概率论上的母函数
- 格式:doc
- 大小:160.00 KB
- 文档页数:6
几何分布的概率母函数1.引言1.1 概述几何分布是概率论与统计学中一种常见的离散概率分布。
它描述了在一系列独立的伯努利试验中,第一次成功所需的次数的概率分布。
在几何分布中,每次试验都只有两个可能的结果,即成功或失败。
成功的概率保持不变,并且每次试验都是相互独立的。
几何分布最常见的应用是在分析首次成功的情况,比如掷硬币直到出现正面的次数、试验直到观察到一颗坏的机器等。
概率母函数是一种描述离散概率分布的有效工具。
它能够将概率分布的特征转化为数学表达式,从而帮助我们更好地理解和分析分布的性质。
本文将重点讨论几何分布的概率母函数及其性质。
首先,我们将介绍几何分布的定义和特点,包括其数学表达式、期望和方差等。
然后,我们会详细讨论几何分布的概率母函数,并探究其在分布性质推导和统计推断中的作用。
通过研究几何分布的概率母函数,我们可以更深入地理解几何分布的特点和性质。
同时,我们也可以借助概率母函数的计算和性质,进行几何分布相关问题的求解和统计分析。
最后,我们将总结几何分布的概率母函数的重要性,并展望其在实际应用中的潜力。
几何分布作为一种重要的概率模型,在实际中有着广泛的应用。
例如,在可靠性工程、经济学、生物学和市场营销等领域中,几何分布的概率母函数可以帮助我们对随机事件的发生进行建模和分析,从而做出更准确的预测和决策。
总之,本文旨在探讨几何分布的概率母函数及其在实际应用中的重要性和潜力。
通过深入研究几何分布的概率母函数,我们可以更好地理解和分析几何分布的特点,并将其应用于实际问题的求解与分析中。
1.2文章结构文章结构部分内容可以按照以下方式编写:文章结构:本文分为引言、正文和结论三个部分。
引言部分主要对几何分布的概率母函数进行概述,并介绍了文章的结构和目的。
正文部分主要从两个方面进行探讨。
首先,在2.1节中,我们将给出几何分布的定义和特点,明确几何分布在概率论中的地位和基本性质。
其次,在2.2节中,我们将详细介绍几何分布的概率母函数及其性质。
母函数的概念和使用
母函数是组合数学中的一种重要工具,用于描述序列的生成函数。
它可以将序列转化为形式简单的多项式,从而方便地进行计算和推导。
形式上,对于序列$\{a_n\}$,它的母函数可以定义为:
$A(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...$
母函数$A(x)$通常被视为$x$的函数,可以进行各种计算操作,比如加法、乘法、求导等。
母函数的使用有以下几个方面:
1. 求序列的常用操作:对于给定的序列,可以通过母函数求导、乘法、加法等操作得到新的序列。
例如,序列的微分对应于母函数的求导,序列的乘法对应于母函数的乘法,序列的加法对应于母函数的加法。
2. 求序列的递推关系:通过构造序列的母函数,可以得到序列的递推关系。
递推关系描述了序列相邻项之间的关系,是解决组合计数问题的关键。
通过求解递推关系,可以得到序列的通项公式,从而得到更深入的结论。
3. 求序列的生成函数:母函数可以将序列转化为一个形式简单的多项式。
通过对母函数进行逆变换,可以得到序列的生成函数,从而用多项式的形式来表示序列。
生成函数是分析序列性
质的一种强有力的工具,可以进行各种计算和推导。
母函数在组合计数、离散数学和概率等领域中具有广泛的应用,可以解决各种组合计数问题,如排列组合、图论、走迷宫等问题。
同时,母函数也是解决一些难题的关键,在一些具有复杂递推关系的序列中起到了重要作用。
母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。
如果系数不是常数,需要根据具体情况进⾏处理。
具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。
(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。
假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。
⽽对于未知的数列,主要分为两类:递推型和组合型。
递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。
所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。
然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。
具体计算就不算了。
PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。
