支持向量机理论概述
- 格式:doc
- 大小:24.00 KB
- 文档页数:4
3.支持向量机(回归)3.1.1 支持向量机支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。
它将输入样本集合变换到高维空间使得其分离性状况得到改善。
它的结构酷似三层感知器,是构造分类规则的通用方法。
SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。
作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。
所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代替在特征空间中内积(),())x y φφ(的计算。
因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。
由于内积运算量相当大,核技巧就是为了降低计算量而生的。
特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间nR上的二元函数,设H 中的规范正交基为12(),(),...,(),...n x x x φφφ。
如果221(,)((),()),{}k k k k k K x y a x y a lφφ∞==∈∑,那么取1()()k k k x a x φφ∞==∑即为所求的非线性嵌入映射。
由于核函数(,)K x y 的定义域是原来的输入空间,而不是高维的特征空间。
因此,巧妙地避开了计算高维内积(),())x y φφ(所需付出的计算代价。
实际计算中,我们只要选定一个(,)K x y ,并不去重构嵌入映射1()()k k k x a x φφ∞==∑。
所以寻找核函数(,)K x y (对称且非负)就是主要任务了。
满足以上条件的核函数很多,例如● 可以取为d-阶多项式:(,)(1)dK x y x y =+ ,其中y 为固定元素。
支持向量机支持向量机,英文名为support vector machine,一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划(convex quadratic programming)问题的求解,支持向量机的学习算法是求解凸二次规划的最优化算法。
其方法包含构建由简到繁的模型:线性可分支持向量机、线性支持向量机和非线性支持向量机。
线性可分支持向量机假定一特征空间上的训练数据集T={(x1,y1),(x2,y2),⋯,(x N,y N)},其中x i∈χ= R n,y i∈Y={+1,−1},i=1,2,⋯,N,x i为第i个特征向量,也就是实例,y i为x i的类标记,当y i=+1时,称x i为正例;当y i=−1时,称x i为负例,(x i,y i)称为样本点。
再假设训练数据集是线性可分的,即存在某个超平面能够将正例和负例完全正确的分开,不妨设分离超平面方程为w∙x+b=0,法向量为w、截距为b。
一般地,当训练数据集线性可分时,存在无穷多个分离超平面可将两类数据正确分开,线性可分支持向量机利用间隔最大化求最优分离超平面,这是解是唯一的。
若最优分离超平面为w∗∙x+b∗=0,则分类决策函数为f(x)=sign(w∗∙x+b∗)。
在上图中,有A、B、C三个点,表示三个实例,设“。
”表示正类,“×”表示负类,则这三个点全在正类。
A距分类超平面较远,若预测该点为正类就比较确信预测是正确的;C距分类超平面较近,若预测该点为负类就不那么确信;B介于AC两者之间,预测为正类的确信度也在A与C之间。
故一般来说,点距离分离超平面的远近可以表示分类预测的确信程度。
在超平面w ∙x +b =0确定的情况下,|w ∙x +b |能够相对地表示点x 到超平面的远近,而w ∙x +b 的符号与类标记y 的符号是否一致可表示分类是否正确,所以y (w ∙x +b )可以来表示分类的真确性及确信度,我们称之为函数间隔。
支持向量机基本原理介绍在机器学习领域中,支持向量机(Support Vector Machine,简称SVM)被广泛应用于分类和回归问题。
它是一种强大的监督学习算法,具有较好的泛化性能和统计效率。
本文将详细介绍支持向量机的基本原理。
支持向量机的基本概念超平面在支持向量机中,首先需要了解超平面的概念。
超平面是一个将n维空间分割成两个部分的(n-1)维平面。
在二维空间中,超平面是一条直线,可以将平面分为两个部分。
在三维空间中,超平面是一个平面,可以将空间分为两个部分。
