明博教育 数学第七册第四单元练习(A)
- 格式:doc
- 大小:13.50 KB
- 文档页数:3
一、选择题1.己知A 、B 、C 三点,6cm AB =,2cm BC =,则AC =( )A .8cmB .4cmC .8cm 或4cmD .无法确定 2.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 3.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 4.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( )A .2cm 或4cmB .8cmC .10cmD .8cm 或10cm 5.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 6.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°7.如图,是一副三角板的摆放图,将一个三角板60角的顶点与另一个三角板的直角顶点重合,∠BAE =1640′,则CAD ∠的大小是( )A .2820︒′B .4320︒′C .4620︒′D .4640︒′ 8.有如下说法:①直线是一个平角;②如果线段AM MC =,则M 是线段AC 的中点;③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;④两点之间,线段最短.其中正确的有( )A .1个B .2个C .3个D .4个9.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定 10.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 11.钟表上12时15分时,时针和分针的夹角是( )A .120°B .90°C .82.5°D .60° 12.已知线段AB C ,是直线AB 上的一点,8,4AB BC ==,点M 是线段AC 的中点,则线段AM 的长为( )A .2B .4C .4或6D .2或6二、填空题13.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 14.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.15.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=. (2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.16.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.17.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =;(2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度.18.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷519.如图,已知点C 在线段AB 上,点D 、E 分别在线段AC 、BC 上,(1)观察发现:若D 、E 分别是线段AC 、BC 的中点,且12AB =,则DE =_______; (2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________.20.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.三、解答题21.如图,OC 是∠AOB 的平分线,且∠BOD =13∠COD . (1)当∠BOD =15°时,则∠AOB 的大小为 ;(2)当∠AOB =70°时,则∠AOD 的大小为 ; (3)若射线OP 在∠AOD 的内部,且∠POD =∠AOB ,∠AOP 与∠AOC 数量关系可以表示为 .22.如图,已知线段a b c 、、,用尺规求作线段AM ,使得2AM a b c =+-.(不写作法,保留作图痕迹)23.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .24.已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=. (1)如图1,COD ∠在AOB ∠的内部,①当45COD ∠=︒时,求αβ+的值.②当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.25.如图,已知AB ,OC 相交于点O ,90AOC ∠=︒,32BOD ∠=︒,ON 平分COD ∠,OM 平分AOD ∠,求MON ∠.26.(1)已知||7x =,||5y =,且0x y +<,求x y -的值?(2)推理填空:如图所示,点O 是直线AB 上一点,130BOC ∠=︒,OD 平分AOC ∠.求:COD ∠的度数.解:O 是直线AB 上一点,AOB ∴∠= .130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠= .OD 平分AOC ∠,COD AOD ∴∠=∠.理由是COD ∴∠= .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据点B 在线段AC 上和在线段AC 外两种情况进行解答即可.【详解】解:如图1,当点B 在线段AC 上时,∵AB=6cm ,BC=2cm ,∴AC=6+2=8cm ;如图2,当点CB 在线段AC 外时,∵AB=6cm,BC=2cm,∴AC=6-2=4cm.当A、B、C三点不在同一直线上时,A、C两点间的距离无法确定,故选:D.【点睛】本题考查了两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.2.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.3.C解析:C【分析】先根据CB=5cm,AB=13cm求出A C的长,再根据D是AC的中点即可得出DC的长,即可求出BD.【详解】解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.4.D解析:D【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.【详解】解:∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点,①当AD=13AC时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);②当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;5.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 6.C解析:C【分析】根据角平分线的定义和角的和差计算即可.【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°,∴∠ABE=∠ABC+∠CBE=30°+90°=120°,∵BM平分∠ABE,∴∠ABM=12∠ABE=12×120°=60°,∴∠CBM=∠ABM−∠ABC=60°−30°=30°,故答案为:30°.【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.7.D解析:D【分析】根据∠BAC=60°,∠BAE=1640′,求出∠EAC的度数,再根据∠CAD=90°-∠EAC,即可求出∠CAD的度数【详解】解:∵∠BAC=60°,∠BAE=4320′,∴∠EAC=60°-1640′=43°20′,∵∠EAD=90°,∴∠CAD=90°-∠EAC=90°-43°20′=46°40′;故选:D .【点睛】本题主要考查了度分秒的换算,关键是求出∠EAC 的度数,是一道基础题.8.A解析:A【分析】根据平角的定义、中点定义、角的和差以及两点之间,线段最短的性质直接判断即可.【详解】解:①直线是一个平角,角是由有公共端点的两条射线组成的,故错误;②如果线段AM MC =,则M 是线段AC 的中点;M 不一定在线段AC 上,故错误; ③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;射线OC 不一定在∠AOB 内部,故错误;④两点之间,线段最短.正确,故选:A .【点睛】本题考查了平角的定义、线段中点的定义、角的和差和线段的性质,准确掌握定义,画出图形是解题关键.9.A解析:A【分析】 根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论.【详解】解:∵点D 、E 分别为线段AB 、CB 的中点, ∴12AD DB AB ==,12CE BE BC == 又1111()2222DE DB EB AB BC AB BC AC =-=-=-= ∵7AC =∴ 3.5DE =故选:A .【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.10.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B .【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.11.C解析:C【分析】求出时针和分针每分钟转的角度,由此即可得.【详解】 因为时针每分钟转的角度为3600.51260︒=︒⨯,分针每分钟转的角度为360660︒=︒, 所以当钟表上12时15分时,时针转过的角度为0.5157.5︒⨯=︒,分针转过的角度为61590︒⨯=︒,所以时针和分针的夹角为907.582.5︒-︒=︒,故选:C .【点睛】本题考查了钟面角,熟练掌握时钟表盘特征和时针、分针每分钟转的角度数是解题关键. 12.D解析:D【分析】由C 是直线AB 上的一点,且8,4AB BC ==可知,C 点的位置有两个,一个位于线段AB 上,一个位于线段AB 的延长线上;分两种情况:①C 点位于线段AB 上和②C 位于线段AB 的延长线上,根据线段的中点定理1=2AM AC 作答即可. 【详解】解:①C 点位于线段AB 上时,∵8,4AB BC ==,∴844AC AB BC =-=-=,∵点M 是线段AC 的中点,∴1=22AM AC =; ②C 位于线段AB 的延长线上时,∵8,4AB BC ==∴8412AC AB BC =+=+=,∵点M 是线段AC 的中点, ∴1=62AM AC =; 综上所述,线段AM 的长为2或6;故选D .【点睛】本题主要考查了线段的中点定理;仔细读懂题意“C 是直线AB 上的一点”,明确本题C 点的位置有两个,是准确作答本题的关键.二、填空题13.(1)14(2)【分析】(1)根据题意可得出CM =ACCN =CD 所以MN =CM+CN =(AC+CD)=AD =9从而得出AD 的长根据AB :BC :CD =2:3:4可得出AB 的长继而求出BD 的长;(2)根解析:(1)14(2)37823 【分析】(1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M 是线段AC 的中点,可得CM =2.5x ,因为CN =13CD ,可求出CN= 43x ,根据MN=9,可解出x 的值,继而得出BD 的长;【详解】解:(1)如图,∵点M 是线段AC 的中点,点N 是线段CD 的中点,∴CM =12 AC ,CN =12CD , ∴MN =CM+CN =12 (AC+CD)=12AD =9,∴AD =18,∵AB :BC :CD =2:3:4,∴AB =29×AD =4, ∴BD =AD ﹣AB =18﹣4=14;(2)∵当CN =13CD 时,如图,∵AB :BC :CD =2:3:4,∴设AB =2x ,BC =3x ,CD =4x ,∴AC =5x , ∵点M 是线段AC 的中点,∴CM =12AC =2.5x , ∵CN =13CD =43x , ∴CM+CN =52x+43x =MN =9, ∴x =5423, ∴BD =7x =37823; 【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.14.(1);(2)45°或75°【分析】(1)由可求由OD 是的平分线得可求;(2)由可求∠BOC=60º由设∠BOE=xº可得∠BOD=4x°∠DOE=3x°由可求可得∠COE=∠BOE=由可求当OF 在解析:(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.15.(1);;(2)57°【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得然后根据两角互余的关系即可求解【详解】(1)原式因解析:(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.16.5cm 【分析】根据线段中点的定义求出AE 的长进而求出AC 的长再根据中点的定义求出CD 的长然后利用线段的和差可得答案【详解】解:∵E 为线段AB 的中点AB =16cm ∴AE =AB =8(cm )∵EC =3cm解析:5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 17.(1)见解析;(2)见解析;(3)【分析】(1)根据画出图形即可;(2)根据画出图形即可;(3)根据线段等分的性质可得AB 的长根据线段的和差可得BD 的长【详解】解:(1)点C 如图所示;(2)点D 如图解析:(1)见解析;(2)见解析;(3)4cm BD =【分析】(1)根据3AC AB =,画出图形即可;(2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长.【详解】解:(1)点C 如图所示;(2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =.∵8cm CB =,∴2cm AB =.∵3AD AB =,∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型. 18.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法相同的单位相加满60时向上以单位进1可得答案;(2)原式先计算乘方再计算乘除最后进行加减运算即可【详解】解:(1)58°32′36″解析:(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.19.(1)6;(2);(3)【分析】(1)根据中点的定义结合线段的和差计算即可(2)利用线段之间的和差关系倍数关系计算即可(3)结合(2)的求解再利用线段之间的和差关系倍数关系计算即可【详解】(1)为线解析:(1)6;(2)103;(3)()1AB k DE =+ 【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】 (1)D 、E 为线段AC ,BC 的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键. 20.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.三、解答题21.(1)60°;(2)87.5°;(3)∠12AOP AOC =∠(1)先根据∠BOD =13∠COD 求出∠COB=30°,再根据角平分线的定义求解即可; (2) 角平分线的定义求出∠COB=35°,由∠BOD =13∠COD 求出∠BOD 的度数,从而可进一步得出结论; (3)先得出∠BOD AOP =∠,再由∠1122BOD COB AOC =∠=∠即可得出结论. 【详解】解:(1)∵∠BOD =15°,∠BOD =13∠COD ∴∠331545COD BOD =∠==︒⨯︒ ∴∠451530COB COD BOD =∠-∠=︒-︒=︒又∵OC 是∠AOB 的平分线∴∠223060AOB COB =∠=⨯︒=︒故答案为:60°;(2)∵1,3BOD COD COD COB BOD ∠=∠∠=∠+∠ ∴∠1()3BOD COB BOD =∠+∠ ∴∠12BOD COB =∠ ∵∠AOB =70°,OC 是∠AOB 的平分线,∴∠11703522COB AOB =∠==︒⨯︒ ∴∠113517.522BOD COB ︒=∠=⨯=︒ ∴∠70=187.57.5AOD AOB BOD =∠+︒∠=+︒︒故答案为:87.5°; (3)∵∠POD POB BOD =∠+∠,∠AOB AOP POB =∠+∠,且∠POD AOB =∠ ∴∠BOD AOP =∠,又∠1122BOD COB AOC =∠=∠ ∴∠12AOP AOC =∠ 【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.22.见解析【分析】在射线AE 上依次截取AB=a ,BC=CD=b ,在DA 上截取DM=c ,则AM 满足条件.【详解】解:如图,AM 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)①90°;②45°;(2)3360αβ+=︒.【分析】(1)①根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论;②设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)①∵180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;②设2COD x ∠=,∵OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∵180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∵3αβ=, ∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∵45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∵90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∵180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒, ∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键. 25.45°【分析】先通过90BOC ∠=°,32BOD ∠=︒,求58COD ∠=︒,再求148AOD ∠=︒,再根据角平分线的性质求29DON ∠==︒,74MOD ∠=︒,利用角的和差MON MOD DON ∠=∠-∠即可得到答案.【详解】解:∵90AOC ∠=︒,∴1809090BOC ∠=︒-︒=︒∵32BOD ∠=︒,∴903258COD ∠=︒-︒=︒,18032148AOD ∠=︒-︒=︒∵ON 平分COD ∠, ∴11582922DON CON COD ∠=∠=∠=⨯︒=︒ ∵OM 平分AOD ∠, ∴111487422MOD AOD ∠=∠=⨯︒=︒ ∴742945MON MOD DON ∠=∠-∠=︒-︒=︒.【点睛】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.26.(1)2-或12-;(2)180︒,50︒,角平分线定义,25︒【分析】(1)根据绝对值的定义可得7=±x ,5y =±,由题意中0x y +<,可得7x =-,5y =±,即可求解;(2)根据平角的定义、角平分线的定义即可求解.【详解】解:(1)∵||7x =,||5y =,∴7=±x ,5y =±,∵0x y +<,∴7x =-,5y =±,∴2x y -=-或12-;(2)O 是直线AB 上一点,AOB ∴∠=180°.130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠=50°. OD 平分AOC ∠,COD AOD ∴∠=∠.理由是角平分线定义,COD ∴∠=25°.【点睛】本题考查绝对值的定义、有理数加法的符号、角平分线的定义,掌握上述知识内容是解题的关键.。
