丰田诊断技术空燃比控制原理课件
- 格式:ppt
- 大小:2.96 MB
- 文档页数:2
为适应日益严格的汽车尾气排放要求,传统的氧化锆式氧传感器状态型监测精度已远远不能满足要求,监测范围更大、性能更优越的宽带型氧传感器应用越来越多。
本文以2010款丰田卡罗拉车1ZR-FE 发动机空燃比传感器为例,详细介绍其工作原理及检测方法。
1 空燃比传感器的工作原理空燃比传感器的工作原理与普通氧化锆型氧传感器的工作原理基本相同,都采用锆元件,但是进行了优化升级,充分应用氧浓差及泵氧原理。
根据氧化锆这种固体电解质的特性,当氧化锆两侧铂电极的含氧量存在差别时,在正、负铂电极上会产生相应的电动势;反之,当在氧化锆两侧的铂电极上加上一定驱动电压时,内部氧离子就会产生规律性运动,在正、负极之间重新分配,从而改变输出电流和电压。
1.1 空燃比传感器的作用及安装位置与传统氧传感器相比,空燃比传感器信号既满足准确性又满足快速性要求,能够随时调节空燃比大小始终保持在理论值区域,特别是在汽车某些典型工况下(如冷机起动、暖机、急加速、急减速等),能有效控制所需空燃比,克服传统氧传感器监测缺陷,极大降低了有害气体的产生,获得了良好的排放性。
在丰田卡罗拉车发动机双氧传感器的排放系统中,上游氧传感器选用空燃比传感器,下游氧传感器选用加热型的氧化锆式氧传感器。
1.2 空燃比传感器的基本结构丰田卡罗拉车发动机采用4线制空燃比传感器,氧化锆元件结构为平面型,属临界电流型宽带氧传感器。
外观上与传统氧化锆型传感器极为相似,注意不要混淆、错误使用和安装。
空燃比传感器本体的两侧设置铂电极,正极设在封闭的空气腔一侧,负极与尾气间填充多孔性的扩散阻力层和多孔氧化铝层,区别于传统氧传感器。
尾气中的氧分子要到达负极侧,需要依次通过多孔性氧化铝层及扩散阻力层,反之亦然。
空燃比传感器的基本结构如图1所示。
1.3 空燃比传感器控制原理及信号输出特性发动机控制单元(ECM )内部有特殊设计的稳压电路,其主要作用是在空燃比传感器空气腔侧铂电极(正极)提供3.3 V 恒定电压,同时在尾气侧铂电丰田卡罗拉车发动机空燃比传感器的原理与检修淄博市技师学院 孙长新1—陶瓷涂层;2—多孔氧化铝;3—扩散阻力层;4—氧化铝;5—空气;6—加热器;7—铂电极。
丰田发动机空燃比传感器工作解析随着人们环保意识的提高,对汽车尾气净化的要求越来越高,对尾气排放控制标准也越来越严格。
氧传感器作为发动机电控系统的主要排放控制部件之一,主要是配合三元催化转换器(TWC)在正常的运转工况时进行有效的尾气排放控制,以降低汽车尾气排放。
传统的两状态型氧传感器在进行燃油反馈控制时,只能识别和判断混合气的浓与稀状态,不能精确判断空燃比大小,故其反馈范围狭窄且变化不稳定。
而如今为了达到更好的燃油控制效果和降低排放,需要进行非理论空燃比的闭环燃油控制,ECM 必须能够瞬间判断当前工况与实际空燃比的大小,以进行快速的燃油反馈调节,故需要使用一种反应非常灵敏并且检测精度高、能连续检测空燃比大小的新型氧传感器。
专家们把该传感器叫空燃比传感器或宽带型、线性型、稀式氧传感器。
1 空燃比传感器工作解析目前丰田 PREVIA、CAMRY 等新车型都采用线性型空燃比传感器,如图 1 所示。
根据其测量的实际空燃比数值大小,ECM 能及时调整实际空燃比,并控制在理论空燃比(14.7:1)位置,且调整速度极快,很大程度上降低了车辆在冷启动、加速、减速等工况下的废气排放。
空燃比传感器的结构如图2 所示。
传感器最基本的部分是ZrO2 固态电解质,其夹在两个铂电极之间,同传统型氧传感器差不多,主要区别于保护罩的部位,空燃比传感器的传感元件多了一个特殊设计的用于限制空气扩散的扩散阻力层和一个封闭的空气腔。
从图 3 可以看出,传统氧传感器空气腔是直通外界大气的。
空燃比传感器是根据氧气泵原理来工作的,ECM 通过内部的一个稳压电路,在空燃比传感器空气腔侧铂电极和尾气侧铂电极分别施加一个 3.3 V 和一个 3.0 V 的固定电压,如图 4 所示。
当废气中 O2 浓度变化时,空燃比传感器从空气腔泵出或泵入O2,产生一个大小、方向不同的泵送电流输入到 ECM 内部的检测电路,产生与废气中 O2 含量相应的电压值。
当λ<1,即浓混合气时,废气中的 O2 很少,HC、CO 未燃烧干净。