母函数(生成函数)(发生函数)(发生函数)英文:generating function我们已知道了解决组合的计数问题的几种方法,从基本的加法原理和乘法原理开始,导出了排列与组合的各种公式,证明了容斥原理,并且已用它来解决某些计数问题。
这里将论证一种方法是属于Eular 的生成函数法。
(对工程师来说,数列的母函数通称为z-变换)§1 母函数利用生成函数可以说是研究计数问题的一个最主要的一般方法:其基本思想很简单:为了获得一个数列210,,0:a a a k a k 的知识,我们用一个母函数2210)(xa xa a xa x g kk k 这里x k 是指数函数来整体地表示这个数列,称g (x )是数列0:kx a k 的普通母函数,这样原数列就转记为成函数。
假如能求得这个函数,则不仅原则上已确定了原数列,还可以通过对函数的运算和分析得到这个数列的许多性质。
这里如果把x k 提成)(x k亦称普通母函数指数函数通常选来使得没有两个不同的序列令产生同一个母函数,故序列的母函数仅只是序列的另一种表示。
如1,cos x ,cos2x ,,为指数函数,序列2,,1的母函数为rxxxx F rcos 2cos cos 1)(2另一方面,用,1,1+x ,1-x ,1+x 2,1-x 2,,,1+x r,1-x r,作为指数函数,序列(3,2,6,0,0)的普通母函数是3+2(1+x )+6(1-x )=11-4x ,而序列(1,3,7,6,0)和(1,2,6,1,1)会产生同一母函数即,1+3(1+x )+7(1-x )=11-4x ,xx x x x 411)1()1()1(6)1(2122故函数,1,1,1,1,122x x x x 不应做为指数函数,)(x r的最近常用的是rx,以下我们仅讨论这种情况的指数函数。
结论是(ra a ,,0)可能无限,故应注意,)(x F 的收敛性。
例1,设三种物,a ,b ,c ,现从中0,1,2,3的不同取法有33231303,,,C C C C 。
概率论上的母函数(genera t ing fucnc t ion )定义: 若随机变量ξ取非负整数值,且相应的分布列为: ( 0,1,2) ( p 0,p 1,p 2 )则p k *s k (k 从0到无穷)的和为s 的函数,此函数称为的母函数。
特征函数 (概率论)在概率论中,任何随机变量的特征函数完全定义了它的概率分布。
在实直线上,它由以下公式给出,其中X 是任何具有该分布的随机变量:()()itX X t E e ϕ=其中t 是一个实数,i 是虚数单位,E 表示期望值。
用矩母函数M X (t )来表示(如果它存在),特征函数就是iX 的矩母函数,或X 在虚数轴上求得的矩母函数。
()()()X iX X t M t M it ϕ==与矩母函数不同,特征函数总是存在。
如果F X 是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:()()itXitx X E e e dF x ∞-∞=⎰在概率密度函数f X 存在的情况下,该公式就变为:()()itXitx X E e e f x dx ∞-∞=⎰如果X 是一个向量值随机变量,我们便取自变量t 为向量,tX 为数量积。
R 或R n 上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。
一个对称概率密度函数的特征函数(也就是满足f X (x ) = f X (-x ))是实数,因为从x >0所获得的虚数部分与从x <0所获得的相互抵消。
性質 连续性勒维连续定理勒维连续定理说明,假设1()1n n X ∞==为一个随机变量序列,其中每一个X n 都有特征函数n,那么它依分布收敛于某个随机变量X :Dn X X −−→当 n →∞如果pointwise n ϕϕ−−−−→ 当 n →∞且 (t )在t =0处连续,是X 的特征函数。
莱维连续定理可以用来证明弱大数定律。
母函数种类表在数学中,某个序列 的母函数(又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。
使用母函数解决问题的方法称为母函数方法。
母函数可分为很多种,包括普通母函数、指数母函数、L 级数、贝尔级数和狄利克雷级数。
对每个序列都可以写出以上每个类型一个母函数。
构造母函数的目的一般是为了解决某个特定问题,因此选用何种母函数视乎序列本身的特性和问题类型。
母函数表示一般使用解析形式,即写成关于某个形式变量x 的形式幂级数。
对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。
但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x 的值都存在。
母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。