一、选择题1.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 12 2.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2123.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°4.已知线段AB =6cm ,在直线AB 上取一点C ,使BC =2cm ,则线段AB 的中点M 与AC 的中点N 的距离为( )A .1cmB .3cmC .2cm 或3cmD .1cm 或3cm 5.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°6.如图,是一副三角板的摆放图,将一个三角板60角的顶点与另一个三角板的直角顶点重合,∠BAE =1640′,则CAD ∠的大小是( )A .2820︒′B .4320︒′C .4620︒′D .4640︒′ 7.如图,直线,AB CD 交于点O ,已知EO AB ⊥于点,O OF 平分BOC ∠,若35DOE EOF ︒∠=∠+,则AOD ∠的度数是( )A .71°B .72°C .73°D .74°8.如图,经过创平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直9.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 10.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( )A.8点30分B.9点30分C.10点30分D.以上答案都不对11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处12.如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ.则∠SQT等于()A.42°B.64°C.48°D.24°二、填空题13.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=38°.求∠2和∠3的度数.14.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC中,∠BAC=90°,∠B=∠C=45°;三角尺ADE中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD、∠CAE的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以15.读句画图如图,点,,答题卡上印刷的图形为准):(1)画图:①画射线AB ;②画直线BC ;③连接AC 并延长到点D ,使得CD CA =.(2)测量:ABC ∠约为_________°(精确到1︒).16.(1)根据语句画图计算:作线段AB=3cm ,在AB 的延长线上取点C ,使BC=2AB ,M 是AC 的中点,求BM 的长;(2)已知:如图,∠AOB 被分成∠AOC :∠COD :∠DOB=4:5:6,OM 平分∠AOC ,ON 平分∠DOB ,且∠MON=90°,求∠DOC 的度数.17.如图,已如A ,B 两点.(1)画线段AB ;(2)延长线段AB 到点C ,使BC AB =;(3)反向延长线段AB 到点D ,使DA AB =;(4)点A ,B 分别是哪条线段的中点?若3cm AB =,请求出线段CD 的长.18.已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,DOE α∠=.(1)如图1,70α=︒,当OD 平分AOC ∠时,求EOB ∠的度数.(2)如图2,若2DOC AOD ∠=∠,且80α<︒,求EOB ∠的度数(用含α的代数式表示).19.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程:因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠ =180°,根据 ,所以∠ =∠ .(2)若∠MOC =72°,求∠AON 的度数.20.如图,已知110AOF BOC ∠=∠=︒,80BOF ∠=︒,OE 是AOC ∠的平分线,求COE ∠的度数.三、解答题21.已知射线AB 上有一点C ,10AB cm =,4BC cm =,点M 是AC 的中点,点N 是BC 的中点.(1)如图①,若点C 在AB 之间时,求MN 的长;(2)如图②,若点C 在B 点右边时,求MN 的长.22.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC 中,∠BAC=90°,∠B=∠C=45°;三角尺ADE 中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD 、∠CAE 的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.23.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长;(2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 24.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.25.根据下列要求画图(不写作法,保留作图痕迹)(1)连接线段OB ;(2)画射线AO ,射线AB ;(3)用圆规在射线AB 上截取AC ,使得AC OB =,画直线OC .26.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A开始的线段有AB,AC,AD三条;从B开始的线段有BC,BD二条;从C开始的线段有CD一条;所以共有6条线段;车票从A到B和从B到A是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票,故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.2.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.3.C解析:C【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:8:20时,时针与分针相距4+2060=133份, 8:20时,时针与分针所夹的角是30°×133=130°, 故选:C .【点睛】 本题考查了钟面角,确定时针与分针相距的分数是解题关键.4.A解析:A【分析】分情况讨论,点C 在线段AB 上,或点C 在直线AB 上,根据线段中点的性质求出线段长.【详解】解:①如图,点C 在线段AB 上,∵6AB cm =,2BC cm =,∴624AC AB BC cm =-=-=,∵M 是AB 的中点,∴132AM AB cm ==, ∵N 是AC 的中点, ∴122AN AC cm ==, ∴321MN AM AN cm =-=-=;②如图,点C 在直线AB 上,∵6AB cm =,2BC cm =,∴628AC AB BC cm =+=+=,∵M 是AB 的中点,∴132AM AB cm ==, ∵N 是AC 的中点, ∴142AN AC cm ==, ∴431MN AN AM cm =-=-=.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.5.C解析:C【分析】根据角平分线的定义和角的和差计算即可.【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°,∴∠ABE=∠ABC+∠CBE=30°+90°=120°,∵BM平分∠ABE,∴∠ABM=12∠ABE=12×120°=60°,∴∠CBM=∠ABM−∠ABC=60°−30°=30°,故答案为:30°.【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.6.D解析:D【分析】根据∠BAC=60°,∠BAE=1640′,求出∠EAC的度数,再根据∠CAD=90°-∠EAC,即可求出∠CAD的度数【详解】解:∵∠BAC=60°,∠BAE=4320′,∴∠EAC=60°-1640′=43°20′,∵∠EAD=90°,∴∠CAD=90°-∠EAC=90°-43°20′=46°40′;故选:D.【点睛】本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.D解析:D【分析】根据垂直的定义得∠AOE=∠BOE=90°,由角平分线的定义和对顶角的性质可得∠AOD=∠BOC=2∠COF.把∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF代入∠DOE=3∠EOF+5°可求出∠COF,进而可求出∠AOD的值.【详解】解:∵EO AB,∴∠AOE=∠BOE=90°.∠,∵OF平分BOC∴∠AOD=∠BOC=2∠COF.∵∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF,35∠=∠+,DOE EOF︒∴∠AOD+90°=3(90°-∠COF)+5°,∴2∠COF+90°=270°-3∠COF+5°,∴∠COF=37°,∴∠AOD=2×37°=74°.故选D.【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.8.A解析:A【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题考查了直线的性质在实际生活中的运用,牢记“经过两点有且只有一条直线”是解题的关键..9.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.10.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】︒⨯+︒=︒;A选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒C选项,分针指向6,时针指向10和11的中间,夹角是30415135D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.11.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile处.故选B.【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.∠2=64°∠3=52°【分析】利用平角互补和角平分线的定义进行计算即可【详解】解:∵AB为直线∴∠3+∠FOC+∠1=180°∵∠FOC=90°∠1=38°∴∠3=180°-90°-38°=52°解析:∠2=64°,∠3=52°.【分析】利用平角、互补和角平分线的定义进行计算即可.【详解】解:∵AB 为直线,∴∠3+∠FOC +∠1=180°.∵∠FOC =90°,∠1=38°,∴∠3=180°-90°-38°=52°.∵∠3与∠AOD 互补,∴∠AOD =180°-∠3=128°.∵OE 平分∠AOD ,∴∠2=12∠AOD =64°. 【点睛】本题考查了角的计算,掌握平角、补角及角平分线的定义,并利用数形结合的思想是解答此题的关键.14.(1)7575;(2)75过程见解析;(3)105°【分析】(1)图2由角平分线的性质得到再结合角的和差解题即可;图3由角平分线的性质得到再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE解析:(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM和AN是∠BAD和∠CAE的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12x°∠EAN=12∠CAE=12(90°- x°)=45°+12x°.所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12x°)+ x°+(45°-12x°)=75°,故答案为:75°;(3)设∠BAE为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM和AN是∠BAD和∠CAE的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12x°∠EAN=12∠CAE=12(270°- x°)=135°-12x°.所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12x°)+(135°-12x°)- 60°=105°.【点睛】本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得【详解】解:(1)如图所示:①射线AB即为所求;②直线BC即为所求;③线段CD=CA解析:(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示:①射线AB即为所求;②直线BC即为所求;③线段CD=CA即为所求(2)ABC约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.16.(1)图见解析;BM=15cm;(2)∠DOC=45°【分析】(1)先根据题意得出BC的长再根据中点的定义得出AM的长进而可得出结论;(2)根据题意设∠AOC=4x∠COD=5x∠DOB=6x则∠M解析:(1)图见解析;BM= 1.5cm;(2)∠DOC=45°.【分析】(1)先根据题意得出BC的长,再根据中点的定义得出AM的长,进而可得出结论;(2)根据题意设∠AOC=4x,∠COD=5x,∠DOB=6x,则∠MON =10x,再根据角平分线的定义以及∠MON=90°,即可求出结果.【详解】(1)如图所示.∵BC=2AB=2×3=6(cm),∴AC=BC+AB=9(cm),又∵M是AC的中点,∴AM=119 4.5AC=⨯=(cm),22∴BM=AM-AB=4.5-3=1.5(cm);(2)由∠AOC:∠COD:∠DOB=4:5:6,可设∠AOC=4x,∠COD=5x,∠DOB=6x,∵OM平分∠AOC,ON平分∠DOB,∴∠COM=2x,∠DON=3x,又∵∠MON=90°,∴∠DON+∠COD+∠COM=90°即 3x+5x+2x=90°解得x=9°,∴∠DOC=5x=45°.∴∠DOC的度数为45°.【点睛】本题考查了两点间的距离以及角平分线的定义,熟练掌握线段的和差,角的和差计算以及角平分线的性质是解答此题的关键.17.(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点点B 是线段AC 的中点;CD=9cm 【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义解析:(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点,点B 是线段AC 的中点;CD=9cm .【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A 是线段BD 的中点;点B 是线段AC 的中点;然后利用CD=3AB 求解.【详解】解:(1)如图,线段AB 为所作;(2)如图,点C 为所作;(3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点;所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.(1)50°;(2)【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论【详解】解:(1)平分当时即则;(2)则【点睛】此题主要考查了几何图形中角度计算问题角平分线的定义以及解析:(1)50°;(2)140α︒-.【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论.【详解】解:(1)OD 平分AOC ∠,1602AOD COD AOC ∴∠=∠=∠=︒, 当70α=︒时,即70DOE ∠=︒.则180EOB AOD DOE ∠=︒-∠-∠180607050=︒-︒-︒=︒;(2)2DOC AOD ∠=∠,120AOC ∠=︒,1=120401+2AOD ∴∠︒⨯=︒,80DOC ∠=︒, 80α<︒,则180EOB AOD DOE ∠=︒-∠-∠18040α=︒-︒-140α=︒-.【点睛】此题主要考查了几何图形中角度计算问题,角平分线的定义以及角的有关计算,熟记角平分线的定义是解决此题的关键.19.(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°∠AOC+∠COB =180°可以根据同角的补角相等得到∠AOD =∠COB ;(2解析:(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°,∠AOC+∠COB =180°,可以根据同角的补角相等得到∠AOD =∠COB ;(2)首先根据角平分线的性质可得∠AOC =2∠COM ,∠AON =12∠AOD ,然后计算出∠AOC =144°,进而得到∠AON =18°.【详解】解:(1)因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠BOC =180°,根据同角的补角相等,所以∠AOD =∠BOC ,故答案为:BOC ;同角的补角相等;AOD ;BOC ;(2)∵OM 是∠AOC 的平分线.∴∠AOC =2∠MOC =2×72°=144°,∵∠AOC 与∠AOD 互补,∴∠AOD =180°﹣144°=36°,∵ON 是∠AOD 的平分线.∴∠AON =12∠AOD =18°. 【点睛】本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系. 20.【分析】根据可证利用角的和差关系可求出则由得出即可根据角平分线定义求得结果【详解】解:∵∴即∵∴∴∴∵是的平分线∴【点睛】本题考查了角的计算问题掌握角平分线的定义并能利用角的和差关系求解是解题的关键 解析:70︒【分析】根据AOF BOC ∠=∠可证AOB COF ∠=∠,利用角的和差关系可求出30AOB ∠=︒,则由110BOC ∠=°得出140BO OC O C A A B ∠=+∠=∠︒,即可根据角平分线定义求得结果.【详解】解:∵AOF BOC ∠=∠,∴AOF BOF BOC BOF ∠-∠=∠-∠,即AOB COF ∠=∠.∵80BOF ∠=︒,110BOC ∠=°,∴30BO OF BO C C F ∠-∠=∠=︒,∴30AOB ∠=︒,∴140BO OC O C A A B ∠=+∠=∠︒,∵OE 是AOC ∠的平分线, ∴1702COE AOC ∠=∠=︒. 【点睛】本题考查了角的计算问题,掌握角平分线的定义并能利用角的和差关系求解是解题的关键. 三、解答题21.(1)5cm ;(2)5cm【分析】(1)求出AC ,根据中点分别求出CM 和CN ,即可求出答案;(2)求出AC ,根据中点分别求出CM 和BN ,再求出MB ,即可求出答案;【详解】(1)∵10AB =,4BC =∴6AC =又∵M 点是AC 的中点,N 点是BC 的中点∴ 3AM MC ==,2BN CN ==∴5MN MC CN =+=.(2)∵10AB =,4BC =∴14AC AB BC =+=又∵M 点是AC 的中点,N 点是BC 的中点∴7AM MC ==,2BN CN ==∴3MB MC BC =-=∴5MN MB BN =+=.【点睛】本题考查了两点之间的距离的应用,能求出CM 和CN=BN 的长度是解此题的关键,求解过程类似.22.(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题; (3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x° 因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12 x°)+ x°+(45°-12 x°) =75°,故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.24.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AO 、AB 并延长;(3)先用圆规在射线AB 上截取AC=OB ,再画直线OC .【详解】解:(1)如图所示,线段OB 即为所求;(2)如图所示,射线AO 、射线AB 即为所求;(3)如图所示,直线OC 即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.26.(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P表示的数为84t-,故答案为:-6,84t-;(2)设点P、Q同时出发,点P运动时间t秒追上Q,依题意得,4214t t=+,解得7t=,∴点P运动7秒时追上点Q;(3)线段MN的长度没有发生变化都等于7;理由如下:①当点P在点A、B两点之间运动时:MN MP NP=+1122AP BP=+1()2AP BP=+12AB=1142=⨯7=,②当点P运动到点B的左侧时:MN MP NP=-1122AP BP=-1()2AP BP=-12AB=7=,∴线段MN的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键.。
