磷灰石裂变径迹测量PPT课件
- 格式:ppt
- 大小:31.99 MB
- 文档页数:10
磷灰石裂变径迹方法原理与研究进展姓名:***班级:矿物S162学号:*********磷灰石裂变径迹方法原理与研究进展一、磷灰石裂变径迹分析方法原理的提出磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在20世纪70年代。
磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在238U自发裂变辐射损伤效应,在实验基础上来观察辐射损伤特征,并利用数学地质模型模拟岩石所经历的低温热演化史。
Fleischer等(1975)将裂变径迹的定义为:238U自发核裂变会产生具有很高能量的带电重粒子,当高能量带电重粒子(238U)穿过绝缘固体材料时,会在固体材料如磷灰石中留下放射性的狭窄痕迹,称之裂变径迹(Fleischer al.,1975)。
在上述过程中,Fleischer 等(1988)发现238U 将会分裂成两个大致相同的高能带电粒子向相反方向飞行,每个粒子带电大约在40~160MeV( Fleischer et al.,1988)。
Gleadow 等(1986) Green (1988)和Donelick (1990)等均实验并最终证实这些核裂变产生的高能带电粒子能在固体材料上留下大约16~18μm的线性裂缝(Gleadow et al,1986;Green,1988;Donelick et al.,1990)。
这些线性裂变径迹可以通过化学酸蚀处理可视化,进而可被光学显微镜观察。
相对低温下稳定的磷灰石裂变径迹在60°C以上会发生退火,而且会不断累计(Donelick et al.,1981)。
这意味着磷灰石裂变径迹很少代表岩石的形成年龄,主要代表其低温演化的年龄(Gleadow et al.,1986)。
磷灰石裂变径迹退火行为受温度影响的。
Duddy等(1988)在其恒温退火的描述与温度随时间变化吻合的实验过程中,利用“等效时间原理”解释实验现象,印证了该原理。
磷灰石的退火行为一旦发生就受温度及时间的因素影响,而且温度是主导因素(Duddy et al.,1988)。
构造-热演化的裂变径迹分析和模拟一、实习目的和意义裂变径迹技术自20世纪60年代兴起以来,经过半个世纪的发展,已经成为一种比较成熟的技术方法。
由于裂变径迹方法具有年龄和独有的长度分布特征,其在热砾石分析方面具有其他方法无法比拟的定量性和系统性,因此成为定量热历史模拟的关键方法。
本次实习以中扬子秭归盆地的裂变径迹试验数据为基础,利用目前广泛使用的hefty软件,开展时间-温度热历史模拟,分析构造-热演化过程,使学生了解并掌握裂变径迹热历史模拟的软件和模拟方法。
二、实习区区域地质概括秭归盆地分布于巴东、秭归、兴山一代,主体由晚三叠世和侏罗纪地层组成。
它位于3组不同方向的构造线交汇部位,东为黄陵隆起、北为神农架穹窿,南为湘鄂西弧形褶皱带。
秭归盆地基底为三叠纪巴东组,为东部峡口一线深,向西逐渐变浅的古地貌,控制该盆地的断裂为新华断裂。
盆地基底面为印支-燕山运动古构造面,位于中三叠世巴东组与晚三叠世九里岗组之间。
在两河口等地可见两者之间存在明显的古风化壳,在区域上呈角度不整合接触关系。
在盆地东缘一般缺失巴东组部分地层,为沉积间断造成。
此界面特征表明印支-燕山运动在区内虽没有导致基底地层发生强烈褶皱,但由于区域性的差异抬升,形成了黄陵隆起和秭归凹陷,存在一个明显的古构造面。
由于这种抬升作用形成了盆地早期的内陆河湖环境,沉积物均来自于黄陵隆起。
晚三叠世盆地开始坳陷,其中东侧坳陷速度明显高于东部,随着盆地坳陷夫妇的不断加大、加快,沉积厚度剧增,且盆地范围较晚三叠世亦有所扩大,沉寂了以内陆湖相为主的早侏罗世沉积物。
其后随着沉积物的充填和地壳抬升,盆地开始萎缩,至晚侏罗世抬升为陆。
由此显示出秭归盆地经历了从海相抬升为陆,差异下坳为陆相湖盆,以沉降、相对稳定和萎缩而告终的沉积演化历史。
三、盆地构造-热演化的裂变径迹分析和模拟根据实验所给数据,进行裂变径迹模拟,模拟结果如下:图1 秭归盆地ZG02样品磷灰石裂变径迹热历史模拟结果根据磷灰石裂变径迹热历史模拟结果,可以看出,秭归盆地主要接受三次构造活动,136.Ma—110Ma期间温度迅速降低,代表此时构造抬升迅速;110Ma—85Ma对应温度降低减缓,说明此时地层缓慢抬升;85Ma—15Ma温度变化不大,代表此时构造活动少;15Ma —今,温度上升迅速,代表此时抬升强烈。
磷灰石裂变径迹方法原理与研究进展:忠炎班级:矿物S162学号:201671305磷灰石裂变径迹方法原理与研究进展一、磷灰石裂变径迹分析方法原理的提出磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在20世纪70年代。
磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在238U自发裂变辐射损伤效应,在实验基础上来观察辐射损伤特征,并利用数学地质模型模拟岩石所经历的低温热演化史。
Fleischer等(1975)将裂变径迹的定义为:238U自发核裂变会产生具有很高能量的带电重粒子,当高能量带电重粒子(238U)穿过绝缘固体材料时,会在固体材料如磷灰石中留下放射性的狭窄痕迹,称之裂变径迹(Fleischer al.,1975)。
在上述过程中,Fleischer 等(1988)发现238U 将会分裂成两个大致相同的高能带电粒子向相反方向飞行,每个粒子带电大约在40~160MeV( Fleischer et al.,1988)。
Gleadow 等(1986) Green (1988)和Donelick (1990)等均实验并最终证实这些核裂变产生的高能带电粒子能在固体材料上留下大约16~18μm的线性裂缝(Gleadow et al,1986;Green,1988;Donelick et al.,1990)。
这些线性裂变径迹可以通过化学酸蚀处理可视化,进而可被光学显微镜观察。
相对低温下稳定的磷灰石裂变径迹在60°C以上会发生退火,而且会不断累计(Donelick et al.,1981)。
这意味着磷灰石裂变径迹很少代表岩石的形成年龄,主要代表其低温演化的年龄(Gleadow et al.,1986)。
磷灰石裂变径迹退火行为受温度影响的。
Duddy等(1988)在其恒温退火的描述与温度随时间变化吻合的实验过程中,利用“等效时间原理”解释实验现象,印证了该原理。
磷灰石的退火行为一旦发生就受温度及时间的因素影响,而且温度是主导因素(Duddy et al.,1988)。