此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。
注意母函数本身并不是一个从某个定义域射到某个值域的函数,名字中的“函数”只是出于历史原因而保留。
母函数就是一列用来展示一串数字的挂衣架。
生成函数即母函数,是组合数学中尤其是计数方面的一个重要理论和工具。
生成函数有普通型生成函数和指数型生成函数两种,其中普通型用的比较多。
形式上说,普通型生成函数用于解决多重集的组合问题,而指数型母函数用于解决多重集的排列问题。
“投掷n 粒骰子时,加起来点数总和等于m 可能方式数目可能是展开式中项系数。
1. 普通数母普通母函数就是最常见母函数。
一般来说,序列的母函数是:如果 是某个离散随机变量的概率质量函数,那么它的母函数被称为一个概率母函数。
多重下标的序列也可以有母函数。
例如,序列母函数是。
2. 矩量母函数(母函数)令X 为具有概率密度函数f(x)随机变量,如果X 函数exp (tX )的期望值存在(-h^2<t<h^2),则称exp(tX)的期望值为X 的矩母函数,记作MX(t)用于描述随机变量的分布状况,其K 次求导,得M(0)的k 次方,也即Y 的K 次方的分布状况,概率理论和统计学上,在其期望值存在时,随机变量X 的矩量母函数为松数母序列的泊松母函数是:4. 数母数(母函数)序列的指数母函数是:尔(卡母函数)关于算术函数 :和 的贝尔级数是:6.级数 (母函数)序列的L 级数是:注意这里的下标 n 从1 而不是0 开始。
最佳答案发生函数"的英文原词是generating function。
它的另外两个译名是"生成函数"与"母函数"。
母函数虽词简而意深,但现今已不常用了。
发生函数方法是现代离散数学领域中的重要方法,它能以某种统一的程序方式处理和解决众多不同类型的问题。
生成函数(也有叫做“母函数”的,但是我觉得母函数不太好听)是说,构造这么一个多项式函数g(x),使得x的n次方系数为f(n)。
生成函数最绝妙的是,某些生成函数可以化简为一个很简单的函数。
也就是说,不一定每个生成函数都是用一长串多项式来表示的。
比如,这个函数f(n)=1 (n 当然是属于自然数的),它的生成函数就应该是g(x)=1+x+x^2+x^3+x^4+...(每一项都是一,即使n=0时也有x^0系数为1,所以有常数项)。
再仔细一看,这就是一个有无穷多项的等比数列求和嘛。
如果-1<x<1,那么g(x)就等于1/(1-x)了。
在研究生成函数时,我们都假设级数收敛,因为生成函数的x没有实际意义,我们可以任意取值。
于是,我们就说,f(n)=1的生成函数是g(x)=1/(1-x)。
我们举一个例子说明,一些具有实际意义的组合问题也可以用像这样简单的一个函数全部表示出来。
考虑这个问题:从二班选n个MM出来有多少种选法。
学过简单的排列与组合的同学都知道,答案就是C(4,n)。
也就是说。
从n=0开始,问题的答案分别是1,4,6,4,1,0,0,0,...(从4个MM中选出4个以上的人来方案数当然为0喽)。
那么它的生成函数g(x)就应该是g(x)=1+4x+6x^2+4x^3+x^4。
这不就是……二项式展开吗?于是,g(x)=(1+x)^4。
你或许应该知道,(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k;但你或许不知道,即使k为负数和小数的时候,也有类似的结论:(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k+C(k,k+1)x^(k+1)+C(k,k+2)x^(k+2) +...(一直加到无穷;式子看着很别扭,自己写到草稿纸上吧,毕竟这里输入数学式子很麻烦)。
1绪论母函数又可译为发生函数或生成函数.母函数方法是现代离散数学领域中的重要方法.它是联结离散数学与连续数学的桥梁.它是解决组合计数问题的一个重要工具之一.母函数方法是一种既简单又有用的数学方法,是一个古老方法.他源于De Moivre 在1720前后的工作,1748年欧拉在研究关于划分的问题中发展了这一方法.拉普拉期于18世纪末及19世纪初期对其进行了广泛的论述.其探究主要与概率论相关.尽管这一方法有其悠久的历史,但是正如我们将要看到的那样,这一方法有着广泛的应用.当代计算机科学家克努特(D.E.Knuth)在其名著《The art of computer programming,voll》中作了这样的论述:“…当运用母函数时,通常无需担心级数的收敛性,因为我们只是在探求得到某个问题的解的可能途径,一旦当我们用任何手段发现了解,尽管这些手段也许不严格,就有可能独立的验证这个解…例如有时很容易用数学归纳法来证明,我们甚至不必提到它是利用母函数发现的.