=-3时,m-n=-4-(-3)=-4+3=-1.综上所述,m-n=-1或-7.故答案为:-1或-7.【点评】熟悉“有理数的减法法则和绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”是解答本题的关键.15.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为_____.【答案】3027.【解析】根据题意得出规律:当n为奇数时,A n-A1=n-12,当n为偶数时,A n=A1-n2,把n=2018代入求出即可.解:根据题意得:当n为奇数时,A n-A1=n-12,当n为偶数时,A n-A1=-n2,2018为偶数,代入上述规律, A2018-A1=-2018/2=-1009,解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.16.已知a,b互为相反数,c,d互为倒数,则﹣5a+2017cd﹣5b=_____.【答案】2017【解析】根据相反数及倒数的定义得出a+b=0,cd=1,再代入所求代数式进行计算即可.解:根据题意得:a+b=0,cd=1,则原式=-5(a+b)+2017cd=-5×0+2017×1=2017.故答案为2017.【点评】本题考查的是有理数的混合运算,熟知相反数、倒数的定义是解答此题的关键.三.解答题17.计算:(1)﹣18×(125 236+-);(2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2].【答案】(1)-6;(2)16;【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-12×13×(-7)=-1+76=16.【点评】本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.【答案】(1)a=﹣2,b=±3,c=﹣1;(2)24;【解析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.19.下表给出了七(三)班6位同学的体重情况:(单位:kg)(1)完成表中空白部分;(2)这6位同学体重的和多少千克.【答案】(1)答案见解析;(2)282千克;【解析】(1)先算出标准体重为45kg,再算出个人体重与班级平均体重的差值,填表即可;(2)将这6个人的个人体重相加即可.(1)如表:(2)﹣1+2+0﹣3+4+10+45×6=282(kg),答:这6位同学体重的和是282千克;【点评】本题考查了有理数的混合运算,以及正负数所表示的意义.20.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?【答案】(1)-25吨;(2)505吨;【解析】(1)理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况; (2)利用(1)中所求即可得出3天前粮库里存粮数量.(1)26+(﹣32)+(﹣25)+34+(﹣38)+10=﹣25(吨).答:粮库里的粮食是减少了25吨;(2)480﹣(﹣25)=505(吨).答:3天前粮库里存粮有505吨;【点评】此题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义,并且注意0这个特殊的数字,既不是正数也不是负数.21.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天行驶记录如下(单位:km ):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B 地在A 地哪个方向?距A 地多少千米?(2)若该警车每千米耗油0.2L ,警车出发时,油箱中有油20L ,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【答案】(1)在A 地的西方,距A 地4千米;(2)需加油5.6L ;【解析】(1)把这些数值相加,根据结果就可知道在那个方向,相距多少千米.(2)绝对值相加,乘以每小时耗油量即可,由此即可进行判断.解:(1)18-19-13+15+10-14+19-20=-4所以B 地在A 地的西方,相距4千米;(2)0.2×(18+19+13+15+10+14+19+20)=25.6升25.6﹣20=5.6故中途给警车加过油,至少加5.6升.【点评】本题考查有理数的加减混合运算,以及正负数的意义,从而可求出解.22.把下列各数填在相应的括号内:–19,2.3,–12,–0.92,35,0,–14,0.563,π 正数集合{ ……};负数集合{ ……};负分数集合{ ……};非正整数集合{ ……}【答案】正数集合:32.30.5635,,,π⎧⎫⎨⎬⎩⎭负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,,负分数集合:10.924⎧⎫--⎨⎬⎩⎭,,非正整数集合:{}19120--,,【解析】利用正数,负数,负分数,非整数的定义进行分类即可. 正数集合:32.30.5635π⎧⎫⎨⎬⎩⎭,,, 负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,, 负分数集合:10.924⎧⎫--⎨⎬⎩⎭,, 非正整数集合:{}19120--,,23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A→B(+1,+4),从B 到A 记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程;(4)若图中另有两个格点M 、N ,且M→A (3-a ,b-4),M→N (5-a ,b-2),则N →A 应记为什么?【答案】(1)3;4;2;0;D ;-2;(2)见解析;(3)10;(4)N →A 应记为(-2,-2) .【解析】(1)根据规定及实例可知A→C 记为(3,4)C→D 记为(1,-1);A→B→C→D 记为(1,4),(2,0),(1,-1);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据M→A(3-a,b-4),M→N(5-a,b-2)可知5-a-(3-a)=2,b-2-(b-4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C;p记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).【点评】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。
人教版初中数学七年级上册第1章《有理数》单元测试题及答案一、选择题(本大题共10小题,共30.0分)1.用表示的数一定是A. 负数B. 正数或负数C. 负整数D. 以上全不对2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.4.计算-42的结果等于()A. B. 16 C. D. 85.-23的意义是()A. 3个相乘B. 3个相加C. 乘以3D. 的相反数6.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;②若a、b互为相反数,则;③当a≠0时,|a|总是大于0;④如果a=b,那么,其中正确的说法个数是()A. 1B. 2C. 3D. 47.有理数在数轴上的位置如图所示,则在式子中,值最大的是()A. B. C. D.8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于()A. 120B. 125C.D.9.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.A. 0B.C. 10D. 20二、填空题(本大题共6小题,共18.0分)11.若-1<x<4,则|x+1|-|x-4|= ______ .12.如果a<0,则|a|=______.13.在数轴上,点P与表示有理数2的点A相距3个单位,则点P表示的数是______ .14.如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为______.15.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为______.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当-1<x<1时,化简[x]+(x)+[x)的结果是______.三、计算题(本大题共1小题,共20.0分)17.计算下列各题(1)(-2)3-|2-5|-(-15)(2)-4(3)(4)(5).四、解答题(本大题共3小题,共32.0分)18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(4)请你根据猜想,请写出第2013个、第2014个单项式.19.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数______所表示的点重合.20.