在支持向量机中,我们寻找一个超平面,将样本点正确地划分为不同的类别。
支持向量在寻找超平面的过程中,支持向量是非常重要的概念。
支持向量是离超平面最近的样本点,它们决定了超平面的位置和方向。
在支持向量机中,只有支持向量对分类结果产生影响,其他样本点对于超平面的位置和方向没有影响。
间隔和最大间隔分类器在支持向量机中,我们希望找到的超平面能够使得不同类别的样本点之间的间隔最大化。
间隔是指离超平面最近的两个不同类别的支持向量之间的距离。
最大间隔分类器就是寻找一个超平面,使得这个间隔最大。
支持向量机的分类算法线性可分支持向量机在理想情况下,我们希望数据集是线性可分的,即存在一个超平面可以完美地将不同类别的样本点分开。
线性可分支持向量机的目标就是找到这个超平面。
为了找到最佳的超平面,我们需要定义一个优化问题。
优化问题的目标是最大化间隔,并且要求在超平面两侧的样本点属于不同的类别。
数学表达如下:通过求解这个优化问题,我们可以得到超平面的法向量w和截距b。
分类器可以表示为:软间隔支持向量机现实中的数据往往是不完美的,很难找到一个能够完美地将样本点分开的超平面。
为了解决这个问题,我们引入软间隔支持向量机。
软间隔支持向量机允许一些样本点出现在超平面的错误一侧。
通过引入松弛变量,优化问题变为:这里C是一个常数,用于控制超平面的错误分类。
C越大,超平面越倾向于正确分类,C越小,超平面容忍错误分类的程度越高。
支持向量机算法原理支持向量机(SupportVectorMachine,SVM)是一种经典的机器学习算法,是指对二类分类问题,它可以确定一个最佳的线性决策边界,以最大限度地提高分类的准确率。
它将分类任务转换为一个凸二次规划问题,然后使用核函数扩展到非线性情况。
它被广泛应用于许多类型的学习任务,包括分类和回归。
1.持向量机的概念所谓支持向量机,是指一种经典的机器学习算法,用于解决二分类问题。
该算法总是朝着最大限度地改善结果的方向迭代,并将给定的数据集呈现为一个映射,以实现最佳的分类结果。
支持向量机算法的主要思想是,在样本空间中,将数据用线性分割法分为两个独立的子空间,从而获得较高的分类准确率。
2.持向量机的数学原理支持向量机的数学基础乃在于凸优化,它是在线性可分的情况下,使分类器的准确率最大化。
支持向量机算法可以将分类问题转换为一个凸二次规划问题,以求得最优解。
在这个规划问题中,我们要求最小化一个函数,使得能够将样本以最佳方式分开,以确定决策边界。
它需要求解最优化问题中的最大间隔,故而也被称之为最大间隔分类器,把这个问题的最优解称为支持向量(Support Vector)。
3.持向量机的分类a.性可分支持向量机:是用于解决线性可分的二分类问题的支持向量机,其中只有两个分类器,我们可以使用给定的数据集来找到一个线性分类器,这样就可以将样本点映射到不同的类。
b.性不可分支持向量机:是针对线性不可分的二分类问题的支持向量机,我们可以使用核函数将线性不可分的问题扩展到高维来获得线性可分的形式,这种类型的支持向量机也是使用类似的求解方法来构建的,但是通过将线性不可分的问题扩展到高维,它可以更好地描述数据。
c.分类支持向量机:是一种多类支持向量机,它可以用于解决多个分类问题,它可以用于分类要素的多分类以及多个分类分量的情况,这是一种非常有用的技术,在主机器学习任务中得到了广泛应用。
4.持向量机的优势a.持向量机算法不仅可以实现高准确率,而且运行时间短。
支持向量机的概念
支持向量机(Support Vector Machine,SVM)是一种常用的
机器学习算法,用于分类和回归问题。
它的核心思想是将样本映射到高维空间中,并在该空间中找到一个最优的超平面,以将不同类别的样本最大程度地分开。
具体来说,SVM在高维空间中寻找一个超平面,使得该超平
面与离它最近的各类样本的距离最大。
这些离超平面最近的样本点被称为支持向量,因为它们对于确定超平面起到了关键的作用。
通过这种方式,SVM能够有效地处理高维数据,并在
复杂的数据集中实现较好的分类效果。
SVM的基本原理可以理解为将原始的样本数据点映射到一个
高维特征空间,并通过最大化样本点与超平面之间的间隔来找到最优的超平面。
间隔表示了样本点与决策边界的距离,支持向量机的目标是找到使间隔最大化的超平面。
SVM的优点包括可以处理高维数据、对于样本点的位置不敏感、具有较好的泛化性能等。
它在分类问题上的应用非常广泛,并且在文本分类、图像识别、生物信息学等领域取得了很好的效果。
然而,SVM也存在一些缺点,例如对大规模数据集的
处理效率较低、需要选择合适的核函数等。