此外,可以证明我们对母函数所做的绝大多数——如果不是所有的话——运算都能严格论证其可行而无须顾及级数的收敛性.”这段引文最后的断言是通过把母函数作为形式幂级数而得以实现的.一般情况下,母函数中的x只是一个抽象符号,并不需要对它赋予具体数值.因而不需要考虑它的收敛性.此时的变量x只是一种形式变元.对这种级数可以把它看成形式幂级数,可以按通常方式定义其加法、乘法、形式微分等运算,从而构成一个代数体系.母函数有多种类型,这里仅讨论最常见的两种:普通母函数和指数母函数.下面分别进行讨论.2母函数基本概念定义2.1. 对于数列{}0n n a ≥,称函数 120120()k k k f x a x a a x a x ≥==+++∑为数列{}0n n a ≥的普通型母函数(简称普母函数).定义2.2. 对于数列{}0n n a ≥,称函数120120()!1!2!k kk x x x f x a a a a k ≥==+++∑为数列{}0n n a ≥的指数型母函数(简称指母函数).数列与母函数可以互求.已知母函数,可求出其对应的数列;已知数列,可求出其对应的母函数.R 上的母函数的全体记为[]R x ⎡⎤⎣⎦.在集合[]R x ⎡⎤⎣⎦中适当定义加法和乘法运算,可使它成为一个整环,任何一个母函数都是这个环中的元素.定义2.3. 设0()kk k A x a x ∞==∑与0()k k k B x b x ∞==∑是R 上的两个母函数.若对任意0k ≥,有k k a b =.则称()A x 与()B x 相等.记作()()A x B x =.定义 2.4. 设α为任意实数. []0()kk k A x a x R x ∞=⎡⎤=∈⎣⎦∑,则()0()kk k A x a x αα∞==∑称作α与()A x 的数乘积.定义2.5. 设0()kk k A x a x ∞==∑与0()k k k B x b x ∞==∑是R 上的两个母函数.(1)将()A x 与()B x 相加定义为0()()()k k k k A x B x a b x ∞=+=+∑,并称()()A x B x +为()A x 与()B x 的和,把运算“+”称作加法.(2)将()A x 与()B x 相乘定义为01100()()()k k k k k A x B x a b a b a b x ∞-=⋅=+++∑,并称()()A x B x ⋅为()A x 与()B x 的积,把运算“⋅”称作乘法.3母函数的性质母函数与数列之间是一一对应的,因此,若两个母函数之间存在某种关系,那么相应的两个数列之间也必然存在一定的关系;反过来说当然也能成立.设数列{}0n n a ≥的母函数为()A x ,数列{}0n n b ≥的母函数为()B x ,我们可以得到下面的一些性质:性质3.1. 若0n n kn k b a n k-<⎧=⎨≥⎩ , 则 ()()k B x x A x =.证明: 由假设条件,有 21101211()k k k k k k B x b b x b x b x b x b x -+-+=+++++++11k k k k b x b x ++=++ 101k k a x a x +=++()01k x a a x =++()k x A x =.例3.1. 2()11!2!xx x A x e =+++= 且()B x 满足0n n kn k b a n k-<⎧=⎨≥⎩,则求()B x .解:利用性质1,()()k B x x A x =k x x e =⋅性质3.2. 若n n k b a +=,10()()k n k n n B x A x a x x -=⎡⎤=-⎢⎥⎣⎦∑.证明: 又假设条件,有2012()B x b b x b x =+++212k k k a a x a x ++=+++()12121k k k k k k k a x a x a x x ++++=+++ ()10111()k k k A x a a x a x x--=----10()k n k n n A x a x x -=⎡⎤=-⎢⎥⎣⎦∑.例3.2. 35()sin 3!5!x x A x x x ==+++,且6k k b a +=,求()B x .解: 6160()()n n n B x A x a x x -=⎡⎤=-⎢⎥⎣⎦∑356()3!5!x x A x x x ⎡⎤=---⎢⎥⎣⎦.性质3.3. 若0nn k k b a ==∑,则()()1A x B x x=-. 证明: 有假设条件,有 00b a =, 101b x a x a x =+, 22222012b x a x a x a x =++, …,012n n n n n n n b x a x a x a x a x =++++…, 把以上两边分别相加,得2222012()(1)(1)(1)B x a x x a x x x a x x x =++++++++++++22012()(1)a a x a x x x =++++++()1A x x=-. 