观察下列等式:=1-,=,=三个等式两边分别相加得:=1-=1-=(1)猜想并写出:______ ;(2)直接写出下列各式的计算结果:+++…+= ______ ;(3)探究并计算:+++…+.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】A【解析】【分析】此题考查了有理数的加法,绝对值的有关知识,熟练掌握运算法则是解本题的关键.找出绝对值小于5的所有整数,求和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,∴0-1+1-2+2-3+3-4+4=0.故选A.3.【答案】D【解析】解:a>0时,-a<0,是负数,a=0时,-a=0,0既不是正数也不是负数,a<0时,-a>0,是正数,综上所述,-a表示的数可以是负数,正数或0.故选D.根据字母表示数解答.本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.4.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】A【解析】解:-42=-16,根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.7.【答案】D【解析】【分析】根据乘方的意义和相反数的定义判断.本题考查了有理数乘方:求n 个相同因数积的运算,叫做乘方.【解答】解:-23的意义是3个2相乘的相反数.故选D.8.【答案】A【解析】【分析】本题考查有理数的相关概念,学生需要充分理解正负数,0,相反数,绝对值等概念,特别需要注意0既不是正数也不是负数这一重要特性.【解答】①若干个有理数相乘,如果负因数的个数是奇数,还需要因数中没有0,才能得到乘积一定是负数,故错误;②0和它本身也是互为相反数,但是没有意义,故错误;③正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0.当时,a的绝对值总是大于0,正确;④当c=0时,没有意义,故错误.故选A.9.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.10.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.11.【答案】2x-3【解析】解:原式=x+1-(-x+4),=x+1+x-4,=2x-3,故答案为:2x-3.根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数-a可得|x+1|=x+1,|x-4|=-x+4,然后再合并同类项即可.此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x-4的正负性.12.【答案】-a【解析】解:∵a<0,则|a|=-a.故答案为-a.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.13.【答案】5或-1【解析】解:∵数轴上的P点与表示有理数2的点的距离是3个单位长度,则P点表示的数是5或-1.故答案为:5或-1.由于P点与表示有理数2的点的距离是3个单位长度,所以P在表示2点左右两边都有可能,结合数轴即可求解.此题综合考查了数轴、绝对值的有关内容,解决本题的关键是明确P在表示2点左右两边都有可能.14.【答案】8【解析】【分析】本题是一道找规律的题目,考查了有理数的加法和方程组的思想,是中档题难度不大.由题意得a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,然后转化成方程组的形式,求得d的值即可.【解答】解:∵a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,∴a+8+b-5=8+b-5+c①,8+b-5+c=b-5+c+d②,b-5+c+d=-5+c+d+4③,∴a-5=c-5,8+c=c+d,b-5=-5+4,∴b=4,d=8,a=c,故答案为8.15.【答案】0或±1【解析】【分析】是整数,求解即可.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案为0或±1.16.【答案】-2或-1或0或1或2【解析】解:①-1<x<-0.5时,[x]+(x)+[x)=-1+0-1=-2;②-0.5<x<0时,[x]+(x)+[x)=-1+0+0=-1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:-2或-1或0或1或2.分五种情况讨论x的范围:①-1<x<-0.5,②-0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.17.【答案】解:(1)原式=-8-3+15=4;(2)原式=-10-5=-15;(3)原式=12-20+9-10=-9;(4)原式=;(5)原式==-10-39=-49.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后,相加即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式结合后,利用乘法分配律计算即可得到结果.18.【答案】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(-1)n(2n-1)x n.(4)第2013个单项式是-4025x2013,第2014个单项式是4027x2014.【解析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.19.【答案】-8【解析】解:(1)如图所示:(2)-5×2=-10.(3)A、B中点所表示的数为-3,点C与数-8所表示的点重合.故答案为:-8.(1)将点A向右移动3个单位长度得到点C的位置,依据相反数的定义得到点B表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB的中点,然后可得到与点C重合的数.本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A、B、C的位置是解题的关键.20.【答案】解:(1);(2);(3)原式.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. (1)观察已知等式,得到拆项规律,写出即可;(2)原式===故应该填;(3)原式利用程序法变形,计算即可得到结果.第11页,共11页。
七年级数学上册第一章有理数单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.[2023·扬州]-3的绝对值是()A.-3B.3C.±3D.132.下列各数-2,2,-5,0,π,0.0123中,非负数的个数有() A.1个 B.2个 C.3个 D.4个3.[真实情境题航空航天]2024年5月3日,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度是零下150℃,应记作() A.+150℃ B.-150℃C.+276℃D.-276℃4.[新考法概念辨析法]下列说法中正确的是()A.负有理数是负分数B.-1是最大的负数C.正有理数和负有理数组成全体有理数D.零是整数5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n,q互为相反数,则m,n,p,q四个数中,负数有()A.1个B.2个C.3个D.4个6.下列化简正确的是()A.-[-(-10)]=-10B.-(-3)=-3C.-(+5)=5D.-[-(+8)]=-87.[情境题生活应用]化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数,不足的部分记为负数,它们中质量最接近标准的是()A BC D8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<-1C.m>-nD.|m|>|n|9.[2024·泰安泰山区期中]数轴上表示整数的点称为整数点,某数轴的单位长度是1cm,若在这个数轴上随意画一条长15cm的线段AB,则AB盖住的整数点的个数共有()A.13或14个B.14或15个C.15或16个D.16或17个10.[新视角动点探究题]如图,一个动点从原点O开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2025秒时所对应的数是()A.-405B.-406C.-1010D.-1011二、填空题(每题3分,共18分)11.用“>”或“<”填空:-7-9.12.一种袋装面粉标准净重为50kg,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把51kg记为+1kg,那么一袋面粉净重49kg记为kg.13.已知b,c满足|b-1|+-0,则b+c的值是. 14.