支持向量机的概念可以通过上述的描述理解,它是一种用于分类和回归问题的机器学习算法,通过在高维空间中寻找最优的超平面来实现分类任务。
第1 2章12.1 案例背景12.1.1 SVM概述支持向量机(Support Vector Machine,SVM)由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归。
支持向量机的主要思想是建立一个分类超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化;支持向量机的理论基础是统计学习理论,更精确地说,支持向量机是结构风险最小化的近似实现。
这个原理基于这样的事实:学习机器在测试数据上的误差率(即泛化误差率)以训练误差率和一个依赖于VC维数(Vapnik - Chervonenkis dimension)的项的和为界,在可分模式情况下,支持向量机对于前一项的值为零,并且使第二项最小化。
因此,尽管它不利用问题的领域内部问题,但在模式分类问题上支持向量机能提供好的泛化性能,这个属性是支持向量机特有的。
支持向量机具有以下的优点:①通用性:能够在很广的各种函数集中构造函数;②鲁棒性:不需要微调;③有效性:在解决实际问题中总是属于最好的方法之一;④计算简单:方法的实现只需要利用简单的优化技术;⑤理论上完善:基于VC推广性理论的框架。
在“支持向量”x(i)和输入空间抽取的向量x之间的内积核这一概念是构造支持向量机学习算法的关键。
支持向量机是由算法从训练数据中抽取的小的子集构成。
支持向量机的体系结构如图12 -1所示。
图12-1 支持向量机的体系结构其中K为核函数,其种类主要有:线性核函数:K(x,x i)=x T x i;多项式核函数:K(x,x i)=(γx T x i+r)p,γ>0;径向基核函数:K(x,x i )=exp(-γ∥x −x i ∥2), γ>0;两层感知器核函数:K(x,x i )=tanh(γx T x i+r )。
1.二分类支持向量机C - SVC 模型是比较常见的二分类支持向量机模型,其具体形式如下:1)设已知训练集:T ={(x 1,y 1),…,(x i ,y i )}∈(X ×Y )ι其中,x i ∈X =R n ,y i ∈Y ={1,-1}( i =1,2,…,ι);x i 为特征向量。
支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
第3章支持向量机基础By Dean支持向量机(SupportVectorMachies)是由Vapiiik等人于1995年提出来的。
之后随着统计理论的发展,支持向量机也逐渐受到了各领域研究者的关注,在很短的时间就得到很广泛的应用。
支持向量机是建立在统计学习理论的VC维理论和结构风险最小化原理基础上的,利用有限的样本所提供的信息对模型的复杂性和学习能力两者进行了寻求最佳的折衷,以获得绘好的泛化能力。
SVM的基本思想是把训练数据非线性的映射到一个更高维的特征空间(Hilbert空间)中,在这个高维的特征空间中寻找到一个超平而使得正例和反例两者间的隔离边缘被最大化。
SVM的出现有效的解决了传统的神经网络结果选择问题、局部极小值、过拟合等问题。
并且在小样本、非线性、数据高维等机器学习问题中表现出很多令人注目的性质,被广泛地应用在模式识别,数据挖掘等领域(张学工2000:崔伟东2001) o支持向量机可以用于分类和回归问题,本章着重介绍分类相关的知识。
3. 1 SVM的基本思想3.1.1最优分类面SVM是由线性可分情况的最优分类而发展而來的,用于两类问题的分类。
下而用一个二维两类问题來说明SVM基本思想(白鹏等,2008) o图3・1最优超平面示意图C1和C2代表两类数据样本,各样本在二维中显示如图3. 1,图中的直线PO,P1 就是分类函数。
如果一个线性函数就完全可以把两类所有样本分开,那么就称这些数据是线性可分的:否则称非线性可分。
假设两类线性可分的训练数据样本 {(巾力),(尢2』2),…(祁珈)},焉G R d (d代表样本人的长度),刃6 {+1,-1}, i = 其线性判别函数的一般表达式是f(x) = w*x + b,该函数对应的分类而方程是:w * x + b = 0 (3-1)线性判别函数的值一般是连续的实数,而分类问题需要输出的是离散值。
例如利用数值-1表示类别C1,而用数值+1表示类别C2.所有的样本都只能用数值-1 和+1表示。
支持向量机在图像识别中的应用一、引言随着计算机技术的快速发展,图像处理技术也在不断提高。
图像识别起初被用于军事和政府领域,但现在被广泛应用于各种行业。