例3.3. 21()11A x x x x =+++=- ,且0nn k k b a ==∑,则 ()2()1()11A x B x x x ==-- . 性质3.4. 若n k k nb a ∞==∑,则(1)()()1A xA x B x x -=-.这里0k n a ≥∑是收敛的.证明: 因为0k n a ≥∑是收敛的,所以n k k nb a ∞==∑是存在的.于是有0012(1)b a a a A =+++= 1120[(1)]b x a x a x A a x =++=-, 222222301[(1)]b x a x a x A a a x =++=--,…, 1011[(1)]k k k k k k k k b x a x a x A a a a x +-=++=----,….把以上各式的两边分别相加,得0()(1)[(1)]B x A A a x =+-201[(1)]A a a x +--+01[(1)]k k A a a x -+--+2(1)(1)A x x =+++20(1)a x x x -+++221(1)a x x x -+++- 21(1)k k a x x x --+++-2012[(1)()]A x a a x a x =-+++2(1)x x +++(1)()1A xA x x-=-.性质3.5. 若n n na b =, 则'()()B x xA x =.证明: 由'()A x 的定义知'11()n n n na xxA x x ∞-==∑0n n n na x ∞==∑n n n b x ∞==∑()B x =.例3.4. 已知21()11A x x x x =+++=- ,n n na b =,则()21()11x B x x x x '⎛⎫== ⎪-⎝⎭-. 性质3.6. 若1nn a b n =+, 则1()()xB x A t dt x =⎰.证明: 由假设条件,有0()xxn n n A t dt a t dt ∞==∑⎰⎰(1)xn n n b n t dt ∞==+∑⎰1n n n b x ∞+==∑=()xB x .性质3.7. 若0112200nn n n n n k n k k c a b a b a b a b a b ---==++++=∑.则2012()()()C x c c x c x A x B x =+++=证: 000c a b =()10110c x a b a b x =+ ()222021120c x a b a b a b x =++ …()()()2222001210122012()c x a b b x b x a x bb x b x a x bb x b x =++++++++++++()()22012012a a x a x bb x b x =++++++()()A x B x =.例3.5. 已知21()11n A x x x x x=+++++=- ()22()21n xB x x x nx x =++++=-()11232n n n c n +=++++=则 ()3()1xG x x =-.性质3.8. 若k k k c a b αβ=+ ,则()()()0k k k c x c x A x B x αβ∞===+∑.证明:有假设条件,有()()00kkk k k k k c x c x a b x αβ∞∞====+∑∑0kk k k k k a x b x αβ∞∞===+∑∑kk k k k k a x b x αβ∞∞===+∑∑()()A x B x αβ=+.4性质的应用利用这些性质,可以求某些数列的母函数,也可以计算数列的和.下面列出几个常见的简单数列的母函数.(1) {}111G x=- (2) {}11k G a ak=-(3) {}()21xG k x =-(4) (){}()3211xG k k x +=-(5) {}()()2311x x G k x +=-(6) ()(){}()46121xG k k k x ++=-(7) 1!x G e k ⎧⎫=⎨⎬⎩⎭(8) ()1aa G x k ⎧⎫⎛⎫=+⎨⎬ ⎪⎝⎭⎩⎭(9) ()111n n k G k x +⎧+⎫⎛⎫=⎨⎬ ⎪-⎝⎭⎩⎭ 例4.1.求序列{}5,6,7,,5,n +的母函数.解:()()25675n A x x x n x =++++++()()2235123x x x xx =+++++++(){}51G G k =+ ()()221545111x xx x x -=⋅+=---. 母函数的应用很多.求解递推关系,排列组合中,计数问题中的应用等等.利用母函数的性质,可以求某些数列的母函数,也可以计算数列的和.