一、选择题1.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上2.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定4.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个5.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处6.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .67.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒'''8.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°9.从不同方向看一只茶壶,你认为是俯视效果图的是( )A .B .C .D .10.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .2011.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( ) A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的12.下列事实可以用“经过两点有且只有一条直线”来说明的是( )A .从王庄到李庄走直线最近B .在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C .向远方延伸的铁路给我们一条直线的印象D .数轴是一条特殊的直线二、填空题13.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.14.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.15.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.16.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.17.如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.18.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .19.一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14) 20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.23.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?CO ,求p.(2)若原点O在图中数轴上点C的右边,且2824.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.25.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方体的表面积和体积.26.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:+=,从图中我们可以发现AC BC AB所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.5.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短. 故选A .6.A解析:A 【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长. 【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =. 因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=. 故选A . 【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.7.B解析:B 【分析】先进行度、分、秒的乘法除法计算,再算减法. 【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=- 386415055︒︒''''-''='''363355︒=. 故选:B . 【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.8.A解析:A 【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.9.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.10.A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.11.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.12.B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.二、填空题13.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.14.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.15.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.16.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键17.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】解:阴影部分的面积=42-7×18×12×42=16-7=9.故答案为9.【点睛】本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.18.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用解析:3 2【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=, P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=, N 为CB 的中点, 1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.19.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m 后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m 后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m 2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.20.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.23.(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.24.见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ;(2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.25.(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.26.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B 作BD ⊥AC ,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).。
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .5 2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 3.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 5.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒6.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转8.已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°9.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定10.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°11.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q12.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm 13.下列平面图形中不能围成正方体的是()A.B.C .D .14.如图是一个正方体展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A 、B 、C 内的三个数依次为( )A .1,-2,0B .0,-2,1C .-2,0,1D .-2,1,015.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm二、填空题16.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 17.如图,共有_________条直线,_________条射线,_________条线段.18.已知线段AB 的长度为16厘米,C 是线段AB 上任意一点,E ,F 分别是AC ,CB 的中点,则E ,F 两点间的距离为_______.19.36.275︒=_____度______分______秒.20.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.21.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.22.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.23.25°20′24″=______°.24.如图,用边长为4cm的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm2.25.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)26.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n)个图有________个相同的小正方形.三、解答题27.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.28.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.AB=,点M是线段AB的中点,点C把线段MB分成29.已知:如图,18cmMC CB=的两部分,求线段AC的长.:2:1请补充下列解答过程:AB=,解:因为M是线段AB的中点,且18cm==________AB=________cm.所以AM MBMC CB=,因为:2:1所以MC=________MB=________cm.=+________=________+________=________(cm).所以AC AM30.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.。
一、选择题1.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm2.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm3.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =4.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22PQ ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+5.下列说法正确的是( ) A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 6.下列说法中,错误的是( ) A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等7.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( )A .B .C .D .8.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒9.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 10.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( )A .B .C .D .11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个二、填空题13.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长. 14.(1)计算:1517(36)61218⎫⎛+-⨯- ⎪⎝⎭ (2)计算:2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)计算:18050243'-⨯15.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数. 16.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=. (2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.17.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数.18.已知,线段20AB =,M 是线段AB 的中点,P 是线段AB 上任意一点,N 是线段PB 的中点.(1)当P 是线段AM 的中点时,求线段NB 的长; (2)当线段1MP =时,求线段NB 的长;(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.19.如图,已知110AOF BOC ∠=∠=︒,80BOF ∠=︒,OE 是AOC ∠的平分线,求COE ∠的度数.20.如图,C 是线段AB 上一点.()1若,M N 分别是,AC BC 的中点,请探究MN 与AB 的数量关系,并说明理由; ()2图中有三条线段,,AB AC BC ,若,M N 分别是其中两条线段的中点,请直接写出MN 与第三条线段的数量关系. 三、解答题21.已知90AOB EOF ∠=∠=︒,OM 平分∠AOE ,ON 平分∠BOF . (1)如图1,当OE 在∠AOB 内部时, ①AOE ∠ BOF ∠;(填>,=,<) ②求∠MON 的度数;(2)如图2,当OE 在∠AOB 外部时,(1)题②的∠MON 的度数是否变化?请说明理由.22.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数; (2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.23.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长; (2)当13CN CD =时,求BD 的长. 24.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 .(3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.25.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.26.已知,线段20AB =,M 是线段AB 的中点,P 是线段AB 上任意一点,N 是线段PB 的中点.(1)当P 是线段AM 的中点时,求线段NB 的长; (2)当线段1MP =时,求线段NB 的长;(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据CB=5cm,AB=13cm求出A C的长,再根据D是AC的中点即可得出DC的长,即可求出BD.【详解】解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.B解析:B【分析】根据题意设MC=5x,CN=4x,根据线段之间的计算得出等量关系,列方程求解即可解答.【详解】解:根据题意,设MC=5x,CN=4x,则MN=MC+CN=9x,∵点P是MN的中点,∴PN= 12MN=92x,∴PC=PN﹣CN= 12x=2,解得:x=4,∴MN=9×4=36cm,故选:B.【点睛】本题考查线段的计算,由题目中的比例关系设未知数是常见做题技巧,根据线段之间关系列方程求解是解答的关键.3.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 4.B解析:B【分析】根据线段中点定义先求出P1Q1的长度,再由P1Q1的长度求出P2Q2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP和AQ的中点P1,Q1,∴P1Q1=AP1-AQ1=12AP-12AQ=12(AP-AQ)=12 PQ=12×10=5.∵线段AP1和AQ1的中点P2,Q2;∴P2Q2=AP2-AQ2=12AP1-12AQ1=12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n ×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212 )=10(1-1112) =10-11102故选:B . 【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度.5.D解析:D 【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解. 【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意; B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意; C 、两点之间,线段最短,故本选项不符合题意; D 、七边形的对角线一共有7(73)142条,正确故选:D 【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.6.A解析:A 【分析】根据基本平面图的性质判断即可; 【详解】A 两点之间线段最短,故错误;B 两点确定一条直线,故正确;C 一个锐角的补角一定比它的余角大90°,故正确;D 等角的补角相等,故正确; 故答案选A . 【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.7.A解析:A 【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得. 【详解】 A 、90180αβ∠+∠+︒=︒, 90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意;B 、90β∠=︒,α∠为锐角, 90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意;C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意;D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒,4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意;故选:A . 【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.8.B解析:B 【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数. 【详解】解:时针超过20分所走的度数为20×0.5=10°, 分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.9.D解析:D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 10.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A .正六边形每个内角为120°,能够整除360°,不合题意;B .正三角形每个内角为60°,能够整除360°,不合题意;C .正方形每个内角为90°,能够整除360°,不合题意;D .正五边形每个内角为108°,不能整除360°,符合题意.故选:D .【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.11.C解析:C【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.二、填空题13.(1)8;(2)7或13【分析】(1)根据D 是BC 的中点得BC=2BD 再根据AC+BC=AB 求出CD 的长进而可求得AC 的长;(2)分①当点在线段上;②当点在线段的延长线上两种情况求解即可【详解】解:解析:(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 14.(1)13;(2);(3)【分析】(1)利用乘法分配律进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可【详解】(1)(2)(3)【点睛】本题考查乘法分解析:(1)13;(2)16;(3)2848'. 