理论力学(第七版)课后题答案哈工大
- 格式:pdf
- 大小:9.96 MB
- 文档页数:210
第5章 摩 擦5-1 如图5-1a 所示,置于V 型槽中的棒料上作用1力偶,力偶矩m N 15⋅=M 时,刚好能转动此棒料。
已知棒料重力N 400=P ,直径m 25.0=D ,不计滚动摩阻。
求棒料与V 形槽间的静摩擦因数f s 。
(a)(b)图5-1解 圆柱体为研究对象,受力如图5-1b 所示,F s1,F s2为临界最大摩擦力。
0=∑x F ,045cos 2s 1N =°−+P F F (1) 0=∑y F ,045sin 1s 2N =°−−P F F (2) 0=∑O M ,0222s 1s =−+M DF D F(3)临界状态摩擦定律:1N s 1s F f F =(4) 2N s 2s F f F =(5)以上5式联立,化得 0145cos s2s =+°−MPDf f 代入所给数据得01714.4s 2s =+−f f 方程有2根:442.4s1=f (不合理), 223.0s2=f (是解)故棒料与V 形槽间的摩擦因数223.0s =f5-2 梯子AB 靠在墙上,其重力为N 200=P,如图5-2a 所示。
梯长为l ,并与水平面交角°=60θ。
已知接触面间的静摩擦因数均为0.25。
今有1重力为650 N 的人沿梯向上爬,问人所能达到的最高点C 到点A 的距离s 应为多少?AN F As F(a)(b)图5-2解 梯子为研究对象,受力如图5-2b 所示,刚刚要滑动时,A ,B 处都达最大静摩擦力。
人重力N 650=W ,平衡方程: 0=∑x F , 0s N =−A B F F (1) 0=∑y F , 0s N =−−+W P F F B A(2)0=∑A M ,060cos 60sin 60cos 60cos 2s N =°−°−°+°l F l F Ws lPB B (3) 临界补充方程:A s A F f F N s = (4)B s B F f F N s =(5)联立以上5式,解得 N 80012sN =++=f WP F A ,N 200s =A F N 200)(12s N =++=W P f f F sB ,N 50s =B F l PF f W l s B 456.02)3[(N s =−+=5-3 2根相同的匀质杆AB 和BC ,在端点B 用光滑铰链连接,A ,C 端放在不光滑的水平面上,如图5-3a 所示。
集美大学诚毅学院机械1093期末复习材料理论力学(思考题答案)思考题i-i猛明下列戏子与丈宇的盘义和区別.(D科二孔,(2)幵一盼⑶力靳等效于力列,*W?答】⑴力乌和町,大小相等帯柯相岡g(2)N和&大小相萄⑶耐刑耳的夫小相等, 方向si^ats同亠1-2试X别片=眄|压和血=凤+骂两个等戎代表的意义。
【岸答】町一耐十用朮示朋是任意方向上箭个为门和A的合力洽力弘的大小和方问由平行四边形抚阳鴉定;打=片一%表示忌足同方向上蘭个力几和月的合.乩含力A的大小为F L和E的大小的和I方向与Fl和F.的方向科同3【解答】均有错•正确图如答1一1图。
1—3图1 - 1C1)〜1-1(0中各物体的受力番是否错谋?如何改正?1-4 刚体上△点受力尸作用.in 18 1-2所示,问罷否在。
点加一个力懐刚体平箕。
为什么?Ul 1 -2(a)也fS P= 0【解答1 不能。
当在E 点械抑力怖时,不能同时保订丿 1,故不能平衡B2JM= o1- 5 如摆】一3所冻结均•科丿JF 作用在E 点,至统能否乎猶?若力F 仍作用在丑点,袒可住 愆改变F 的方向,F 在什么方向上结购能平衡? 上匕解答】不能, 来/在如簷范围内可以令结构平鸳,如着? 一 3圖所示.1- 6 将如下间题抽象为力学模型,充分发挥你们的想象、分析和抽躱能力*试画出它心的力 学荒圏及受力<1)用两根细绳將B 光灯吊挂在天花板上»(?)水面匕的一块浮冰*G) 本打开的韦静止于桌面上; <4) 一个人坐在一只足球上*【解答】⑴⑵图1-4<4)u1 -7若将图1-5屮力F作用于三锻拱供较陡C处的请订上,所有物体里虽不计试分别画出左、右两拱茂销匚的受力圈八刃若傭订匚碾于AC•分别画岀汗、右两拱的受力图H3)若洌订C 属于EC,分鬧画出古、右两拱的量力阳°3 1-5mA2_1输亀钱普麦/相同时,电线下垂量片趙小■电线捷易亍拉Wh 为什么?【網答】可儒得J = F B =疵;=好也越小恥越小不和尸庞儿助以电线更易于拉2-2图2 — 1所赤时三种机构,构件自童不计9翅略靡擦,, 平力F,问Aifc 的妁京力是否相同。
哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。
5-1 图示曲线规尺的各杆, 长为OA =AB =200 mm ,CD = DE = AC = AE = 50mm 。
如杆 OA 以等角速度 rad/s 5πω=绕 O 轴转动,并且当运动开始时,杆 OA 水平向右,求尺上点 D 的运动方程和轨迹。
解:如图所示 ∠AOB =ωt ,则点 D 坐标为cos D x OA t ω=⋅sin 2sin D y OA t AC t ωω=⋅−⋅代入已知数据,得到点 D 的运动方程为200cos 5D x t π=× 200sin250sin 55100sin 5D y t t tπππ=×−××=×把以上两式消去 t 得点 D 轨迹方程22221200100x y += 即,D 点轨迹为中心在(0, 0),长半轴为0.2 m ,短半轴为0.1 m 的椭圆。
6-4 机构如图所示,假定杆AB 以匀速v 运动,开始时0ϕ=。
求当4πϕ=时,摇杆OC 的角速度和角加速度。
解:依题意,在0ϕ=时,A 在D 处。
由几何关系得tan vt l ϕ=杆OC 的运动方程为arctanvt lϕ= 角速度222vll v tωϕ==+& 角加速度322222()v lt l v t αϕ==+&&当4πϕ=时,vt l =。
将vt l =代入上二式得 2v lω=222v lα=另解:几何关系 tan vtlϕ=两边对t 求导,可得 2sec v l ϕϕ=& 即 2cos v l ϕϕ=& ;再求导,得 2cos sin v l ϕϕϕϕ=−⋅&&& ,将4πϕ=时,vt l=代入上二式得2vlωϕ==& 222v lαϕ==&&6-5 如图所示,曲柄 CB 以等角速度0ω绕轴 C 转动,其转动方程为0t ϕω=。
滑块 B 带动摇杆 OA 绕轴 O 转动。
哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。