结束语母函数又称生成函数,是一种即简单又有用的数学方法,求解递推关系和组合计数问题中母函数是一种重要的数学方法.用母函数可以求解常系数线性齐次、非齐次递推关系、求解非线性递推关系、非常系数递推关系等等递推关系.这篇文章给出了母函数的基本知识,从最基本点开始讨论了母函数的性质.利用母函数的性质,可以求某些数列的母函数,也可以计算数列的和.参考文献【1】卢开澄,卢华明. 组合数学(第四版).北京:清华大学出版社,2006,12.【2】田秋成等编著. 组合数学. 电子工业出版社,2006,11.【3】李凡长,康宇,董海峰,段爱华编著.组合理论及其应用. 北京:清华大学出版社,2005,9.【4】冯速译. 应用组合学. 拉特格大学狄克森学院:机械工业出版社,2007,5.【5】李乔.组合学讲义(第二版).北京:高等教育出版社,2008,1.【6】孙淑玲许胤龙编著.组合数学引论.中国科学技术大学出版社,2004,1.【7】孙世新张先迪编著.组合原理及其应用.北京:国防工业出版社,2006,3.。
数学奥赛辅导丛书:母函数
母函数是指对于一个函数f(x),它的母函数是P(x),满足f(x+b)-
f(x)=P(x),其中b是常数。
通常来说,母函数用于计算函数f(x)的无穷级数展开式。
母函数P(x)本质上是在关于x的单调增加函数,用来描述f (x)中处于相同间隔而x增加量不同的问题。
它既可是一个可分解的函数式,也可是一组不可分解的函数式集合。
例如,正弦函数的母函数是sin(x),其中,正弦函数的母函数也就是它自身函数,而多项式函数的母函数则比较复杂,它是一个由多个函数组成的集合。
母函数的运用能够帮助我们更加得心应手地解决一些数学问题,尤其是推导一些函数展开式,计算不同函数间的关系等。
因此,学习母函数是数学学习中必不可少的一部分。
概率论上的母函数(genera t ing fucnc t ion )定义: 若随机变量ξ取非负整数值,且相应的分布列为: ( 0,1,2) ( p 0,p 1,p 2 )
则p k *s k
(k 从0到无穷)的和为s 的函数,此函数称为的母函数。
特征函数 (概率论)
在概率论中,任何随机变量的特征函数完全定义了它的概率分布。
在实直线上,它由以下公式给出,其中X 是任何具有该分布的随机变量:
()()itX X t E e ϕ=
其中t 是一个实数,i 是虚数单位,E 表示期望值。
用矩母函数M X (t )来表示(如果它存在),特征函数就是iX 的矩母函数,或X 在虚数轴上求得的矩母函数。
()()()X iX X t M t M it ϕ==
与矩母函数不同,特征函数总是存在。
如果F X 是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:
()()itX
itx X E e e dF x ∞
-∞
=⎰
在概率密度函数f X 存在的情况下,该公式就变为:
()()itX
itx X E e e f x dx ∞
-∞
=⎰
如果X 是一个向量值随机变量,我们便取自变量t 为向量,tX 为数量积。
R 或R n 上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行
积分,且对于每一个特征函数都正好有一个概率分布。
一个对称概率密度函数的特征函数(也就是满足f X (x ) = f X (-x ))是实数,因为从x >0所获得的虚数部分与从x <0所获得的相互抵消。
性質 连续性
勒维连续定理
勒维连续定理说明,假设1()1n n X ∞
==为一个随机变量序列,其中每一个X n 都有特征函数ϕn ,那么
它依分布收敛于某个随机变量X :
D
n X X −−→当 n →∞
如果
pointwise n ϕϕ−−−−→ 当 n →∞
且ϕ (t )在t =0处连续,ϕ是X 的特征函数。
莱维连续定理可以用来证明弱大数定律。
反演定理
在累积概率分布函数与特征函数之间存在双射。
也就是说,两个不同的概率分布不能有相同的特
征函数。
给定一个特征函数ϕ,可以用以下公式求得对应的累积概率分布函数F :
1
()()()lim
2itx ity
X X X e e E y E x t dt it
τ
τ
τϕπ
--+-
→+∞--=⎰
一般地,这是一个广义积分;被积分的函数可能只是条件可积而不是勒贝格可积的,也就是说,
它的绝对值的积分可能是无穷大。
[1]
博赫纳-辛钦定理/公理化定義 博赫纳定理
任意一个函数ϕ是对应于某个概率律μ的特征函数,当且仅当满足以下三个条件:
1. ϕ (t )是连续的;
2. ϕ (0)=1;
3. ϕ (t )是一个正定函数(注意这是一个复杂的条件,与ϕ (t )>0不等价)。
計算性质
特征函数对于处理独立随机变量的函数特别有用。