在数轴上,有理数a与-1所对应的点之间的距离是5,则a =.15.下列说法:①若|a|=a,则a>0;②若a,b互为相反数,且ab≠0,则=-1;③若|a|=|b|,则a=b;④若a<b<0,则|b-a|=b-a.其中正确的有.(填序号)16.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点表示的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.三、解答题(共72分)17.(8分)[母题2024·重庆万州区月考·教材P16习题T1]把下列各数填入相应的大括号内:-0.1,+(-4),6%,20,0,-0.030030 003…,227,2.0·1·.负有理数集合:{,…};非负整数集合:{,…};负整数集合:{,…};正数集合:{,…}.18.(6分)比较下列各组数的大小:(1)|-0.02|与-|-0.2|;(2)-π与-|-3.14|.19.(10分)如图,数轴上点A,B,C,D,E表示的数分别为-4,-2.5,-1,0.5,2.(1)将点A,B,C,D,E表示的数用“<”连接起来;(2)若将原点改在点C,则点A,B,C,D,E表示的数分别为多少,并将这些数用“<”连接起来.20.(10分)[2024·杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?21.(12分)[新视角知识情境化]数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合的思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图①,在数轴上点A表示的数是,点B表示的数是,A,B两点间的距离是.(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为.(3)如图②,小明将刻度尺放在了图①中的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B对应刻度尺上的刻度4.8cm,点E对应刻度1.2cm,则数轴上点E表示的有理数是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上描出与点A的距离为2的点(用不同于A,B的其他字母表示);(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少?答案一、1.B 2.D 3.B4.D【点拨】负有理数包括负分数,负整数,故A错误;-1是最大的负整数,不存在最大的负数,故B错误;正有理数、0和负有理数组成全体有理数,故C错误.5.C6.A7.D【点拨】因为|+0.8|=0.8,|-1.2|=1.2,|1|=1,|-0.5|=0.5,0.5<0.8<1<1.2,所以D选项中的砝码是最接近标准的.8.C9.C【点拨】当线段AB的端点在整数点时,盖住16个整数点;当线段AB的端点不在整数点,即在两个整数点之间时,盖住15个整数点.10.A【点拨】一个动点从原点O开始向左运动,每秒运动1个单位长度,并且每向左运动3秒就向右运动2秒,所以该点的运动周期为5秒,且每5秒向左运动一个单位长度,因为2025÷5=405.所以该点运动到2025秒时对应的数为-405.二、11.>12.-113.112【点拨】因为|b-1|+-0,所以b-1=0,c-12=0.所以b=1,c=12.所以b+c=112.14.4或-615.②④【点拨】①|a|=a,即绝对值等于本身,则a≥0,故①错误;②若a,b互为相反数,且ab≠0,则b=-a≠0,所以=-=-1,故②正确;③两个数的绝对值相等,则这两个数相等或互为相反数,故③错误;④若a<b<0,则b-a>0,因为正数的绝对值等于它本身,所以|b-a|=b-a,故④正确;综上所述,②④正确.16.69;52;-72【点拨】由数轴可知-7212和-4115之间的整数点有-72,-71,…,-42,共31个;-2134和1623之间的整数点有-21,-20,…,16,共38个;故被淹没的整数点有31+38=69(个),负整数点有31+21=52(个),被淹没的最小的负整数点所表示的数是-72.三、17.【解】负有理数集合:{-0.1,+(-4),…};非负整数集合:{20,0,…};负整数集合:{+(-4),…};正数集合:6%,20,227,2.0·1·,….18.【解】(1)因为|-0.02|=0.02,-|-0.2|=-0.2,所以|-0.02|>-|-0.2|.(2)因为-|-3.14|=-3.14,π>3.14,所以-π<-|-3.14|.19.【解】(1)由数轴可知-4<-2.5<-1<0.5<2.(2)将原点改在点C,则点A,B,C,D,E所表示的数分别为-3,-1.5,0,1.5,3,将这些数用“<”连接起来为-3<-1.5<0<1.5<3.20.【解】(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).所以这10名同学的平均成绩是29.9秒.21.(1)-3;5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)由(1)得A,B两点间的距离是8,4.8÷8=0.6(cm),则数轴上1个单位长度对应刻度尺上0.6cm,1.2÷0.6=2,所以点E距离点A两个单位长度.故数轴上点E表示的有理数是-1.22.【解】(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.【解】(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点距离折点的距离为12×2024=1012.所以点M表示的数为2-1012=-1010,点N表示的数为2+1 012=1014.。
初一数学上册第一单元有理数知识点归纳及测试题知识网络:一.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|²|b|=|a²b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.二.有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.7.有理数乘方的法则:(1)正数的任何次幂都是正数;三.乘方的定义。
七年级(上)数学第1章有理数单元测试卷一.选择题(共10小题)1.在0,,,0.05这四个数中,最大的数是A.0B.C.D.0.052.已知月球与地球之间的平均距离约为,把用科学记数法可以表示为A.B.C.D.3.的绝对值和相反数分别是A.,B.,C.,D.,4.若,则等于A.B.5C.D.5.计算:A.B.1C.D.46.如图,数轴上点对应的数是,将点沿数轴向左移动2个单位至点,则点对应的数是A.B.C.D.7.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是A.B.C.D.8.若,,且,则的值为A.B.C.D.19.如图,,在数轴上的位置如图所示,那么的结果是A.B.C.D.10.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有A.2种B.3种C.4种D.5种二.填空题(共8小题)11.计算:.12.在,,0,,,,19中正数有个.13.已知,,为互不相等的整数,且,则.14.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.对于有理数、,定义一种新运算,规定☆,则3☆.16.数轴上,点在点的右边,已知点表示的数是,且.那么点表示的数是.17.如图所示,直径为1个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是.18.现定义新运算“※”,对任意有理数、,规定※,例如:1※,则计算3※.三.解答题(共7小题)19.计算下列各式:(1);(2).20.如图,在数轴上有,两点,点在点的左侧.已知点对应的数为2,点对应的数为.(1)若,则线段的长为;(2)若点到原点的距离为3,且在点的左侧,,求的值.21.下面是佳佳同学的一道题的解题过程:,①,②,③,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.22.如图,在数轴上有三个点、、,请回答下列问题.(1)、、三点分别表示、、;(2)将点向左移动3个单位长度后,点所表示的数是;(3)将点向右移动4个单位长度后,点所表示的数是.23.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米),,,,,.(1)处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?24.在“□1□2□3□4□5□6□7□8□9“的小方格中填上“”“”号,如果可以使其代数和为,就称数是“可表出数“,如1是“可表出数”:因为是1的一种可被表出的方法.(1)13“可表出数”,14“可表出数”(填“是“或“不是“;(2)共有个“可表出数”;(3)求27共有多少种可被表出的方法.25.