支持向量机(Support Vector Machine, SVM)是一种利用统计学习理论来进行分类和回归分析的算法。
本文将探讨支持向量机在图像识别中的应用。
二、支持向量机概述支持向量机是一种用于二元分离和回归问题的学习算法。
其核心是求出一个最佳决策超平面,将不同的样本分开。
在支持向量机中,超平面被定义为一个向量集和一个常数项的线性组合,如下所示:f(x) = w * x + b其中w为权重向量,b为偏置项,x为样本特征向量。
支持向量机通过对于样本的标签来刻画决策面,即分割超平面,使得具有不同标签的样本被分在超平面的两侧,并且能够尽可能地增大两类样本之间的距离。
这个距离被称为“间隔”。
支持向量机的目标是找到一个能够将数据正确分开的超平面,并且使得这个超平面的间隔最大,即最大间隔。
三、支持向量机在图像识别中的应用1. 人脸识别支持向量机在人脸识别中的应用较为广泛。
针对大量人脸数据,可以使用支持向量机进行分类和训练。
支持向量机优越的分类功能和良好的泛化能力使得其成为人脸识别的有效算法之一。
对于特定的人脸,支持向量机可以计算出对应的特征向量,然后将该向量输入分类器进行识别。
2. 图像分类支持向量机也可以用于图像分类。
在图像分类任务中,支持向量机的目标是将数据分为不同的类别。
例如,可以使用支持向量机将数字、字母或物品的图像分类。
支持向量机可以根据图像中像素的灰度值来确定类别,或者根据像素中的局部特征来确定类别。
3. 目标检测支持向量机也可以用于目标检测。
在目标检测任务中,支持向量机的目标是确定图像中是否存在目标区域。
支持向量机对于正确识别物体的形状和大小具有良好的鲁棒性和准确性,使其成为目标检测的理想工具之一。
4. 图像分割支持向量机还可以用于图像分割。
图像分割是将图像分成多个区域以便更好地分析和处理图像。
支持向量机基本原理支持向量机基本原理支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的分类器,广泛应用于模式识别、图像处理、生物信息学等领域。
SVM在处理高维数据和小样本问题时表现出色,具有较强的泛化能力和鲁棒性。
一、线性可分支持向量机1.1 概念定义给定一个训练数据集$D=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$,其中$x_i\in R^n$为输入样本,$y_i\in\{-1,1\}$为输出标记。
线性可分支持向量机的目标是找到一个超平面将不同类别的样本分开,并使得该超平面到最近的样本点距离最大。
设超平面为$x^Tw+b=0$,其中$w\in R^n$为法向量,$b\in R$为截距,则样本点$x_i$到超平面的距离为:$$r_i=\frac{|x_i^Tw+b|}{||w||}$$对于任意一个超平面,其分类效果可以用间隔来度量。
间隔指的是两个异类样本点到超平面之间的距离。
因此,最大化间隔可以转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq1,\quad i=1,2,...,N$$其中,$y_i(x_i^Tw+b)-1$为样本点$x_i$到超平面的函数间隔。
因为函数间隔不唯一,因此我们需要将其转化为几何间隔。
1.2 函数间隔与几何间隔对于一个给定的超平面,其函数间隔定义为:$$\hat{\gamma}_i=y_i(x_i^Tw+b)$$而几何间隔定义为:$$\gamma_i=\frac{\hat{\gamma}_i}{||w||}$$可以证明,对于任意一个样本点$x_i$,其几何间隔$\gamma_i$都是该点到超平面的最短距离。
因此,我们可以将最大化几何间隔转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq\gamma,\quad i=1,2,...,N$$其中$\gamma$是任意正数。
支持向量机理论概述
中图分类号:o213 文献标识:a 文章编号:1009-4202(2010)11-347-01
摘要支持向量机是数据挖掘的新方法,也是一种小样本统计工具,它在解决小样本、非线性及高维的模式识别问题上具有其他机器学习方法难以企及的优势。
本文概述了支持向量机的理论发展过程,并在前人研究的基础上,对支持向量机的算法进行了改进。
关键词支持向量机核函数多分类
一、支持向量机概念
支持向量机(support vector machine,svm)是由vapnik等人提出的一种新的机器学习方法,是以vc维理论和结构风险最小化原则为基础的。
1981年,vapnik和他的合作者提出了svm的重要基础理论¬¬---vc维。