【分析】(1)利用乘法分配律,进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可.【详解】(1) 1517()(36)61218+-⨯- ()()()151736363661218=⨯-+⨯--⨯- 6(15)(34)=-+---61534=--+13= (2)2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 111(29)23=--⨯⨯- 11(7)6=--⨯- 16= (3)18050243'-⨯1796015072''=-2848'=.【点睛】本题考查乘法分配律,有理数的混合运算,度分秒的换算,掌握有理数的混合运算的法则以及度分秒的换算方法是得出正确答案的前提.15.(1)∠DOE =90°;(2)∠AOE =155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC ∠COE=∠BOC 然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数再利用∠AOE解析:(1)∠DOE =90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC ,∠COE=12∠BOC ,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数,再利用∠AOE =∠AOD +∠DOE 可得答案.【详解】解:(1)∵OD 平分∠AOC ,OE 平分∠COB ,∴∠DOC =12∠AOC ,∠COE =12∠COB , ∴∠DOE =∠DOC +∠COE =12∠AOC +12∠COB =12(∠AOC +∠COB)=12∠AOB =12×180° =90°;(2)∵OD 平分∠AOC ,∠COD =65°,∴∠AOD =∠COD =65°,∴∠AOE =∠AOD +∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.16.(1);;(2)57°【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得然后根据两角互余的关系即可求解【详解】(1)原式因解析:(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.17.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD 相交于点O (2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.18.(1)75;(2)45或55;(3)画图证明见解析【分析】(1)画出符合题意的图形先求解再求解可得再利用中点的含义可得答案;(2)分两种情况讨论:当在左边时当在右边时先求解再利用中点的含义可得答案;解析:(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点,∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB =∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】 本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.19.【分析】根据可证利用角的和差关系可求出则由得出即可根据角平分线定义求得结果【详解】解:∵∴即∵∴∴∴∵是的平分线∴【点睛】本题考查了角的计算问题掌握角平分线的定义并能利用角的和差关系求解是解题的关键 解析:70︒【分析】根据AOF BOC ∠=∠可证AOB COF ∠=∠,利用角的和差关系可求出30AOB ∠=︒,则由110BOC ∠=°得出140BO OC O C A A B ∠=+∠=∠︒,即可根据角平分线定义求得结果.【详解】解:∵AOF BOC ∠=∠,∴AOF BOF BOC BOF ∠-∠=∠-∠,即AOB COF ∠=∠.∵80BOF ∠=︒,110BOC ∠=°,∴30BO OF BO C C F ∠-∠=∠=︒,∴30AOB ∠=︒,∴140BO OC O C A A B ∠=+∠=∠︒,∵OE 是AOC ∠的平分线, ∴1702COE AOC ∠=∠=︒. 【点睛】本题考查了角的计算问题,掌握角平分线的定义并能利用角的和差关系求解是解题的关键. 20.(1)AB 见解析;(2)当点MN 分别是线段的中点时;当点MN 分别是线段的中点时MN=BC ;当点MN 分别是线段的中点时MN=AC 【分析】(1)根据线段中点的性质可得MCNC 的长根据线段的和差可得答案;解析:(1)1MN ?2=AB ,见解析;(2)当点M ,N 分别是线段AC BC 、的中点时,12MN AB =;当点M ,N 分别是线段AC AB 、的中点时,MN=12BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC . 【分析】 (1)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案; (2)分三种情况讨论,依照(1)的方法即可求解.【详解】(1)∵点M 是AC 中点,点N 是BC 中点, 如图,∴CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; (1)分三种情况讨论, 当点M ,N 分别是线段AC BC 、的中点时,如图,CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; 当点M ,N 分别是线段AC AB 、的中点时,如图,AM=12AC ,AN=12AB , ∴MN=AN-AM=12AB-12AC=12(AB-AC)=1 2BC ; 当点M ,N 分别是线段AB CB 、的中点时,如图,BM=12AB ,BN=12BC , ∴MN=BM-BN=12AB-12BC=12(AB-BC)=1 2AC ; 综上,当点M ,N 分别是线段AC BC 、的中点时,12MN AB;当点M ,N 分别是线段AC AB 、的中点时,MN=1 2BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC .【点睛】本题考查了两点间的距离,利用线段中点的性质得出相关线段的长是解题关键,还利用了线段的和差.三、解答题21.(1)①=;②90MON ∠=︒;(2)不变化,理由见解析【分析】(1)①结合题意,根据角度和差的性质计算,即可得到答案;②根据角平分线的性质,得12MOE AOE ∠=∠,12BON BOF ∠=∠;结合(1)①的结论,通过计算即可得到答案;(2)根据题意,根据角度和差性质计算,得AOE BOF ∠=∠;根据角平分线性质计算,得AOM MOE BON NOF ∠=∠=∠=∠;结合90MOB AOM ∠=︒-∠,通过计算即可完成求解.【详解】(1)①∵90AOB EOF ∠=∠=︒∴90AOE BOE BOF BOE ∠+∠=∠+∠=︒∴AOE BOF ∠=∠故答案为:=;②∵OM 平分∠AOE ,ON 平分∠BOF ∴1122MON MOE BOE BON AOE BOE BOF ∠=∠+∠+∠=∠+∠+∠ 结合(1)①的结论AOE BOF ∠=∠∴90MON AOE BOE AOB ∠=∠+∠=∠=︒;(2)90AOB EOF ∠=∠=︒,AOE AOB BOE ∠=∠+∠,BOF BOE EOF ∠=∠+∠∴AOE BOF ∠=∠又∵OM 平分∠AOE ,ON 平分∠BOF ,∴AOM MOE BON NOF ∠=∠=∠=∠∵90MOB AOM ∠=︒-∠∴9090MON MOB BON AOM BON ∠=∠+∠=︒-∠+∠=︒.【点睛】本题考查了角度和差、角平分线的知识;解题的关键是熟练掌握角度和差计算、角平分线的性质,从而完成求解.22.(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒ ∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE ∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒; (2)如图∵:1:4BOC BOE ∠∠= ∴:1:3BOC COE ∠∠= ∵OB 平分AOC ∠ ∴2AOC BOC ∠=∠ ∴:2:3AOC COE ∠∠= 又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠∴11663322COD COE ∠=∠=⨯︒=︒.【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加23.(1)14(2)378 23【分析】(1)根据题意可得出CM=12AC,CN=12CD,所以MN=CM+CN=12(AC+CD)=12AD=9,从而得出AD的长,根据AB:BC:CD=2:3:4,可得出AB的长,继而求出BD的长;(2)根据题意,当CN=13CD时,设AB=2x,BC=3x,CD=4x,可得AC=5x,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN =52x+43x =MN =9, ∴x =5423, ∴BD =7x =37823; 【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键. 24.(1)30;(2)1;(3)12【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果.【详解】(1)∵120AOD BOC ∠=∠=︒ ∴AOD COD BOC COD ∠∠=∠-∠-, ∴AOC BOD ∠=∠ ∵30AOC ∠=︒ ∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠, 2AOC MOC ∴∠=∠,2BOC NOC ∠=∠, AON AOC NOC ∠=∠+∠ BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠ MOC NOC =∠-∠, AON BOM ∠≠∠, 1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠,又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠;【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.25.(1)∠BOD=60°;(2)∠BOD=2∠EOF ,理由见解析 【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF 平分∠BOC 求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB 、∠BOC 分别用α的代数式表示,最后∠BOD=180°-∠BOC 即可求解. 【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°, ∵∠EOF=30°, ∴∠FOB=90°-30°=60°, ∵OF 为∠BOC 的角平分线, ∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°; (2)设∠EOF=α,则∠FOB=90°-α, ∵OF 为∠BOC 的角平分线, ∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α, 即∠BOD=2∠EOF . 【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.26.(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析. 【分析】(1)画出符合题意的图形,先求解10AM =, 再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论.【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-= ∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =,∴当P 在M 左边时,如图,11BP MB MP =+=, ∵N 是线段PB 的中点,∴15.52NB PB ==,如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点, ∴14.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下: 当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+ ∵N 是线段PB 的中点 ∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB = ∴1102MB AB == ∴12MN NB MB t =-= 又∵PA t = ∴2PA MN = 【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.。
明博教育数学第七册第四单元练习(A)一、口算。
(6')1.2+1.5= 1.7-1.3=0.8+9.4=0.5+0.5= 1.5-1.5= 6.05-5.05=二、填空。
(15')1.一个小数中,小数点的左边是()部分,右边是()部分。
2.小数点右边第一位是(),第二位是()。
3.以前学过的数,像0、1、2、3、4、5……都是()。
现在学的数,像0.1、0.2、1.3、2.4等都是()。
4.0.50读作:();80.06读作:()。
5.在0.06、1.36、58.6、120.03这四个数中最大的数是(),最小的数是()。
三、判断题。
(10’)1.所有的小数都比1小。
()2.计算小数加减法时,要把小数末位对齐。
()3.30元4角用元作单位是30.4元。
()4.0.8里面有6个十之一。
()5.一百点三三,写作:10.33()四、用竖式计算。
(15)2.3-1.6=3.8+5.9= 1.36-0.26=0.35+0.21=56.12+100.21=五、列式计算。
(12)1.比4.12多3.65的数是多少?2.一数是0.87另一个数是6.5,它们的和是多少?3.甲数是9.34,它比乙数大3.64,乙数是多少?六、应用题。
(42)1.化肥厂上半月生产化肥55.7吨,下半月生产62.5吨,结果比计划多生产45.1吨。
化肥厂本月计划和实际生产各多少吨?2.一本数学书的价钱是0.69元,比一支钢笔便宜2.64元,这支钢笔多少钱?两件东西共多少钱?3.一盒白粉笔和一盒彩色粉笔共17.6元,一盒白粉笔比一盒彩色粉笔多3.6元,白粉笔和彩色粉笔个多少钱?。
一、选择题1.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( )A .①②B .①②③C .①②③④D .①②④ 2.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 3.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( )A .1个B .2个C .3个D .4个4.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( ) A .32cmB .64cmC .32cm 或64cmD .64cm 或128cm 5.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 6.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 7.下列图形中,表示南偏东60°的射线是( )A .B .C .D . 8.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是( )A .B .C .D . 9.钟表上12时15分时,时针和分针的夹角是( )A .120°B .90°C .82.5°D .60°10.如图,轮船与灯塔相距120nmile ,则下列说法中正确的是( )A .轮船在灯塔的北偏西65°,120 n mile 处B .灯塔在轮船的北偏东25°,120 n mile 处C .轮船在灯塔的南偏东25°,120 n mile 处D .灯塔在轮船的南偏西65°,120 n mile 处11.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要( )A .三个正三角形、两个正六边形B .四个正三角形、两个正六边形C .两个正三角形、两个正六边形D .三个正三角形、一个正六边形 12.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定 二、填空题13.已知射线AB 上有一点C ,10AB cm =,4BC cm =,点M 是AC 的中点,点N 是BC 的中点.(1)如图①,若点C 在AB 之间时,求MN 的长;(2)如图②,若点C 在B 点右边时,求MN 的长.14.已知()090AOB αα∠=︒<<︒.(1)如图1,反向延长射线OA 得到射线OC ,用量角器画BOC ∠的平分线OD .当30α=︒时,求AOD ∠的度数;(2)如图2,90AOC ∠=︒,用量角器画BOC ∠的角平分线OD .判断AOD ∠与BOD ∠互为余角吗?说明理由;(3)利用“备用图”画图研究:画BOC ∠,使BOC ∠与AOB ∠互为补角,进一步画出AOB ∠、BOC ∠的平分线OM ,ON ,并求MON ∠的度数(若需要,可以用含α的式子表示) .15.已知O 为直线AB 上一点,OE 平分∠AOC ,OF 平分∠COB(1)若已知∠AOC =60°,求∠EOF 的大小.(2)小明说无论∠AOC 等于多少度,∠EOF 的度数不变,他的说法对吗?16.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系.②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O 旋转到如图2的位置.①∠AOD 和∠BOC 相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 18.如图,OB,OC 是AOD 内部的两条射线,OM 平分AOB ,ON 平分COD ,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数;(2)若118AOD ∠=︒,求MON ∠的度数.19.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.20.如图,已知点M 是线段AB 的中点,点E 将AB 分成:3:4AE EB =的两段,若2cm EM =,求线段AB 的长度.三、解答题21.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.22.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.23.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 24.已知,线段20AB =,M 是线段AB 的中点,P 是线段AB 上任意一点,N 是线段PB 的中点.(1)当P 是线段AM 的中点时,求线段NB 的长;(2)当线段1MP =时,求线段NB 的长;(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.25.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.26.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠. (1)如图1,若100AOB ∠=︒,30AOC ∠=︒,则EOF ∠=__________度;(2)如图2,若AOB α∠=,AOC β∠=,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠ 的大小;(3)在(2)的条件下,若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、COB ∠均是指小于180︒的角),其余条件不变,请借助图3探究EOF ∠的大小,求EOF ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∴AH=CH=12AC,AM=BM=12AB,BN=CN=12BC,∴MN=MB+BN=12(AB+BC)=12AC,∴MN=HC,①正确;1 2(AH﹣HB)=12(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=12AC<1()2AC HB,③错误;1 2(HC+HB)=12(BC+HB+HB)=BN+HB=HN,④正确,故选择:D.【点睛】本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念.2.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ ,综上所述,在运动过程中,线段PQ 的长度始终是线段OQ 的长的2倍,即PQ= 2OQ 一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 3.