例如,如果X 1、X 2、……、X n 是一个独立(不一定同分布)的随机变量的序列,且
1
n
n i i i S a X ==∑
其中a i 是常数,那么S n 的特征函数为:
1
2
12()()()()n
n
S X X X n t a t a t a t ϕϕϕϕ=
特别地,()()()X Y X Y t t t ϕϕϕ+=。
这是因为:
()()()()()()()()it X Y itX itY itX itY X Y X Y t E e E e e E e E e t t ϕϕϕ++====
注意我们需要X 和Y 的独立性来确立第三和第四个表达式的相等性。
另外一个特殊情况,是a i = 1 / n 且S n 为样本平均值。
在这个情况下,用X 表示平均值,我们便有:
()
()()n
X X t t n ϕϕ=
特征函数的应用
由于连续定理,特征函数被用于中心极限定理的最常见的证明中。
矩
特征函数还可以用来求出某个随机变量的矩。
只要第n 个矩存在,特征函数就可以微分n 次,得到:
()
()(0)()n n
n
n n
X
X n t d E X i i t dt ϕϕ--=⎡⎤
==⎢⎥⎣⎦
例如,假设X 具有标准柯西分布。
那么| |
()t X t e
ϕ-=。
它在t = 0处不可微,说明柯西分布没有
期望值。
另外,注意到n 个独立的观测的样本平均值X 具有特征函,(
)
||| |()n
t n
t X t e
e ϕ--==利
用前一节的结果。
这就是标准柯西分布的特征函数;因此,样本平均值与总体本身具有相同的分
布。
特征函数的对数是一个累积量母函数,它对于求出累积量是十分有用的;注意有时定义累积量母函数为矩母函数的对数,而把特征函数的对数称为第二累积量母函数。
一个例子
具有尺度参数θ和形状参数k 的伽玛分布的特征函数为:
(1)k it θ--
现在假设我们有:
1(,)X k Γθ~且2(,)Y k Γθ~
其中X 和Y 相互独立,我们想要知道X + Y 的分布是什么。
X 和Y 特征函数分别为:
1
()(1)k
X t it ϕθ-=-, 2
()(1)
k Y t it ϕθ-=-
根据独立性和特征函数的基本性质,可得:
1
2
1
2()
()()()(1)(1)(1)k k k k
X Y X Y t t t it it it ϕϕϕθθθ---++==--=-
这就是尺度参数为θ、形状参数为k 1 + k 2的伽玛分布的特征函数,因此我们得出结论:
12(,)X Y k k Γθ+~+
这个结果可以推广到n 个独立、具有相同尺度参数的伽玛随机变量:
()1
1
{1,
,}:(,) ,n n
i i i i i i i n X k X k ==∀∈~⇒~∑∑ΓθΓθ
多元特征函数
如果X 是一个多元随机变量,那么它的特征函数定义为:
()()it X X t E e ⋅=ϕ
这里的点表示向量的点积,而向量t 位于X 的对偶空间内。
用更加常见的矩阵表示法,就是:
()
()T
it
t E e =ϕX
X
例子
如果X ~ N (0,∑) 是一个平均值为零的多元高斯随机变量,那么:
()
T T T
1
12
2
212
1
(), (2)||T
n x x t t it
it x n n x t E e e
e dx e
t -1--∈==⋅=∈⎰
∑∑ϕπ∑X
X R R
其中 | Σ | 表示正定矩阵 Σ的行列式。
矩阵值随机变量
如果X 是一个矩阵值随机变量,那么它的特征函数为:
()Tr()()i E e =ϕXT X T
在这里,Tr(﹒)是迹函数,XT 表示T 与X 的矩阵乘积。
由于矩阵XT 一定有迹,因此矩阵X 必须与矩阵T 的转置的大小相同;因此,如果X 是m × n 矩阵,那么T 必须是n × m 矩阵。
注意乘法的顺序不重要(XT ≠TX )但Tr(XT ) = Tr(TX )
矩阵值随机变量的例子包括威沙特分布和矩阵正态分布。
相关概念
相关概念有矩母函数和概率母函数。
特征函数对于所有概率分布都存在,但矩母函数不是这样。
特征函数与傅里叶变换有密切的关系:一个概率密度函数p (x )的特征函数是p (x )的连续傅里叶变换的共轭复数(按照通常的惯例)。
()()()()it itx
itx t e
e p x dx e p x dx P t ∞
∞
--∞
-∞
====⎰⎰ϕX
X
其中P (t )表示概率密度函数p (x )的连续傅里叶变换。
类似地,从ϕX (t )可以通过傅里叶逆变换求出p (x ):
1
122()()()itx
itx p x e p t dt
e t dt ∞
∞
-∞
-∞
=
=⎰
⎰
π
π
ϕX
确实,即使当随机变量没有密度时,特征函数仍然可以视为对应于该随机变量的测度的傅里叶变
换。
Welcome !!! 欢迎您的下载,资料仅供参考!。