现有15箱苹果,以每箱为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质量的差(单位:02 2.53箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?参考答案一.选择题(共10小题)1.在0,,,0.05这四个数中,最大的数是A.0B.C.D.0.05解:,最大的数是0.05.故选:.2.已知月球与地球之间的距离约为,用科学记数法可以表示为A.B.C.D.解:将384000用科学记数法表示为:.故选:.3.的绝对值和相反数分别是A.,B.,C.,D.,解:,的相反数是.故选:.4.若,则等于A.B.5C.D.解:,,.故选:.5.计算:A.B.1C.D.4解:.故选:.6.如图,数轴上点对应的数是,将点沿数轴向左移动2个单位至点,则点对应的数是A.B.C.D.解:点向左移动2个单位,点对应的数为:.故选:.7.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是A.B.C.D.解:,故不符合题意;,故不符合题意;,故符合题意;.,故不符合题意.综上,只有计算结果为负.故选:.8.若,,且,则的值为A.B.C.D.1解:,,,,,,或,,或.故选:.9.如图,,在数轴上的位置如图所示,那么的结果是A.B.C.D.解:根据题意得:,且,,,原式.故选:.10.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有A.2种B.3种C.4种D.5种解:数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,动点的不同运动方案为:方案一:;方案二:;方案三:;方案四:;方案五:.故选:.二.填空题(共8小题)11.计算:2.解:.故答案为:2.12.在,,0,,,,19中正数有4个.解:在,,0,,,,19中正数有:,,,19,共有4个,故答案为:4.13.已知,,为互不相等的整数,且,则4或1.解:,,为互不相等的整数,且,、、三个数为,1,4或,2,1,则或1.故答案为:4或1.14.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.解:如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:.故答案为:.15.对于有理数、,定义一种新运算,规定☆,则3☆7.解:3☆,故答案为:7.16.数轴上,点在点的右边,已知点表示的数是,且.那么点表示的数是3.解:,故答案为:3.17.如图所示,直径为1个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是.解:直径为单位1的圆的周长,,点表示的数为.故答案为:.18.现定义新运算“※”,对任意有理数、,规定※,例如:1※,则计算3※.解:3※故答案为:.三.解答题(共7小题)19.计算下列各式:(1);(2).解:(1);(2).20.如图,在数轴上有,两点,点在点的左侧.已知点对应的数为2,点对应的数为.(1)若,则线段的长为3;(2)若点到原点的距离为3,且在点的左侧,,求的值.解:(1),故答案为:3;(2)点到原点的距离为3,设点表示的数为,则,即,点在点的左侧,点在点的左侧,且点表示的数为2,点表示的数为,,,解得.21.下面是佳佳同学的一道题的解题过程:,①,②,③,④(1)佳佳同学开始出现错误的步骤是①;(2)请给出正确的解题过程.解:(1)佳佳同学开始出现错误的步骤是①.故答案为:①.(2).22.如图,在数轴上有三个点、、,请回答下列问题.(1)、、三点分别表示、、;(2)将点向左移动3个单位长度后,点所表示的数是;(3)将点向右移动4个单位长度后,点所表示的数是.解:(1)从数轴看,点、、三点分别为:,,3,故答案为:,,3;(2)将点向左移动3个单位长度后,点所表示的数是,故答案为;(3)将点向右移动4个单位长度后,点所表示的数为0,故答案为:0.23.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米),,,,,.(1)处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?解:(1)(千米),答:处在岗亭西方,距离岗亭4千米;(2)(千米)(升答:这一天共耗油22升.24.在“□1□2□3□4□5□6□7□8□9“的小方格中填上“”“”号,如果可以使其代数和为,就称数是“可表出数“,如1是“可表出数”:因为是1的一种可被表出的方法.(1)13是“可表出数”,14“可表出数”(填“是“或“不是“;(2)共有个“可表出数”;(3)求27共有多少种可被表出的方法.解:(1)奇数和偶数相加或相减都是奇数,和2、3和4、5和6、7和8,9,可看做是5个奇数.最后的结果肯定为奇数,为奇数,14为偶数,且,是可表出数,而14不是可表出数,故答案为:是;不是;(2)若小方格全为“”号,总和为45,若小方格全为“”号,总和为,奇数和偶数相加或相减都是奇数,不小于,且不大于45的所有奇数都是“可表出数”,共有46个“可表出数”.故答案为:46;(3)若小方格全为加号,总和为45,要使最后答案为27,则其中“”号后面的数的总和为36,“”号后面的数的总和为9,不同方法数为8种:1,8或2,7或3,6或4,5或1,2,6或2,3,4或1,2,6或1,3,5这些数字前得符号为负.共有8种可被表出的不同方法.25.现有15箱苹果,以每箱为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质量的差(单位:02 2.53箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?解:(1)(千克).答:最重的一箱比最轻的一箱重5千克;(2)(千克).答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;(3)(千克)(元.答:这15箱苹果全部售出共可获利3068元.。
人教版七年级数学上册第一章有理数单元测试题(含答案)一、选择题(每小题3分,共30分)1. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边200 m处,玩具店位于书店东边100 m处,小明从书店沿街向东走了40 m,接着又向西走了-60 m,这时小明的位置(B)A.文具店B.玩具店C.文具店西边40 m D.玩具店东边-60 m2.下列说法中,不正确的是(C)A.-3.14既是负数,也是分数B.0既不是正数,也不是负数C.-2 018是负整数,但不是有理数D.0是正数和负数的分界3.下列说法:①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④整数分为正整数、0和负整数.其中正确的有(B)A.1个B.2个C.3个D.4个4.一个数在数轴上所对应的点向左移2 018个单位长度后,得到它的相反数对应的点,则这个数是(C)A.2 018 B.-2 018C.1 009 D.-1 0095.在有理数中,绝对值等于它本身的数有(D)A.1个B.2个C.3个D.无数个6.在数轴上,下列说法不正确的是(D)A.两个有理数,绝对值大的数离原点远B.两个有理数,其中较大的数在数轴的右边C.两个负有理数,其中较大的数离原点近D.两个有理数,其中较大的数离原点远7.下列结论不正确的是(D)A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a<0,b>0,且|a|>|b|,则a +b>08.下列算式:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有(A)A .1个B .2个C .3个D .4个9.已知数轴上的两点表示的数分别为2 018和x ,且两点之间的距离为2 019,则数x 是(D)A .1B .-1C .4 037D .-1或4 03710.将6-(+3)-(-7)+(-2)统一成加法,下列变形正确的是(C)A .-6+(-3)+(-7)+(-2)B .6+(-3)+(-7)+(-2)C .6+(-3)+(+7)+(-2)D .6+(+3)+(-7)+(-2)二、填空题(每小题3分,共30分)11. 在-1,0,0.2,17,3中,正数一共有3个 12. -a 的相反数是a ;-a 的相反数是-5,则a =-5.13. |-2 018|的意义是数轴上表示-2__018的点到原点的距离.14.绝对值大于2且不大于5的整数有±3、±4,±5.15. 一潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为-50米.16. 绝对值小于2 018的所有整数的和为0.17. 甲、乙、丙三地的海拔高度分别是20米、-15米、-10米,那么最高的地方比最低的地方高35米.18. 把(-478)-(-512)-(+318)写成省略括号和加号的形式是-478+512-318. 19. 计算8×(-0.25)×0×(-2 018)的结果为0.20. 化简:-497=-7,4-16=-14,-15-24=58. 