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC 不共线时,点C 不是线段AB 的中点,故本说法错误;③射线OB 与射线OC 可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B .【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.4.C解析:C【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.【详解】解:如图∵13AP PB, ∴2AP=23PB <PB ①若绳子是关于A 点对折,∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm ,∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折,∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×143=cm ∴绳子全长=2PB+2AP=12×2+4×2=32 cm ;故选:C .【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.5.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 6.D解析:D【分析】根据OA ⊥OB ,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA ⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90° ∠ 1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键.7.C解析:C【分析】根据方位角的概念,由南向东旋转60度即可.【详解】解:根据方位角的概念,结合题意要求和选项,故选:C.【点睛】考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)8.B解析:B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.9.C解析:C【分析】求出时针和分针每分钟转的角度,由此即可得.【详解】因为时针每分钟转的角度为3600.51260︒=︒⨯,分针每分钟转的角度为360660︒=︒,所以当钟表上12时15分时,时针转过的角度为0.5157.5︒⨯=︒,分针转过的角度为61590︒⨯=︒,︒-︒=︒,所以时针和分针的夹角为907.582.5故选:C.【点睛】本题考查了钟面角,熟练掌握时钟表盘特征和时针、分针每分钟转的角度数是解题关键.10.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile处.故选B.【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)11.C解析:C【分析】根据平面镶嵌的概念逐一判断即可得.【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A.由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B.由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C.由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D.由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意;故选:C.【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.12.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.二、填空题13.(1)5cm ;(2)5cm 【分析】(1)求出AC 根据中点分别求出CM 和CN 即可求出答案;(2)求出AC 根据中点分别求出CM 和BN 再求出MB 即可求出答案;【详解】(1)∵∴又∵点是的中点点是的中点∴∴解析:(1)5cm ;(2)5cm【分析】(1)求出AC ,根据中点分别求出CM 和CN ,即可求出答案;(2)求出AC ,根据中点分别求出CM 和BN ,再求出MB ,即可求出答案;【详解】(1)∵10AB =,4BC =∴6AC =又∵M 点是AC 的中点,N 点是BC 的中点∴ 3AM MC ==,2BN CN ==∴5MN MC CN =+=.(2)∵10AB =,4BC =∴14AC AB BC =+=又∵M 点是AC 的中点,N 点是BC 的中点∴7AM MC ==,2BN CN ==∴3MB MC BC =-=∴5MN MB BN =+=.【点睛】本题考查了两点之间的距离的应用,能求出CM 和CN=BN 的长度是解此题的关键,求解过程类似.14.(1)105°;(2)互余理由见解析;(3)90°或90°-α【分析】(1)根据角平分线的定义得到∠BOD=∠COD=(180°-∠AOB )从而算出∠AOD ;(2)根据∠AOC=90°得到∠AOD+解析:(1)105°;(2)互余,理由见解析;(3)90°或90°-α【分析】(1)根据角平分线的定义得到∠BOD=∠COD=12(180°-∠AOB ),从而算出∠AOD ;(2)根据∠AOC=90°得到∠AOD+∠COD=90°,结合OD平分∠BOC,可证明结论;(3)分两种情况,画出图形,根据互补的定义和角平分线的定义可得结果.【详解】解:(1)∵OD平分∠BOC,∴∠BOD=∠COD=12(180°-∠AOB)=75°,∴∠AOD=∠AOB+∠BOD=105°;(2)互余,∵∠AOC=90°,∴∠AOD+∠COD=90°,∵OD平分∠BOC,∴∠BOD=∠COD,∴∠AOD+∠BOD=90°,即互为余角;(3)如图3,∠BOC+∠AOB=180°,∵OM平分∠AOB,ON平分∠BOC,∴∠MON=∠MOB+∠NOB=12∠AOB+12∠BOC=90°;如图4,∠BOC+∠AOB=180°,∵OM平分∠AOB,ON平分∠BOC,∴∠MON=∠NOB-∠MOB=12∠BOC-12∠AOB=12(180°-∠AOB)-12∠AOB=12(180°-α)-12α=90°-α.【点睛】本题考查了互余和互补的定义,角平分线的定义,解题的关键是画出图形,结合角平分线的定义证明和求解.15.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可【详解】解:(1)∵∠AOC=60°∴∠BOC=180°-∠AOC=180°-60°=120°∵OE平解析:(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°=120°,∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60°∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC,∠COF=12∠BOC∵∠AOB是平角∴∠EOC+∠COF =12(∠AOC+∠BOC)=12×∠AOB=12×180°=90°所以,无论∠AOC等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.16.(1)①;②;(2)①相等理由见解析;②【分析】(1)①由再同时加上也相等即可证明;②由即可证明;(2)①由再同时减去也相等即可证明;②由即可证明【详解】解:(1)①∵∴即;②∵∴;(2)①理由:∵解析:(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.17.(1)-6;(2)点运动7秒时追上点;(3)线段的长度不发生变化其值为7【分析】(1)根据点表示的数和AB 的长度即可求解;(2)根据题意列出方程求解即可;(3)分类讨论即可:①当点在点两点之间运动时解析:(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 18.(1)∠AOC=80°;(2)∠MON=79°【分析】(1)根据角平分线的定义可得相加可得∠MON 的度数;(2)先求得根据角平分线的定义可得相加可得∠MON 的度数【详解】(1)∵平分∴∴;(2)∵∵解析:(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒; (2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠,∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒.本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.19.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.20.线段AB 的长为28cm 【分析】由点E 将AB 分成的两段设AE=3kBE=4k 可用k 表示AB=7k 由点M 是线段AB 的中点AM=由EM=AM-AE==2cm 求出k=4cm 即可【详解】解:∵点E 将AB 分成的解析:线段AB 的长为28cm .【分析】由点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,可用k 表示AB=7k ,由点M 是线段AB 的中点,AM=17AB=22k ,由EM=AM-AE=71322k k k -==2cm ,求出k=4cm 即可.解:∵点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,∴AB=AE+BE=3k+4k=7k ,∵点M 是线段AB 的中点,∴AM=17AB=22k , ∴EM=AM-AE=71322k k k -==2cm , ∴k=4cm ,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.三、解答题21.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.22.(1)2;(2)16.【分析】(1)由20AC =,点D 为线段AC 的中点,求得AD=DC=10,由8AB =,可求BD=AD-AB=2;(2)由1134BD AB CD ==,推出34AB BD CD BD ==,,由AE BE =,可用BD 表示3=2AE BE BD =,表示EC=132BD =13,求出2BD =,再求AE=3=可求,AC=AE+EC=16.【详解】(1)∵20AC =,点D 为线段AC 的中点, ∴AD=DC=11201022AC =⨯=, ∵8AB =, ∴BD=AD-AB=10-8=2;(2)∵1134BD AB CD ==, ∴34AB BD CD BD ==,, ∵AE BE =, ∴13=22AE BE AB BD ==, ∵EC=313422BE BD DC BD BD BD BD ++=++==13, ∴2BD =,∴AE=33=2322BD ⨯=, ∴AC=AE+EC=3+13=16.【点睛】 本题考查与线段中点,线段和差倍分有关的计算,解题的关键是掌握线段中点的性质和线段倍分关系.23.(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 24.(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点,∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点, ∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB =∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.25.AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.26.(1)50;(2)12EOF α∠=;(3)当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线OE ,OF 都在∠AOB 外部时,11802EOF α∠=︒-. 【分析】(1)先求解,BOC ∠ 再利用角平分线的性质求解,,EOC FOC ∠∠ 从而可得答案; (2)由射线OE 平分AOC ∠,射线OF 平分COB ∠,可得12EOC AOC ∠=∠,12COF COB ∠=∠,可得()11,22EOF AOC BOC AOB ∠=∠+∠∠=∠ 从而可得答案; (3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,②当射线OE ,OF 都在AOB ∠外部时,如图3②,再利用角平分线的性质可得:11,,22COE AOC COF BOC ∠=∠∠=∠ 结合角的和差可得答案. 【详解】解:(1) 100AOB ∠=︒,30AOC ∠=︒,1003070,BOC AOB AOC ∴∠=∠-∠=︒-︒=︒射线OE 平分AOC ∠,射线OF 平分COB ∠,1115,35,22EOC AOC FOC BOC ∴∠=∠=︒∠=∠=︒ 153550EOF EOC FOC ∴∠=∠+∠=︒+︒=︒,故答案为:50.(2)∵射线OE 平分AOC ∠,射线OF 平分COB ∠∴12EOC AOC ∠=∠,12COF COB ∠=∠ ()12EOF EOC COF AOC BOC ∴∠=∠+∠=∠+∠∠ 1,2AOB =∠ ,AOB α∠=1.2EOF α∴∠= (3)分以下两种情况: ①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()111,222EOF COF COE BOC AOC AOB α∴∠=∠-∠=∠-∠=∠= ②当射线OE ,OF 都在AOB ∠外部时,如图3②,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()()111360180,222EOF EOC COF AOC BOC AOB α∴∠=∠+∠=∠+∠=︒-∠=︒-综上所述:当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线,OE OF 都在AOB ∠的外部时,11802EOF α∠=︒-. 【点睛】 本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键.。
一、选择题1.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( )A .①②B .①②③C .①②③④D .①②④ 2.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .184.下列说法正确的是( ).A .两点之间,直线最短B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线 5.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 12 6.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒ 7.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( )A.B.C.D.8.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点()A.60 B.50 C.45 D.409.下列说法中,正确的是()A.射线是直线的一半B.线段AB是点A与点B的距离C.两点之间所有连线中,线段最短D.角的大小与角的两边所画的长短有关10.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.11.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()A.①②B.②③C.①④D.③④12.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要()A.三个正三角形、两个正六边形B.四个正三角形、两个正六边形C.两个正三角形、两个正六边形D.三个正三角形、一个正六边形二、填空题13.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由.14.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.15.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数;(2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示);(3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .16.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数.17.如图,已如A ,B 两点.(1)画线段AB ;(2)延长线段AB 到点C ,使BC AB =;(3)反向延长线段AB 到点D ,使DA AB =;(4)点A ,B 分别是哪条线段的中点?若3cm AB =,请求出线段CD 的长.18.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 19.已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,DOE α∠=.(1)如图1,70α=︒,当OD 平分AOC ∠时,求EOB ∠的度数.(2)如图2,若2DOC AOD ∠=∠,且80α<︒,求EOB ∠的度数(用含α的代数式表示).20.如图,已知110AOF BOC ∠=∠=︒,80BOF ∠=︒,OE 是AOC ∠的平分线,求COE ∠的度数.三、解答题21.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.22.(1)如图1,∠AOC :∠COD :∠BOD =4:2:1,若∠AOB =140°,求∠BOC 的度数;(2)如图2,∠AOC :∠COD :∠BOD =4:2:1,OP 平分∠AOB ,若∠AOB =β,求∠COP 的度数(用含β的的代数式表示);(3)如图3,∠AOC =80°,∠BOD =20°,OE 平分∠AOD ,OF 平分∠BOC ,求∠EOF 的度数.23.如图所示.(1)写出以D 为端点的所有线段;(2)已知7AB =,3BC =,点D 为线段AC 的中点,求线段DB 的长度.24.如图,C 是线段AB 上一点.()1若,M N 分别是,AC BC 的中点,请探究MN 与AB 的数量关系,并说明理由; ()2图中有三条线段,,AB AC BC ,若,M N 分别是其中两条线段的中点,请直接写出MN 与第三条线段的数量关系.25.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.26.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠. (1)如图1,若100AOB ∠=︒,30AOC ∠=︒,则EOF ∠=__________度;(2)如图2,若AOB α∠=,AOC β∠=,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠ 的大小;(3)在(2)的条件下,若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、COB ∠均是指小于180︒的角),其余条件不变,请借助图3探究EOF ∠的大小,求EOF ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∴AH=CH=12AC,AM=BM=12AB,BN=CN=12BC,∴MN=MB+BN=12(AB+BC)=12AC,∴MN=HC,①正确;1 2(AH﹣HB)=12(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=12AC<1()2AC HB,③错误;1 2(HC+HB)=12(BC+HB+HB)=BN+HB=HN,④正确,故选择:D.【点睛】本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念.2.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.3.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.D解析:D【分析】根据两点之间线段最短性质,可判断选项A;根据两点之间距离的性质,可判断选项B;根据角的定义分析,可判断选项C;根据直线的性质分析,可判断选项D,即可得到答案.【详解】两点之间,线段最短,故选项A错误;连接两点间的线段长度,叫做这两点的距离,故选项B错误;具有公共端点的两条射线组成的图形叫做角,故选项C错误;经过两点有一条直线,并且只有一条直线,故选项D正确;故选:D.