1982年,vapnik提出了具有划时代意义的结构风险最小化原则。
1992年,boser.guyon和vapnik等人提出最优边界分类器算法,这是支持向量机算法的最初模型。
1993年,cortes和vapnik进一步探讨了非线性情况下最优边界分类问题。
二、支持向量机的理论发展
(1)核函数的构造,如核主成分分析等。
基于不同的应用领域,构造不同的核函数。
现在核函数广泛应用的类型有:多项式逼近、贝叶斯分类器、径向机函数、多层感知器等。
(2)svm从两类问题向多类问题的推广,以weston在1998年提
出的多类算法为代表,在经典svm理论的基础上,直接在目标函数上进行改进,重新构造多值分类模型,建立k分类svm。
(3)与目前其他机器学习方法的融合。
如:最小二乘支持向量机,研究的问题已推广到对于大规模数据集的处理;处理数据的鲁棒性;参数调节和选择问题等。
(4)与数据预处理方法的结合,将数据中脱离领域知识的信息即数据本身的性质融入svm的算法而产生的新算法。
(5)svm训练算法的探索,提高svm的计算速度,处理大规模问题。
vapnik在1995年提出了一种块算法,即如果删除矩中对应拉格朗日乘数为0的行和列,将不会影响最终结果。
osuna提出了一种分解算法,应用于人脸识别领域。
joachims在1998年将osuna 提出的分解策略推广到解决大型svm学习的算法中。
(6)svm的参数选择问题。
最常用的方法是经验凑试法和格点,但这两种方法都是基于大量实验的,获得的参数通常也不是最优的;chapelle提出用梯度下降法来完成svm参数选择。
三、支持向量机算法的改进
支持向量机在实际应用中也暴露出一些缺点,如计算量大,速度慢、参数选择经验性强、不能很好地解决多分类问题等。
其中速度问题在很大程度上限制了支持向量机的应用,成为支持向量机方法进入大规模实用化阶段的瓶颈。
支持向量机训练速度慢的主要原因是训练过程中进行了大量的二次规划计算,而分类速度慢的主要原因是分类过程中有大量的支持向量参与了计算。
本文对支持向量机
的算法进行了大量的改进和创造性工作,主要分为五个方面:(1)样本的确定和特征权重的选取。
为了提高分类准确性,将每类训练样本集进行聚类分成若干子集,用子集中心组成新的训练样本集训练支持向量机,将子集中心的系数赋给子集中每个样本。
考察每个子集的每个样本的系数的改变对目标函数的影响。
若一个子集所有样本对目标函数的影响都不同,则进一步划分,直到没有新的拆分为止。
优点是提高了算法速度,同时减少训练数据中的野值对分类结果的影响;缺点是牺牲了解的稀疏性。
(2)参数值和核函数的选择。
用v-svm分类算法。
其中v的物理含义是:错分样本数占总样本数的上界和支持向量数占总样本数的下界。
这种改造是非常合理的,因为原始支持向量机中支持向量由边界上的样本和错分样本组成,支持向量数一定大于错分样本数,v正好表示二者之间的某个中间值。
(3)大规模样本数据,对训练算法进行改进。
优化支持向量的个数,提高训练速度。
通过选取不同的凸函数,得到了不同的二次规划和线性规划模型,这些模型在允许我们更加灵活的选取核函数的同时,仍然可以得到和传统支持向量回归机相近的决策函数,利用特征值、特征矢量及伪逆运算的并行计算方法,建立一种提取支持向量的快速算法。
(4)噪音和孤立点数据的处理。
基于支持向量数据域描述的模糊隶属度函数模型,根据样本到特征空间最小包含超球球心的距离来确定其隶属度,该模型可以有效减少回归误差,提高支持向量机
抗噪声能力。
(5)多分类算法的研究。
基于核聚类方法的多层次支持向量机分类树,将核空间中的无监督学习方法和有监督学习方法结合起来,实现了一种结构更加简洁清晰、计算效率更高的多层支持向量机分类树算法,实现样本多分类。
参考文献:
[1]v.n.vapnik,a.y.chervoknenkis,theory of pattem reeognition.nauka.moseow.1974.
[2]b.boxer,guyon,v.n.vapnik,a training algorithln for optimal margin classifiers.in:proceedings of the fifth annua,workshop on computational learning theory.san mateo,ca.1992:144-152.
[3]赵春晖,陈万海,郭春燕.多类支持向量机方法的研究现状与分析.智能系统学报.2007.2(2):11-17.
[4]李昆仑,黄厚宽,田盛丰.模糊多类支持向量机模型.电子学报.2004.32(5):830-832.。