三、解答题(本大题共5小题,共40分)21.计算:(每小题3分,共9分) (1) -313÷213×(-2); 解:原式=103×37×2 =207.(2) (1+13)÷(13-1)×38. 解:原式=43÷(-23)×38=-(43×32×38) =-34.(3) (-7)3; (4)(-0.2)3;解:(-7)3=-343. 解:(-0.2)3=-0.008.22.(6分) .计算:(12 019-1)×(12 018-1)×(12 017-1)×…×(11 000-1). 解:原式=(-2 0182 019)×(-2 0172 018)×(-2 0162 017)×…×(-1 0001 001)×(-9991 000) =2 0182 019×2 0172 018×2 0162 017×…×1 0001 001×9991 000=9992 019.23.(6分) 写出1至20的平方数,1至10的立方数.解:12=1,22=4,32=9,42=16,52=25,62=36,72=49,82=64,92=81,102=100,112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,202=400;13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,103=1 000.24.(9分). 向月球发射无线电波,电波从地面达到月球再返回地面,共需2.57秒,已知无线电波的速度为3×105千米/秒,求月球和地球之间的距离.解:3×105×2.57÷2=7.71×105÷2=3.855×105(千米).答:月球和地球之间的距离为3.855×105千米.25.(10分) 一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是-4 ℃,小丽此时在山脚测得温度是6 ℃.已知该地区高度每增加100米,气温大约降低0.8 ℃,这个山峰的高度大约是多少米?解:由题意,得[6-(-4)]÷0.8×100=12.5×100=1 250(米).答:这个山峰的高度大约是1 250米.。
人教版七年级上册数学第1章《有理数》单元测试卷题号一二三总分19 20 21 22 23 24分数1.下列各数中,与(-4)2的值相同的是()A. -4×2B. -42C. -24D.(-2)42.下列各式中,与式子-1-2+3不相等的是()A.(-1)+(-2)+(+3)B.(-1)-2+(+3)C.(-1)+(-2)-(-3)D.(-1)-(-2)-(-3)3.计算(-2016)-(-2016)的结果是()A. 0B. 4032C. -4032D. 20164.某冷冻厂一个冷库的室温是-2℃,现有一批食品需要在-26℃的室温下冷藏,如果该厂这个冷库每小时能降温4℃,那么降到所需温度需要()A. 6小时B. 7小时C. 8小时D. 9小时5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 7、在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是()A.1个B.2个C.3个D.4个8. 下列说法正确的是()A.整数就是正整数和负整数 B.负整数的相反数就是非负整数C.有理数中不是负数就是正数 D.零是自然数,但不是正整数9. 实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a b>B.a b-<C.a b>-D.a b>10. 如图,这是某用户银行存折中2020年11月到2021年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )日期摘要币种存/取款金额余额操作员备注201105 电费RMB钞147.40 550.75 000602k91 折210108 电费RMB钞143.17 107.58 000602Y02 折210305 电费RMB钞144.23 263.35 000602D39 折210508 电费RMB钞136.83 126.52 000602D38 折二、填空题: (每题3分,24分)11.甲、乙、丙三地的海拔高度分别为15米、-80米和-220米,则最高的地方比最低的地方高米.12.-5的相反数是;1-π3的绝对值是.13.计算(-4)×(-12)=.14.如图所示,一只青蛙,从A点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A点的左侧的某个位置处,请问这个位置到A点的距离最少是________厘米.15.已知数轴上点A表示数-3,点A在数轴上平移2个单位长度,则平移后点A 表示的数是___________.16.(-2)×(-2)×(-2)×(-2)的积的符号是___________.17.计算:2×(-12)=___________.18.标价是200元的一件商品,出售时打9折,则每件售价是____________元.三.解答题(共46分,19题6分,20 ---24题8分)19、计算下列各题:(1)﹣4﹣28﹣(﹣29)+(﹣24) (2)(﹣2)×(﹣5)÷(﹣5)+9.。
人教版七年级数学上册第一章有理数单元测试题一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走步记作步,那么向南走步记作( )A .步B .步C .D .步2.在数–8,+4.3,–|–2|,0,50,–中,整数有( ) A .3个B .4个C .5个D .6个3.在数轴上与表示数-3的点的距离等于2的点表示的数是( )A .1B .-5C .-1或-5D .-1或54.互为相反数是指( )A .意义相反的两个量B .一个数前面添上“-”所得的数C .数轴上原点两旁的两个点所表示的两个数D .只有符号不同的两个数(零的相反数是零)5.数-6,5,0,中最大的是( )A .-6B .5C .0D .6.某地一天中午12时的气温是,14时的气温升高了,到晚上22时气温又降低了,则22时的气温为( )A .B .C .D .7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .B .C .D .8.下列四个式子中,计算结果最大的是( )55+1010+10-12+步2-1272724℃2℃7℃6℃3-℃1-℃13℃0a b +>0a b ->a b a->->0a b ⋅>A .-23+(-1)2B .-23-(-1)2C .-23×(-1)2D .-23÷(-1)29. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .B .C .D .10.已知a 是一个三位小数,用四舍五入法得到a 的近似数是3.80,则a 的取值范围是( )A .B .C .D .二、填空题11.比较大小: (填“>”,“<”或“=”).12.若与3互为相反数,则等于 .13.计算: .14.已知整数a ,b ,c ,且,满足,则的最小值为 .三、计算题15.计算:(1)(2)(3)(4)四、解答题16.出租车司机小王某天下午营运全是在东西走向的汶河大道上进行的,如果规定向东为正,向西为负,这天上午他的行车里程(单位:千米)如下表所示:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次第十一次+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?70.4610⨯64.610⨯74.610⨯546.010⨯3.750 3.854a << 3.750 3.854a ≤<3.795 3.805a << 3.795 3.805a ≤<23-35-x 4x +()13633-÷⨯=0c <23101002023a b c +-=a b c ++()151318+-+()10.254-⨯-1243-÷⨯()232323-⨯+⨯-(2)若汽车耗油量为0.1升/千米,这天上午小王共耗油多少升?17.计算:已知,.若,求的值.18.在数轴上把下列各数表示出来,并用“<”连接各数.0,﹣|﹣1|,﹣3, ,﹣(﹣4)19.已知|m|=4,|n|=3,且mn <0,求m+n 的值.五、综合题20.如图,点A ,B ,C 为数轴上三点,点A 表示-2,点B 表示4,点C 表示8.(1)A 、C 两点间的距离是 .(2)当点P 以每秒1个单位的速度从点C 出发向CA 方向运动时,是否存在某一时刻,使得PA=3PB ?若存在,请求出运动时间;若不存在,请说明理由.21.(1)已知|m|=5,|n|=2,且m<n ,求m−n 值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y 的值.22.根据实际规律我们知道:海拔高度每升高100米,气温将下降0.6℃.甲、乙两名登山运动员在攀登同一座高峰,途中甲发信息说他所在地的气温为5℃,海拔为1200米,同一时刻乙发回信息说他所在地气温为-4℃.(设地面海拔为0米)(1)求此刻地面的气温为多少℃;(2)求乙所在地的海拔高度.5x =3y =0xy <||x y -112答案解析部分1.【答案】B【解析】【解答】解:向北走步记作步,那么向南走步记作步,故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】B【解析】【解答】解:–8是整数,+4.3是小数,–|–2|是整数,0是整数,50是整数,–是分数. 可知有四个整数.故答案为:B.【分析】本题考查整数的定义,根据整数的定义即可求出答案.3.【答案】C【解析】【解答】解:当这个点在表示数−3的点的左边,则这个点表示的数为−3−2=−5;当这个点在表示数−3的点的右边,则这个点表示的数为−3+2=−1.故答案为:C.【分析】分类讨论:①当这个点在表示数−3的点的左边;②当这个点在表示数−3的点的右边,然后根据数轴上的点表示数的方法即可得到答案.4.【答案】D【解析】【分析】本题主要考查相反数的意义,根据相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0,即得结果。