【点睛】本题考查了线段、直线、角的知识;解题的关键是熟练掌握线段、直线、角的性质,从而完成求解.5.D解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A 开始的线段有AB ,AC ,AD 三条;从B 开始的线段有BC ,BD 二条;从C 开始的线段有CD 一条;所以共有6条线段;车票从A 到B 和从B 到A 是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票,故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.6.A解析:A【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】解:如图所示:由题意得:∠1=50︒,∠BAC =100︒∴∠2=180°-∠1-∠BAC=180°-50︒-100︒=30︒故乙位于A 地的南偏东30︒.故选:A .【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.7.A解析:A【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得.【详解】A 、90180αβ∠+∠+︒=︒,90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意; B 、90β∠=︒,α∠为锐角,90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意;C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意;D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒,4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意; 故选:A .【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.8.C解析:C【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)=(1)2n n -个交点,然后计算求解即可.【详解】解:两条直线相交,最多一个交点,三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6=4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)=(1)2n n -个交点, 故10条直线相交,最多有1+2+3+ (9)10(101)2-=5×9=45个交点, 故选:C .【点睛】 本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.9.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A .射线的长度无法度量,故不是直线的一半,故本选项错误;B .线段AB 的长度是点A 与点B 的距离,故本选项错误;C .两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误;故选:C .【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;10.B解析:B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.11.B解析:B【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.12.C解析:C【分析】根据平面镶嵌的概念逐一判断即可得.【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A .由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B .由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C .由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D .由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.二、填空题13.(1)见解析;(2)符合要求见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得进而可得然后由可进行判断【详解】解:(1)由题意可作如图所示:(2)符合要求理由是:∵为的中点为的中点∴∴∵∴解析:(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.14.(1)∠DOE=90°;(2)∠AOE=155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC∠COE=∠BOC然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数再利用∠AOE解析:(1)∠DOE=90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数,再利用∠AOE =∠AOD+∠DOE可得答案.【详解】解:(1)∵OD平分∠AOC,OE平分∠COB,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.15.(1)∠EOF=45°(2)∠EOF=α(3)∠EOF=α【分析】(1)首先求得∠BOC的度数然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF即可求解;(2)根据角的平分线的定义解析:(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α .【分析】(1) 首先求得∠BOC的度数,然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC=12(∠BOC+∠AOC),即可求解;(3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC=2 3(∠BOC+∠AOC) =23∠AOB,即可求解 .【详解】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=12×60°=30°,∠COF=12∠AOC=12×30°=15°,∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC,∠COF=12∠AOC,∴∠EOF=∠EOC+∠COF= 12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC)=12∠AOB= 12α;(3)3∠EOB=∠COB ,3∠COF=2∠COA即∠EOB=13∠BOC,∠COF=23∠AOC,∴∠EOC=23∠BOC∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC)=23∠AOB= 23α.【点睛】本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 16.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD相交于点O(2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB、CD相交于点O180AOC COE BOE∴∠+∠+∠=︒180BOE AOC COE∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠= 2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.17.(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点点B 是线段AC 的中点;CD=9cm 【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义解析:(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点,点B 是线段AC 的中点;CD=9cm .【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A 是线段BD 的中点;点B 是线段AC 的中点;然后利用CD=3AB 求解.【详解】解:(1)如图,线段AB 为所作;(2)如图,点C 为所作;(3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点;所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.(1)-6;(2)点运动7秒时追上点;(3)线段的长度不发生变化其值为7【分析】(1)根据点表示的数和AB 的长度即可求解;(2)根据题意列出方程求解即可;(3)分类讨论即可:①当点在点两点之间运动时解析:(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 19.(1)50°;(2)【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论【详解】解:(1)平分当时即则;(2)则【点睛】此题主要考查了几何图形中角度计算问题角平分线的定义以及解析:(1)50°;(2)140α︒-.【分析】(1)根据角平分线的定义即可得到结论;(2)根据角的和差即可得到结论.【详解】解:(1)OD 平分AOC ∠,1602AOD COD AOC ∴∠=∠=∠=︒, 当70α=︒时,即70DOE ∠=︒.则180EOB AOD DOE ∠=︒-∠-∠180607050=︒-︒-︒=︒;(2)2DOC AOD ∠=∠,120AOC ∠=︒,1=120401+2AOD ∴∠︒⨯=︒,80DOC ∠=︒, 80α<︒,则180EOB AOD DOE ∠=︒-∠-∠18040α=︒-︒-140α=︒-.【点睛】此题主要考查了几何图形中角度计算问题,角平分线的定义以及角的有关计算,熟记角平分线的定义是解决此题的关键.20.【分析】根据可证利用角的和差关系可求出则由得出即可根据角平分线定义求得结果【详解】解:∵∴即∵∴∴∴∵是的平分线∴【点睛】本题考查了角的计算问题掌握角平分线的定义并能利用角的和差关系求解是解题的关键 解析:70︒【分析】根据AOF BOC ∠=∠可证AOB COF ∠=∠,利用角的和差关系可求出30AOB ∠=︒,则由110BOC ∠=°得出140BO OC O C A A B ∠=+∠=∠︒,即可根据角平分线定义求得结果.【详解】解:∵AOF BOC ∠=∠,∴AOF BOF BOC BOF ∠-∠=∠-∠,即AOB COF ∠=∠.∵80BOF ∠=︒,110BOC ∠=°,∴30BO OF BO C C F ∠-∠=∠=︒,∴30AOB ∠=︒,∴140BO OC O C A A B ∠=+∠=∠︒,∵OE 是AOC ∠的平分线, ∴1702COE AOC ∠=∠=︒. 【点睛】本题考查了角的计算问题,掌握角平分线的定义并能利用角的和差关系求解是解题的关键. 三、解答题21.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.22.(1)60°;(2)114β;(3)50° 【分析】(1)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,根据题意列方程即可得到结论; (2)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,根据题意列方程得到∠AOC =47β;然后根据角平分线的定义即可得到结论;(3)根据角平分线的定义和角的和差即可得到结论.【详解】解:(1)由∠AOC :∠COD :∠BOD =4:2:1,设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,∵∠AOB =140°,∴x+2x+4x =140,解得:x =20,∴∠BOD =20°,∠COD =40°,∠AOC =80°,∴∠BOC =20°+40°=60°;(2)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,∴x+2x+4x =β,∴x =17β, ∴∠AOC =47β; ∵OP 平分∠AOB , ∴∠AOP =12β, ∴∠COP =47β﹣12β=114β; (3)∵OF 平分∠BOC ,∠BOD =20°, ∴∠COF =12(∠BOD+∠COD )=10°+12∠COD , ∵OE 平分∠AOD ,∠AOC =80°, ∴∠AOE =12(∠AOC+∠COD )=40°+12∠COD ,∴∠COE =∠AOC ﹣∠AOE =80°﹣(40°+12∠COD )=40°﹣12∠COD , ∴∠EOF =∠COE+∠COF =40°﹣12∠COD+10°+12∠COD =50°. 【点睛】 本意考察查了角的计算,角平分线的定义,正确的理解题意是解题的关键 ;23.(1)DA ,DB ,DC ;(2)2.【分析】(1)根据线段的定义即可求解;(2)根据线段的和差,可得AC 的长,根据线段中点的性质,可得AD 的长,再根据线段的和差,可得答案.【详解】解:(1)以D 为端点的所有线段有:DA ,DB ,DC ;(2)由线段的和差得AC=AB+BC=7+3=10.由D 为线段AC 的中点得AD=12AC=12×10=5. 由线段的和差得DB=AB-AD=7-5=2,故线段DB 的长度为2.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AD 长是解题关键.24.(1)1MN ?2=AB ,见解析;(2)当点M ,N 分别是线段AC BC 、的中点时,12MN AB =;当点M ,N 分别是线段AC AB 、的中点时,MN=12BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC .【分析】(1)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案; (2)分三种情况讨论,依照(1)的方法即可求解.【详解】(1)∵点M 是AC 中点,点N 是BC 中点, 如图,∴CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; (1)分三种情况讨论, 当点M ,N 分别是线段AC BC 、的中点时,如图,CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; 当点M ,N 分别是线段AC AB 、的中点时,如图,AM=12AC ,AN=12AB , ∴MN=AN-AM=12AB-12AC=12(AB-AC)=1 2BC ; 当点M ,N 分别是线段AB CB 、的中点时,如图,BM=12AB ,BN=12BC , ∴MN=BM-BN=12AB-12BC=12(AB-BC)=1 2AC ; 综上,当点M ,N 分别是线段AC BC 、的中点时,12MN AB;当点M ,N 分别是线段AC AB 、的中点时,MN=1 2BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC . 【点睛】本题考查了两点间的距离,利用线段中点的性质得出相关线段的长是解题关键,还利用了线段的和差.25.(1)∠DOE =90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC ,∠COE=12∠BOC ,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数,再利用∠AOE =∠AOD +∠DOE 可得答案.【详解】解:(1)∵OD 平分∠AOC ,OE 平分∠COB ,∴∠DOC =12∠AOC ,∠COE =12∠COB , ∴∠DOE =∠DOC +∠COE=12∠AOC +12∠COB =12(∠AOC +∠COB) =12∠AOB =12×180° =90°;(2)∵OD 平分∠AOC ,∠COD =65°,∴∠AOD =∠COD =65°,∴∠AOE =∠AOD +∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.26.(1)50;(2)12EOF α∠=;(3)当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线OE ,OF 都在∠AOB 外部时,11802EOF α∠=︒-. 【分析】(1)先求解,BOC ∠ 再利用角平分线的性质求解,,EOC FOC ∠∠ 从而可得答案; (2)由射线OE 平分AOC ∠,射线OF 平分COB ∠,可得12EOC AOC ∠=∠,12COF COB ∠=∠,可得()11,22EOF AOC BOC AOB ∠=∠+∠∠=∠ 从而可得答案; (3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,②当射线OE ,OF 都在AOB ∠外部时,如图3②,再利用角平分线的性质可得:11,,22COE AOC COF BOC ∠=∠∠=∠ 结合角的和差可得答案. 【详解】解:(1) 100AOB ∠=︒,30AOC ∠=︒,1003070,BOC AOB AOC ∴∠=∠-∠=︒-︒=︒射线OE 平分AOC ∠,射线OF 平分COB ∠,1115,35,22EOC AOC FOC BOC ∴∠=∠=︒∠=∠=︒ 153550EOF EOC FOC ∴∠=∠+∠=︒+︒=︒,故答案为:50.(2)∵射线OE 平分AOC ∠,射线OF 平分COB ∠∴12EOC AOC ∠=∠,12COF COB ∠=∠ ()12EOF EOC COF AOC BOC ∴∠=∠+∠=∠+∠∠ 1,2AOB =∠ ,AOB α∠=1.2EOF α∴∠= (3)分以下两种情况: ①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()111,222EOF COF COE BOC AOC AOB α∴∠=∠-∠=∠-∠=∠= ②当射线OE ,OF 都在AOB ∠外部时,如图3②,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()()111360180,222EOF EOC COF AOC BOC AOB α∴∠=∠+∠=∠+∠=︒-∠=︒- 综上所述:当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线,OE OF 都在AOB ∠的外部时,11802EOF α∠=︒-. 【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键.。