人教版七年级上册数学第一章《有理数》单元测试卷(含答案)1、下列说法正确的是(A)A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数2、下列各对数中,数值相等的是(B)A。
-27与(-2)7B。
-32与(-3)2C。
-3×23与-32×2D。
―(―3)2与―(―2)33、在-5,-10,-3.5,-0.01,-2,-212各数中,最大的数是(B)A。
-12B。
-10C。
-0.01D。
-54、如果一个数的平方与这个数的差等于0,那么这个数只能是(A)A。
0B。
-1C。
1D。
0或15、绝对值大于或等于1,而小于4的所有的正整数的和是(C)A。
8B。
7C。
6D。
56、计算:(-2)100+(-2)101的是(D)A。
2100B。
-1C。
-2D。
-21007、比-7.1大,而比1小的整数的个数是(C)A。
6B。
7C。
8D。
98、XXX特别发行万众一心,抗击“非典”邮票xxxxxxxx 枚,用科学记数法表示正确的是(A)A.1.205×107B.1.20×108C.1.21×107D.1.205×1049、下列代数式中,值一定是正数的是(|-x+1|)A.x2B。
|-x+1|C。
(-x)2+2D。
-x2+110、已知8.62=73.96,若x2=0.7396,则x的值等于(C)A。
86.2B。
862C。
±0.862D。
±86211、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为2;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
12、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为1.13、某数的绝对值是5,那么这个数是5或-5.14、保留四个小数的近似值为1347.56.1.314的二进制表示是xxxxxxxx0,16的二进制表示是,-2的二进制表示是-10.2.数轴上和原点的距离等于31的点表示的有理数是31或-31.3.(-1)^6 + (-1)^7 = -2.4.2ab - (c+d) + m^2 = 2ab - (c+d) + 1.5.(-5.7) + |-7.1| = 12.8.6.每辆汽车最多装配4个轮胎,51只轮胎至多能装配12辆汽车。
七年级数学(上) 【1 】第一章 有理数单元测试题(120分)一.选择题(3分×10=30分) 1.2008的绝对值是( )A.2008B.-2008C.±2008D.200812.下列盘算准确的是()A.-2+1=-3B.-5-2=-3C.-112-=D.1)1(2-=- 3.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与+︱-8︱C.-2222)与(- D.-︱-8︱与+(-8)4.盘算(-1)÷(-5)×51的成果是()A.-1B.1C.251D.-255.两个互为相反数的有理数的乘积为( )A.正数B.负数C.0D.负数或0 6.下列说法中,准确的是()A.有最小的有理数B.有最小的负数C.有绝对值最小的数D.有最小的正数7.小明同窗在一条南北走向的公路上晨练,跑步情形记载如下:(向北为正,单位:m ):500,-400,-700,800 小明同窗跑步的总旅程为()A.800 mB.200 mC.2400 mD.-200 m 8.已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A.5B.-1C.-5或-1D.±19.已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所暗示的数有( )A.1个B.2个C.3个D.4个10.有一张厚度是0.1mm 的纸,将它半数20次后,其厚度可暗示为( )×20)××220×202)mm 二.填空题(5分×3=15)11.妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能暗示什么_____ 12.一个正整数,加上-10,其和小于0,则这个正整数可能是(写出两个即可) 13.绝对值小于2008的所有整数的和是( )14.不雅察下列各数,按纪律在横线上填上恰当的数.2,5,10,17, , . 三.(4分×2=8分) 15.下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分离填入响应的聚集圈内. 正数负数2) 请盘算个中的整数的和与分数积的差. 16.下表是某一天我国部分城市的最低气温:北京 上海 广州 哈尔滨 杭州 宁波 -4℃-1℃6℃-10℃0℃2℃(1)请把表中各数在数轴上.(2)按该气象的最低气温,从低到高分列城市名. 四.(21分) 17.盘算:(1)-40-(-19)+(-24)(2))91()65(45-⨯-(3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2(4)[]4)2(2)4()3(1324÷--+-⨯-+-18.已知p与q互为倒数,r与s互为相反数,∣t∣=1,求t2+ 2009pq +r+s2009的值.(5分)五.(6分×2=12分)19.小颖.小丽.小虎三位同窗的身高如下表所示.(1)以小丽身高为尺度,记作0㎝,用有理数暗示出小颖和小虎的身高.(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作若干㎝.℃,现测得山脚的温度是4℃.(1)求离山脚1200m高的地方的温度.(2)若山上某处气温为-5℃,求此处距山脚的高度.六.(6分)21.甲.乙两商场上半年经营情形如下(“+”暗示盈利,“-”暗示赔本,以百万为单位)(1)三月份乙商场比甲商场多吃亏若干元?(2)六月份甲商场比乙商场多盈利若干元?(3)甲.乙两商场上半年平均每月分离盈利或吃亏若干元?七(8分)22.如图所示,一个点从数轴上的原点开端,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点暗示是-3,已知A.B是数轴上的点,请参照下图并思虑,完成下列各题.(1)假如点A暗示的数-1,将点A向右移动4个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(2)假如点A暗示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(3)假如点A暗示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜测终点B暗示的数是.A.B两点间的距离是 .八.(10分)23.一辆货车从超市动身,向东走了3km,到达小彬家,持续走了1.5km到达小颖家,又向西走了9.5km到达小明家,然后回到超市.(1)以超市为原点,以向东的偏向为正偏向,用1个单位长度暗示1km,你能在数轴上暗示出小明家.小彬家和小颖家的地位吗?(2)小明家距小彬家多远?(3)货车一共行驶了若干km?九.盘算题(10分)∣x∣=2,y2=36,求x+y的值.(5分)∣m-5∣+(n+6)2=0,求(m+n)2008+m3的值.(5分)。