一、选择题1.己知A 、B 、C 三点,6cm AB =,2cm BC =,则AC =( )A .8cmB .4cmC .8cm 或4cmD .无法确定 2.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm 3.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( )A .2cm 或4cmB .8cmC .10cmD .8cm 或10cm 4.下列说法不正确的是( ) A .两点确定一条直线B .两点间线段最短C .两点间的线段叫做两点间的距离D .正多边形的各边相等,各角相等5.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .186.如图,点C ,点D 在线段AB 上,若3AC BC =,点D 是AC 的中点,则( )A .23AD BC =B .35AD BD =C .3AC BD DC += D .2AC BC DC -= 7.甲打电话给乙:“你在哪儿啊?”在下面乙的回话中,甲能确定乙位置的是( ). A .我和你相距500米B .我在你北偏东30的方向500米处C .我在你北偏东30的方向D .你向北走433米,然后转90︒再走250米 8.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( ) A . B .C .D .9.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 10.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是( )A .10°B .40°C .70°D .10°或70° 11.在上午八点半钟的时候,时针和分针所夹的角度是( ) A .85°B .75°C .65°D .55° 12.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( )A .∠α=∠βB .∠α>∠βC .∠α<∠βD .无法确定 二、填空题13.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=38°.求∠2和∠3的度数.14.(1)根据语句画图计算:作线段AB=3cm ,在AB 的延长线上取点C ,使BC=2AB ,M 是AC 的中点,求BM 的长;(2)已知:如图,∠AOB 被分成∠AOC :∠COD :∠DOB=4:5:6,OM 平分∠AOC ,ON 平分∠DOB ,且∠MON=90°,求∠DOC 的度数.15.已知O 为直线AB 上一点,OE 平分∠AOC ,OF 平分∠COB(1)若已知∠AOC =60°,求∠EOF 的大小.(2)小明说无论∠AOC 等于多少度,∠EOF 的度数不变,他的说法对吗?16.(初步探究)(1)如图1,已知线段12cm AB =,点C 和点D 为线段AB 上的两个动点,且3cm CD =,点M 、N 分别是AC 和BD 的中点,求MN 的长是多少?(类比探究)如图2,已知,直角COD ∠与平角AOB ∠如图摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(知识迁移)(3)当AOB α∠=,COD β∠=时,如图3摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(α和β均为小于平角的角)17.如图,已知点M 是线段AB 的中点,点E 将AB 分成:3:4AE EB =的两段,若2cm EM =,求线段AB 的长度.18.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .19.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上;(1)画图:(只要求画图,不必写画法)(2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.20.如图,已知点C 在线段AB 上,点D 、E 分别在线段AC 、BC 上,(1)观察发现:若D 、E 分别是线段AC 、BC 的中点,且12AB =,则DE =_______; (2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________.三、解答题21.已知线段a ,b ,求作线段AB ,使2AB a b =-(写出作法).22.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长.23.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.24.如图,已知线段m ,n ,射线AM .点B ,C 为射线AM 上两点,且AB m n =+,2AC m n =-.(1)请用尺规作图确定B ,C 两点的位置(要求:保留作图痕迹,不写作法); (2)若3m =,5n =,求BC 的长.25.已知O 为直线AB 上一点,OE 平分∠AOC ,OF 平分∠COB(1)若已知∠AOC =60°,求∠EOF 的大小.(2)小明说无论∠AOC 等于多少度,∠EOF 的度数不变,他的说法对吗?26.如图,已知AB ,OC 相交于点O ,90AOC ∠=︒,32BOD ∠=︒,ON 平分COD ∠,OM 平分AOD ∠,求MON ∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据点B 在线段AC 上和在线段AC 外两种情况进行解答即可.【详解】解:如图1,当点B 在线段AC 上时,∵AB=6cm ,BC=2cm ,∴AC=6+2=8cm ;如图2,当点CB 在线段AC 外时,∵AB=6cm,BC=2cm,∴AC=6-2=4cm.当A、B、C三点不在同一直线上时,A、C两点间的距离无法确定,故选:D.【点睛】本题考查了两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.2.B解析:B【分析】根据题意设MC=5x,CN=4x,根据线段之间的计算得出等量关系,列方程求解即可解答.【详解】解:根据题意,设MC=5x,CN=4x,则MN=MC+CN=9x,∵点P是MN的中点,∴PN= 12MN=92x,∴PC=PN﹣CN= 12x=2,解得:x=4,∴MN=9×4=36cm,故选:B.【点睛】本题考查线段的计算,由题目中的比例关系设未知数是常见做题技巧,根据线段之间关系列方程求解是解答的关键.3.D解析:D【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.【详解】解:∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点,①当AD=13AC时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);②当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;4.C解析:C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质,正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.5.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点. 6.A解析:A【分析】先利用中点的定义得出AC=2CD=2AD ,再利用3AC BC =以及线段的和差分别表示出各线段的关系,即可得出结论.【详解】解:∵3AC BC =,点D 是AC 的中点,∴AC=2CD=2AD=3BC ,∴2AD=3BC ,A 选项正确,符合题意;∵2CD=2AD=3BC ,∴CD=AD=32BC ,3AD=92BC , ∴BD=BC+CD= BC+32BC=52BC ,5BD=252BC , ∴35AD BD ≠,B 选项错误,不符合题意; ∵AC+ BD=3BC+52BC=112BC ,3DC=3AD=92BC , ∴3AC BD DC +≠,C 选项错误,不符合题意;∵AC- BC=3BC- BC=2 BC ,2CD= AC =3BC ,∴2AC BC DC -≠,D 选项错误,不符合题意;故选:A .【点睛】本题主要考查了中点的定义,线段的计算,得出AC=2CD=2AD=3BC 是解题的关键. 7.B解析:B【分析】要确定乙位置,必须有方位角和距离两个条件才能确定,由此进行判断即可.【详解】解:A 、我和你相距500米,没有方位,不能确定乙位置,故此选项错误;B 、我在你北偏东30°的方向500米处,能确定乙位置,故此选项正确;C 、我在你北偏东30°的方向,没有距离,不能确定乙位置,故此选项错误;D 、你向北走433米,然后转90°再走250米,没有说清顺时针还是逆时针转,不能确定乙位置,故此选项错误;故选:B .【点睛】此题主要考查了如何利用方位角和距离确定位置,关键是掌握确定位置的方法. 8.A解析:A根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得.【详解】A 、90180αβ∠+∠+︒=︒,90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意; B 、90β∠=︒,α∠为锐角,90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意; C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意; D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒, 4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意;故选:A .【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.9.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 10.D解析:D【分析】分为两种情况:①OC 和OB 在OA 的两侧时,②OC 和OB 在OA 的同侧时,分别进行求解即可.∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB在OA的同侧时.11.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.12.C解析:C【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.【详解】解:∵∠α=21′,∠β=0.36︒=21.6′,∴∠α<∠β.故选:C.【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.二、填空题13.∠2=64°∠3=52°【分析】利用平角互补和角平分线的定义进行计算即可【详解】解:∵AB为直线∴∠3+∠FOC+∠1=180°∵∠FOC=90°∠1=38°∴∠3=180°-90°-38°=52°解析:∠2=64°,∠3=52°.【分析】利用平角、互补和角平分线的定义进行计算即可.【详解】解:∵AB为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=38°,∴∠3=180°-90°-38°=52°.∵∠3与∠AOD互补,∴∠AOD=180°-∠3=128°.∵OE平分∠AOD,∠AOD=64°.∴∠2=12【点睛】本题考查了角的计算,掌握平角、补角及角平分线的定义,并利用数形结合的思想是解答此题的关键.14.(1)图见解析;BM=15cm;(2)∠DOC=45°【分析】(1)先根据题意得出BC的长再根据中点的定义得出AM的长进而可得出结论;(2)根据题意设∠AOC=4x∠COD=5x∠DOB=6x则∠M解析:(1)图见解析;BM= 1.5cm;(2)∠DOC=45°.(1)先根据题意得出BC的长,再根据中点的定义得出AM的长,进而可得出结论;(2)根据题意设∠AOC=4x,∠COD=5x,∠DOB=6x,则∠MON =10x,再根据角平分线的定义以及∠MON=90°,即可求出结果.【详解】(1)如图所示.∵BC=2AB=2×3=6(cm),∴AC=BC+AB=9(cm),又∵M是AC的中点,∴AM=119 4.5AC=⨯=(cm),22∴BM=AM-AB=4.5-3=1.5(cm);(2)由∠AOC:∠COD:∠DOB=4:5:6,可设∠AOC=4x,∠COD=5x,∠DOB=6x,∵OM平分∠AOC,ON平分∠DOB,∴∠COM=2x,∠DON=3x,又∵∠MON=90°,∴∠DON+∠COD+∠COM=90°即 3x+5x+2x=90°解得x=9°,∴∠DOC=5x=45°.∴∠DOC的度数为45°.【点睛】本题考查了两点间的距离以及角平分线的定义,熟练掌握线段的和差,角的和差计算以及角平分线的性质是解答此题的关键.15.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可【详解】解:(1)∵∠AOC=60°∴∠BOC=180°-∠AOC=180°-60°=120°∵OE平解析:(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°=120°,∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60° ∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC ,∠COF=12∠BOC ∵∠AOB 是平角 ∴∠EOC+∠COF =12(∠AOC+∠BOC )=12×∠AOB=12×180°=90° 所以,无论∠AOC 等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.16.(1)(2)(3)【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案【详解】解:(1)点分别是和的中点解析:(1)7.5cm (2)135︒ (3)2αβ+【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案.【详解】解:(1)点M 、N 分别是AC 和BD 的中点, 11,22AM AC BN BD ∴==, 12cm AB =,3cm CD =,1239AC BD ∴+=-=cm ,()1937.522MN CD MC DN CD AC BD cm ∴=++=++=+=; (2)OM 和ON 分别是AOC ∠,BOD ∠的角平分线,,AOM MOC BON NOD ∴∠=∠∠=∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, 90180COD AOB ∠=︒∠=︒,,AOC COD BOD AOB ∠+∠+∠=∠,90AOC BOD ∴∠+∠=︒,45MOC NOD ∴∠+∠=︒,9045135MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=︒;(3)∵OM 是AOC ∠的角平分线,∴12MOC AOC ∠=∠, ∵ON 是BOD ∠的角平分线, ∴12NOD BOD ∠=∠, ∵AOB α∠=,COD β∠=, ∴MON MOC COD NOD ∠=∠+∠-∠12AOC BOC BOD NOD =∠+∠+∠-∠ 1122AOC BOC BOD =∠+∠+∠ 11112222AOC BOC BOC BOD =∠+∠+∠+∠ 1()2AOB COD =∠+∠ 2αβ+=.【点睛】本题考查了线段的中点及线段的和与差以及角的平分线及角的和与差,根据图形找到线段与角的关系是解题的关键.17.线段AB 的长为28cm 【分析】由点E 将AB 分成的两段设AE=3kBE=4k 可用k 表示AB=7k 由点M 是线段AB 的中点AM=由EM=AM-AE==2cm 求出k=4cm 即可【详解】解:∵点E 将AB 分成的解析:线段AB 的长为28cm .【分析】由点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,可用k 表示AB=7k ,由点M 是线段AB 的中点,AM=17AB=22k ,由EM=AM-AE=71322k k k -==2cm ,求出k=4cm 即可.【详解】解:∵点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,∴AB=AE+BE=3k+4k=7k ,∵点M 是线段AB 的中点,∴AM=17AB=22k , ∴EM=AM-AE=71322k k k -==2cm , ∴k=4cm ,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.18.见解析【分析】(1)画直线ABAC 注意两端延伸;(2)以B 点为端点向点C 方向延伸;(3)根据几何语言画出对应的几何图形即可【详解】解:(1)直线ABAC 为所作;(2)射线BC 为所作;(3)EF 为所作解析:见解析【分析】(1)画直线AB 、AC 注意两端延伸;(2)以B 点为端点,向点C 方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB 、AC 为所作;(2)射线BC 为所作;(3)EF 为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.19.(1)见解析;(2)或;(3)45cm 【分析】(1)画线段AM=3aAN=b 点AMN 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时MN=3a-b 或当点N 在MA 的延长线上时MN=3a+b ;(解析:(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=, 又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.20.(1)6;(2);(3)【分析】(1)根据中点的定义结合线段的和差计算即可(2)利用线段之间的和差关系倍数关系计算即可(3)结合(2)的求解再利用线段之间的和差关系倍数关系计算即可【详解】(1)为线解析:(1)6;(2)103;(3)()1AB k DE =+ 【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】 (1)D 、E 为线段AC ,BC 的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+ 12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,() 223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE==+3310103DE ABDEDE∴=∴=∴=(3),AD kDC BE kCE==AB AD DC CE BE=+++,DE DC CE=+()()1AB kDC DC CE kCE k DC CE∴=+++=++()1k DE AB∴+=【点睛】本题考查了线段n等分点的有关计算,掌握线段之间和、差倍数关系是解题关键.三、解答题21.见解析【分析】先在射线AM上顺次截取AC=CD=a,再在线段DA上截取DB=b,则AB=2a-b.【详解】解:(1)作射线AM,在射线AM上顺次截取AC=CD=a;(2)在线段DA上截取DB=b,则线段AB为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B 表示的数为-1.故答案为-1;(2)若点M 在点B 的右边,点B 表示的数是-1,且|BM|=4,所以点M 表示的数是3,即|OM|=3又M 是线段OC 的中点,所以|OC|=6,即点C 所表示的数是6,点A 表示的数是5,所以|AC|=1;若点M 在点B 的左边,点B 表示的数是-1,且|BM|=4,所以点M 表示的数是-5,所以|OM|=5而M 是线段OC 的中点,所以|OC|=10,即点C 所表示的数是-10,点A 表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.23.=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.24.(1)见解析;(2)7【分析】(1)在射线AM 上以点A 为端点取m 的长,得到端点D ,再以点D 为端点向右取n 的长,可得点B ;以点A 为端点取2m 的长,得到点F ,再以点F 为端点向左取n 的长,可得点C ;(2)根据BC=AB-AC 计算出BC ,将m 和n 代入求值即可.【详解】解:(1)如图,点B 和点C 即为所作;(2)∵AB=m+n ,AC=2m-n ,∴BC=AB-AC=m+n-(2m-n )=m+n-2m+n=2n-m=2×5-3=7.【点睛】本题考查的是作图-基本作图,整式的加减—化简求值,解题的关键是根据描述作出相应线段.25.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC =60°,∴∠BOC =180°-∠AOC =180°-60°=120°,∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60° ∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC ,∠COF=12∠BOC ∵∠AOB 是平角 ∴∠EOC+∠COF =12(∠AOC+∠BOC )=12×∠AOB=12×180°=90° 所以,无论∠AOC 等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.26.45°【分析】先通过90BOC ∠=°,32BOD ∠=︒,求58COD ∠=︒,再求148AOD ∠=︒,再根据角平分线的性质求29DON ∠==︒,74MOD ∠=︒,利用角的和差MON MOD DON ∠=∠-∠即可得到答案.【详解】解:∵90AOC ∠=︒,∴1809090BOC ∠=︒-︒=︒∵32BOD ∠=︒,∴903258COD ∠=︒-︒=︒,18032148AOD ∠=︒-︒=︒∵ON 平分COD ∠, ∴11582922DON CON COD ∠=∠=∠=⨯︒=︒ ∵OM 平分AOD ∠, ∴111487422MOD AOD ∠=∠=⨯︒=︒ ∴742945MON MOD DON ∠=∠-∠=︒-︒=︒.【点睛】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.。