人教版七年级数学上册:第一章有理数单元测试题(含答案)一、选择题(每小题3分,共30分)1.(仙桃中考)如果向北走6步记作+6步,那么向南走8步记作( )A .+8步B .-8步C .+14步D .-2步2.下列说法错误的是( )A .-5是负有理数B.25是正有理数 C .0是正整数D .-0.25是负分数3.如图,数轴上表示-2.75的点可能是( )A .E 点B .F 点C .G 点D .H 点4.(贵阳中考)在1,-1,3,-2这四个数中,互为相反数的是( )A .1和-1B .1和-2C .3和-2D .-1和-25.(株洲中考)如图,数轴上点A 所表示的数的绝对值为( )A .2B .-2C .±2 D.以上均不对6.(长沙中考)下列四个数中,最大的数是( )A .-2 B.13C .0D .6 7.(玉林中考)下面的数与-2的和为0的是( )A .2B .-2C.12 D .-128.下列算式:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有( )A .1个B .2个C .3个D .4个9.计算1÷(-345)时,除法变为乘法正确的是( ) A .1×(-345) B .1×(+195)C.1×(+519) D.1×(-519)10.等式[(-8)-□]÷(-2)=4中□表示的数是( )A.1 B.-1C.-2 D.0二、填空题(每小题3分,共30分)11、 1.在0.6,-0.4,13,-0.25,0,2,-93中,整数有________,分数有_________.12、若│x+2│+│y-3│=0,则xy=________.13、化简:-497=______,4-16=______,-15-24=______.14.比132-大而比123小的所有整数的和为________.15.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-的值是__________.16.甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.17.1-3+5―7+……+97―99 =____________.18.将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是________米.19.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
人教版七年级数学上册第一章《有理数》单元测试题(含答案) 一、单选题 1.若一个数的倒数等于它本身,则这个数是( )A .1B .﹣1C .0D .1或﹣12.下列关系是正确的是( )A .30-<B .()30--<C .320-+>D .320-⨯< 3.66-的相反数是( )A .66-B .66C .166D .166- 4.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( ) A .62.2110⨯ B .52.2110⨯ C .322110⨯ D .60.22110⨯ 5.计算-1+2×(-3)的结果是( ).A .7B .-7C .5D .-56.2020的相反数是( )A .2020-B .12020C .12020-D .以上都不是 7.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A .0.1636×B .1.636×C .16.36×D .163.6×108.下列说法错误的是( )A .0.350是精确到0.001的近似数B .3.80万是精确到百位的近似数C .一个鸡蛋的质量为50.47g ,用四舍五入法将50.47精确到0.1的近似值为51.0D .近似数2.20是由数a 四舍五入得到的,那么数a 的取值范围是2.1952205a ≤<. 9.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .12<13D .-5<310.计算(﹣3)2的结果是( )A .﹣6B .6C .﹣9D .911.在+1,27,0,-5,-313这几个数中,整数有( ) A .1个 B .2个 C .3个 D .4个12.在数0,2,-3,-1.2中,属于负整数的是( )A .0B .2C .-3D .-1.2第II 卷(非选择题)二、填空题13.12-的相反数的倒数是_____. 14.当x =____________时,代数式201723)x x +-(的值为1.15.-3.5的相反数是_______,绝对值是________,倒数是_________.16.+3+(-7)=_______;(-32)+(+19)=_______.17.a 是负数可表示为a ___0; a 是非正数可表示a ___0; a 是正数可表示为a ___0;a 是非负数可表示为a ___0.(填> , <或=)18.某地区一月份的平均气温为-19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高_______ ℃.19.人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.飞机发动机的声音是130分贝,则飞机发动机的声音强度是说话声音强度的__倍.20.已知a =3,2b -=0,则a b= __________三、解答题21.在数轴上表示下列各数以及它们的相反数.0,-2,2.5.22.出租车司机赵师傅某天下午的营运全是在某条东西走向的公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程单位:千米如下:14+,5-,7+,4-,12-,3-. (1)赵师傅这天最后到达目的地时,距离下午出车时的出发地多远?在出发地的东边还是西边?(2)赵师傅这天下午共行车多少千米?(3)若每千米耗油0.3升,则这天下午赵师傅用了多少升油?23.阅读下面的解题过程,然后回答问题.计算:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦. 解:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦1151423⎛⎫=÷++⨯ ⎪⎝⎭(第一步) 11546=÷⨯(第二步) 65411=⨯⨯(第三步) 12011=. 上述解题过程是否有错误?若无错误,请指出每一步的根据;若有错误,请指出错误原因并予以更正.24.某公司6天内货品进出仓库的吨数如下:(“+”表示进库 ,“—”表示出库+21,-32,-16,+35,-38,-20(1)经过这6天,仓库里的货品是 (填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品580吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨4元,那么这6天要付多少元装卸费?25.有理数a 、b 在数轴上如图所示:化简:(1)|a |+|b |+|2﹣a |(2)|a +b |﹣|a ﹣b |﹣2|b ﹣1|26.已知下列用科学记数法表示的数,写出原来的数(1)42.0110⨯(2)56.07010⨯(3)5610⨯(4)410.27.计算:25.7+(﹣7.3)+(﹣13.7)+7.3.28.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负.2016年9月29日他先后办理了七笔业务:+2000元、﹣800元、+400元、﹣800元、+1400元、﹣1600元、﹣200元.(1)若他早上领取备用金4000元,那么下班时应交回银行 _________ 元钱;(2)请判断在这七次办理业务中,小张在第 __________次业务办理后手中现金最多,第___________次业务办理后手中现金最少;(3)若每办一件业务,银行发给业务量的0.1%作为奖励,小张这天应得奖金多少元?(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.参考答案1.D2.D3.B4.B5.B6.A7.B8.C9.D10.D11.C12.C13.2.14.1或2或-201715.3.5 3.52 7 -16.-4-1317.a<0,a≤0,a>0,a≥0 18.2119.81020.32或32-.21.0, 2,-2.5,在数轴上表示见解析22.(1)赵师傅这天最后到达目的地时,距离下午出车时的出发地3千米,在出发地的西边;(2)赵师傅这天下午共行车45千米;(3)13.5L23.有错误.第一步减法变加法时出现错误,减去一个数等于加上这个数的相反数,即括号内的各数都要变为原数的相反数,而本题只改变了括号内第一个数(1)的符号.正确解法:见解析,1207.24.(1)减少了(2)630吨(3)648元25.(1)2﹣b;(2)﹣2a+2b﹣2.26.(1)20100;(2)607000;(3)600000;(4)10000.27.1228.(1)4400;(2)五(3)七;(3)7.2元;。
人教版七年级数学上册《第一章有理数》单元测试卷(带答案)一、选择题1.若10℃表示零上10℃,则17-℃表示( )A .零上17℃B .零上27℃C .零下17℃D .零下17-℃2.以下说法正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .正有理数和负有理数统称有理数D .有理数包括整数、零、分数3.如图所示,在数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .3.1D .2.34.下列各数中,互为相反数的是( )A .13-与3- B .0与0 C .5--和5-D .12和0.5 5.- 3的绝对值是( )A .13B .3C .-3D .-136.在﹣2,3,0,﹣3.14这四个数中,最小的数为( )A .﹣2B .3C .0D .﹣3.147.下列计算正确的是( )A .﹣3+9=6B .4﹣(﹣2)=2C .(﹣4)×(﹣9)=﹣36D .23÷32=18.下列各对数中,数值相等的是( )A .2233()44和B .|-10|=10和-(-10)C .2233--()和 D .3223和9.我国南水北调东线北延工程2022年度供水任务顺利完成,共向黄河以北调189000000立方米,数据189000000用科学记数法表示为( ) A .618910⨯B .718.910⨯C .81.8910⨯D .91.8910⨯10.下列由四舍五入法得到的近似数精确到千位的是( )A .44.110⨯B .0.0035C .7658D .2.24万二、填空题11.直播购物逐渐成为人们一种主流的购物方式,10月21日“双十一”正式开始预售,据官方数据显示,李佳琦直播间累计观看人数达到了16750000人.请把数16750000用科学记数法表示为 .12.比较大小:-|-2.7| -(-3.3)(填“<”““>”或“=”).13.如图.A 、B 两点在数轴上(A 在B 的右侧),点A 表示的数是2,A 、B 之间的距离为4则点B 表示的数是14.若一0.5的倒数与m+4互为相反数,则m=三、计算题15.(1)18×(13-)-8÷(-2).(2)(-2)3+[-9+(-3)2×13] (3)11182414289--⨯-()() (4) 22333[2()2]22-÷-⨯--四、解答题16.世界最高峰珠穆朗玛峰的海拔高度是8844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?17.将﹣2.5,12,2,﹣(﹣3)这四个数在数轴上表示出来,并用“<”把它们连接起来.18.质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“-”记录,记录如下:-6,-3,-2,0,+1,+4,+5,-1(1)通过计算,求出8袋洗衣粉的总重量(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元19.若23(2)0x y ++-=,求xyx y-的值. 五、综合题20.如图,点A,B,C为数轴上三点,点A表示-2,点B表示4,点C表示8.(1)A、C两点间的距离是.(2)当点P以每秒1个单位的速度从点C出发向CA方向运动时,是否存在某一时刻,使得PA=3PB?若存在,请求出运动时间;若不存在,请说明理由.21.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)若以小明家为原点,向东的方向为正方向,用1个单位长度表示1km,请在如图所示的数轴,,表示出小彬家,小红家和学校的位置;上,分别用点A B C(2)小彬家与学校之间的距离为;(3)如果小明跑步的速度是200m/min,那么小明跑步一共用了多长时间?22.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一km天中七次行驶纪录如下:(单位:)第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距A地多远?(2)若每km耗油0.3升,问一天共耗油多少升?答案解析部分1.【答案】C2.【答案】B【解析】【解答】解:A:正整数和负整数统称整数,说法错误,漏掉了0;B:整数和分数统称有理数,说法正确;C:正有理数和负有理数统称有理数,说法错误,漏掉了0;D:有理数包括整数、零、分数,说法错误,整数里面已经包括了零。
初一数学上册第一单元有理数知识点归纳及测试题知识网络:一.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.二.有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.7.有理数乘方的法则:(1)正数的任何次幂都是正数;三.乘方的定义。
(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)(4)据规律底数的小数点移动一位,平方数的小数点移动二位.2.3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.概念定义:1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
数轴三要素:原点,正方向,单位长度。
难点:用点表示数5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。
在an 中,a叫做底数(basenumber),n叫做指数(exponeht)22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)知识点细解一、有理数概念1、正数与负数例1:按要求选择下列各数:8,3,0,-1.5,14,-0.037,+0.62,-3,132,98,+2,-7属于整数集合的有__________ 属于分数集合的有_________ _属于正数集合的有_______________ 属于负数集合的有_____________ 属于正整数集合的有____________ 属于负整数集合的有____________ 正分数集合的有_____________ 属于负分数集合的有__________ 属于非整数集合的有_________________属于非负数集合的有_________ 属于非负整数集合的有_________属于非正整数集合的有_______________例2 主动学习网饮料公司生产的一种瓶装饮料外包装上印有“600±30(mL)”字样,请问“±30mL”是什么含义?质检局对该产品抽查5瓶,容量分别为603mL,611mL,589mL,573mL,627mL,问抽查产品的容量是否合格?练习:1.若密云水库的水位比标准水位高出3cm记为+3cm,某月的水位记录中显示,1日水位为-5cm,2日水位为-1cm,3日水位为+4cm,则()A.1日与2日水位相差6cmB.1日与3日水位相差1cmC.2日与3日水位相差5cmD.均不正确2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球编号 1 2 3 4 5与标准质量的差(克)+4 +7 -3 -8 +9最接近标准质量的是_______号篮球;质量最大的篮球比质量最小的篮球重_______克.3.判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;2.数轴例3在数轴上表示下列各数,再按大小顺序用“<”号连接起来.-4,0,-4.5,-112,2,3.5,1,122例4如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为结论错误的是练习:1、实数,a b在数轴上表示如图所示,则A.a b o+< B.0ab< C.b a-> D.0a b-<2.数轴上有一点到原点的距离是5.5,那么这个点表示的数是_________.3.一个点从数轴的原点开始,先向右移3个单位长度,再向左移动5个单位长度,则终点表示的数是____.4.数轴上点A 对应的数为-3,那么与A 相距1个长度的点B 所对应的数是_________.3.相反数 例5.(1)-3与 互为相反数;0的相反数是 .(2)m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 . (3)已知9,a -=那么a -的相反数是 .已知9a =-,则a 的相反数是 . 例6如果0a <,化简下列各数的符号,并说出是正数还是负数(1)()a -+; (2)()a -- (3)[]()a -+- (4)[]()a ---练习:一个数的相反数的倒数是-4,这个数是__________如果a 与-3互为相反数,那么a 等于( )4.绝对值 例7:求绝对值.:(1)0.5; (2)12-; (3)-(-3); (4)-∣1.5∣.例8已知∣x ∣=4,∣y ∣=6,求代数式∣x+y ∣的值.练习:1、2--的倒数是 2..计算5(4.8) 2.3⨯-+-=____________.3..绝对值不大于3的整数有4..已知3,2,0,_________.x y xy x y ==<+则的值是模拟试题1、填空: ⑴若m ,n 互为相反数,则m + n = .⑵某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成 ;⑶某次乒乓球质量检测中,一只乒乓球超出标准0.02克记作+0.02克,那么-0.03可表示成 ;2、如图, 两点所表示的两数的( )A.和为正数 B.和为负数 C.积为正数 D.积为负数3、.如果,那么下列关系式中正确的是( ). A. B. C. D.4. 下列说法中不正确的是( )A.-5表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等. 5.一定是正数的是( )A.|m|+2 B.|m| C.m -3 D.-|m|6. 如果有理数a ,b 满足a +b>0,ab<0,则下列式子正确的是( )A.当a>0,b<0时,|a|>|b|B.当a<0,b>0时,|a|>|b|C.a>0,b>0D.a<0,b<07. 某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。