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.下列说法正确的是( )A .两个长方形是全等图形B .形状相同的两个三角形全等C .两个全等图形面积一定相等D .所有的等边三角形都是全等三角形 3.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个 4.下列长度的三条线段能构成三角形的是( )A .2cm ,3cm ,5cmB .5cm ,6cm ,11cmC .3cm ,4cm ,8cmD .5cm ,6cm ,10cm 5.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80° 6.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 7.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .188.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 9.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 10.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .411.下列各组数中,不可能成为一个三角形三边长的是( )A .2,3,4B .5,7,7C .5,6,12D .6,8,10 12.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD二、填空题13.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为()1,3,则点B 的坐标为______.14.已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABC AEDF S S =四边形15.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.16.如图,12∠=∠,要使ABE ACE △≌△,还需添加一个条件是:______.(填上你认为适当的一个条件即可)17.如图,在线段AB 两侧作ABC 和ABD △,使AC AB =,ABC ABD ∠=∠,E 为BC 边上一点,满足2EAD BAC ∠=∠,P 为直线AE 上的动点,连接BP 、DP .已知3AB =, 2.6AD =,BDE 的周长为3.6,则BP DP +的最小值为______.18.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;19.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.20.如图,BP 是ABC 中ABC ∠的平分线,CP 是ACB ∠的外角的平分线,如果20,ABP ∠=︒50ACP ∠=︒,则A ∠=____________.三、解答题21.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.22.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =.(1)求证://AB CD ;(2)直线EF 过点O ,分别交AB ,CD 于点E ,F ,试判断OE 与OF 是否相等,并说明理由.23.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.24.如图,已知点C 是AB 的中点,CD ∥BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B 的度数.25.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.26.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∠≠∠,故③错误∴BDA BDC所以,正确的结论是①②④,共3个,故选:B.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.2.C解析:C【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【点睛】此题考查全等图形的概念及性质,熟记概念是解题的关键.3.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.4.D解析:D【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、2+3=5,不能构成三角形;B、5+6=11,不能构成三角形;C、3+4<8,不能构成三角形;D、5+6>10,能构成三角形.故选:D.【点睛】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数就可以.5.C解析:C【分析】利用全等三角形的性质及三角形内角和可求得答案.【详解】解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键. 6.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .7.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 8.A解析:A【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.9.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A 、根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.C 、SSA ,不能判定三角形全等,本选项符合题意.D 、根据SAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法; 10.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.11.C解析:C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A .∵2+3>4,∴能组成三角形,故A 错误;B .∵5+7>7,∴不能组成三角形,故B 错误;C .∵5+6<12,∴不能组成三角形,故C 正确;D .∵6+8>10,∴能组成三角形,故D 错误;故选:C .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.12.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.二、填空题13.【分析】过点A作AE⊥x轴垂足为点E过点B作BF⊥y轴垂足为点F交EA 的延长线于点D证明△AOE≌△BAD得到BFDE的长度后将线段的长度转化为点的坐标即可【详解】过点A作AE⊥x轴垂足为点E过点B解析:(1【分析】过点A作AE⊥x轴,垂足为点E,过点B作BF⊥y轴,垂足为点F,交EA的延长线于点D,证明△AOE≌△BAD,得到BF,DE的长度,后将线段的长度转化为点的坐标即可.【详解】过点A作AE⊥x轴,垂足为点E,过点B作BF⊥y轴,垂足为点F,交EA的延长线于点D,∵四边形ABCO是正方形,∴OA=AB,∠OAB=90°,∵∠DBA+∠BAD=90°,∠BAD+∠EAEO=90°,∴∠DBA=∠EAO,在△DBA和△EAO中,∠DBA=∠AEO,∠D=∠EAB=OA,∴△BDA≌△AEO,∴BD=AE,AD=OE,∵A(1∴OE=AD=DF=1,BD=∴,+1,∴点B 坐标为(1-3,3+1),故答案为:()13,13-+.【点睛】本题考查了正方形的性质,一线三直角全等模型,线段与坐标的关系,根据图形的特点,熟练构造模型证明三角形全等是解题的关键.14.①②④【分析】根据补角的性质计算可得①;连接D 证明根据三角形全等的性质判断可得后面的结果;【详解】;故①正确;连接AD ∵∴又∵点为的中点∴即又∵∴又∵∴在△BED 和△AFD 中∴∴ED=FD ;故②正确解析:①②④【分析】根据补角的性质计算可得①;连接D ,证明BED AFD ≅△△,根据三角形全等的性质判断可得后面的结果;【详解】()()∠+∠=∠-∠+∠-∠BEF CFE AEB AEF AFC AFE ,()()AEB AFC AEF AFE =∠+∠-∠+∠, ()360180A =︒-︒-∠,36090270=︒-︒=︒;故①正确;连接AD ,∵90BAC ∠=︒,AB AC =,∴90B C ∠=∠=︒,又∵点D 为BC 的中点,∴BD AD =,90BDA ∠=︒,45DAC ∠=︒,即EBD DAF ∠=∠,又∵90EDF ∠=︒,∴90EDA ADF ,又∵90BDA BDE EDA ∠=∠+∠=︒,∴BDE ADF ∠=∠,在△BED 和△AFD 中,EBD DAF BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BED AFD ≅△△,∴ED=FD ;故②正确;∵BED AFD ≅△△,∴△△BED ADF S S =, 则四边形△△△△△△12AEDF AED ADF AED BED ABD ABCS S S S S S S =+=+==, 故④正确;当点E 移动到点A 时,此时点F 与点C 重合,很明显此时EF=AC ,FC=0,即≠EF FC ; 故③错误;故答案为①②④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键. 15.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.16.或或【分析】由∠1=∠2可得∠AEB=∠AECAD 为公共边根据全等三角形的判定添加条件即可【详解】∵∠1=∠2∴∠AEB=∠AEC ∵AE 为公共边∴根据SAS 得到三角形全等可添加BE=CE ;根据AAS解析:BE CE =或B C ∠=∠或BAE CAE ∠=∠【分析】由∠1=∠2可得∠AEB=∠AEC ,AD 为公共边,根据全等三角形的判定添加条件即可.【详解】∵∠1=∠2,∴∠AEB=∠AEC ,∵AE 为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE ;根据“AAS”可添加∠B=∠C ;根据“ASA”可添加∠BAE=∠CAE ;故答案为:BE=CE 或∠B=∠C 或∠BAE=∠CAE .【点睛】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS 、SAS 、AAS 、ASA 、HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.17.8【分析】在BC 上取CD′=BD 连接AD′证明△ACD′≌△ABD 得到AD′=AD ∠CAD′=∠BAD 从而证明△AED′≌△AED 得到D′E=DE ∠AED′=∠AED 过A 作AF ⊥BCAF 与BC 交于点解析:8【分析】在BC 上取CD′=BD ,连接AD′,证明△AC D′≌△ABD ,得到AD′=AD ,∠CAD′=∠BAD ,从而证明△AED′≌△AED ,得到D′E=DE ,∠AED′=∠AED ,过A 作AF ⊥BC ,AF 与BC 交于点F ,从而推断出BP+DP=BP+D′P 最小值为P 点与E 点重合时,BP 与D′P 共线,BP+D′P=BD′,利用勾股定理求出BD′的长度即可.【详解】解:在BC 上取CD′=BD ,连接AD′,∵AC=AB ,∴∠C=∠ABC ,∵∠ABC=∠ABD ,∴∠C=∠ABD ,又CD′=BD ,AC=AB ,∴△ACD′≌△ABD (SAS ),∴AD′=AD ,∠CAD′=∠BAD ,∴∠DAD′=∠BAC ,∵2∠EAD=∠BAC=∠DAD′,∴∠D′AE=∠DAE ,又AD′=AD ,AE=AE ,∴△AED′≌△AED (SAS ),∴D′E=DE ,∠AED′=∠AED ,∴D′在直线BD 上,过A 作AF ⊥BC ,AF 与BC 交于点F ,∵CD′=BD ,D′E=DE ,∴CD′+D′E+EB=BC=BD+DE+BE=3.6,∵P 为AE 上的动点,故BP+DP=BP+D′P 最小值为P 点与E 点重合时,BP 与D′P 共线,BP+D′P=BD′,∵△ABC 中,AB=AC=3,BC=3.6,AF ⊥BC ,AD′=AD=2.6,∴F 为BC 中点,即CF=BF=12BC=12×3.6=1.8, ∴22223 1.8 2.4AC CF --=, ∴22222.6 2.41AD AF '--=,∴BD′=BF+D′F=1.8+1=2.8,∴BP+DP 的最小值为2.8,故答案为:2.8.【点睛】本题考查了最短路径问题,全等三角形的判定和性质,勾股定理,解题的关键正确作出辅助线,利用全等三角形的性质得到相等线段.18.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.19.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x 根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数 解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12. 20.60°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和可求出∠A 的度数【详解】∵BP 是△ABC 中∠ABC 的平分线CP 是∠ACB 的外角的平分线∴∠ABC=2∠ABP ∠ACM=2解析:60°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABC=2∠ABP ,∠ACM=2∠ACP ,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM-∠ABC=60°,故答案为:60°.【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握“一个三角形的外角等于与它不相邻的两个内角之和”是解题的关键.三、解答题21.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 22.(1)证明见解析;(2)OE=OF ,证明见解析.【分析】(1)利用SAS 证明△AOB ≌△COD ,根据全等三角形对应角相等可得∠B=∠D ,再根据平行线的判定定理可证得结论;(2)利用ASA 证明AOE COF ∆∆≌,根据全等三角形对应边相等可证得结论.【详解】解:(1)由题可知,在△AOB 与△COD 中,AO OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∆∆≌,B D ∴∠=∠,//AB CD ∴;(2)OE=OF ,理由如下:由(1)可知:AOB COD ∆≅∆,∴∠A=∠C ,在△AOE 于△COF 中,A C AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COF ASA ∴∆∆≌,OE OF ∴=.【点睛】本题考查全等三角形的性质和判定.掌握全等三角形的判定定理,并能灵活运用是解题关键.23.见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE =又∵//BC EF∴ABC DEF ∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .24.(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD ≌△CBE ;(2)根据三角形内角和定理求得∠ACD ,再根据三角形全等的性质得到∠B=∠ACD .【详解】(1)∵C 是AB 的中点,∴AC =CB ,∵CD//BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,,∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.【点睛】考查了全等三角形的判定和性质,解题关键是根据SAS 证明△ACD ≌△CBE .25.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.26.(1)证明见解析;(2)120︒.【分析】(1)先根据角平分线的定义可得ACB FCE ∠=∠,再根据三角形全等的判定定理与性质即可得证;(2)先根据平行线的性质可得B FCE ∠=∠,从而可得E FCE B ACB ∠∠=∠=∠=,再根据直角三角形的性质可得30ACB ∠=︒,然后根据三角形的内角和定理即可得.【详解】(1)CB 为ACE ∠的角平分线,ACB FCE ∴∠=∠, 在ABC 和FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC FEC AAS ∴≅,AB FE ∴=;(2)//AB CE ,F E B C ∴∠=∠,E FCE B B AC ∠=∴∠=∠∠=,ED AC ⊥,即90CDE ∠=︒,90E FCE ACB ∠∠+∠∴+=︒,即390ACB ∠=︒,解得30ACB ∠=︒,30B ∴∠=︒,180120B A ACB ∠=︒-∠=∴∠-︒.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。
一、选择题1.如图,OC 是AOB ∠的平分线,OD 是AOC ∠的平分线,且25COD ∠=︒,则AOB ∠等于( )A .25︒B .50︒C .75︒D .100︒2.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定3.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒4.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .315.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cm B .4cm C .12cm 或4cm D .8cm 或12cm 6.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7B .3C .7或3D .不能确定7.下列说法中,正确的是( )A .射线是直线的一半B .线段AB 是点A 与点B 的距离C .两点之间所有连线中,线段最短D .角的大小与角的两边所画的长短有关8.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 9.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要( ) A .三个正三角形、两个正六边形 B .四个正三角形、两个正六边形 C .两个正三角形、两个正六边形 D .三个正三角形、一个正六边形10.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( )A .B .C .D .11.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm12.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个二、填空题13.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.14.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系. ②∠AOC 和∠BOD 在数量上有何关系?说明理由; (2)若将等腰直角三角尺绕点O 旋转到如图2的位置. ①∠AOD 和∠BOC 相等吗?说明理由; ②指出∠AOC 和∠BOD 的数量关系.15.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.16.如图,OE 是∠COA 的平分线,∠AOE =40°,∠AOB =∠COD =18°. (1)求∠BOC 的度数;(2)比较∠AOC 和∠BOD 的大小,并说明理由.17.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =; (2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度.18.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线. (1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.19.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.20.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.三、解答题21.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由. 22.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”); (2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.23.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程: 因为∠AOC 与∠AOD 互补, 所以∠AOC+∠AOD =180°. 又因为∠AOC+∠ =180°, 根据 ,所以∠ =∠ . (2)若∠MOC =72°,求∠AON 的度数.24.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.25.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=.(2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.26.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据角平分线定义得出∠AOC=2∠COD ,∠AOB=2∠AOC ,代入求出即可. 【详解】解:∵OD 是AOC ∠的平分线,∠COD=25°, ∴∠AOC=2∠COD=50°, ∵OC 是AOB ∠的平分线, ∴∠AOB=2∠AOC=100°, 故选:D . 【点睛】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.2.A解析:A 【分析】根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论. 【详解】解:∵点D 、E 分别为线段AB 、CB 的中点,∴12AD DB AB ==,12CE BE BC == 又1111()2222DE DB EB AB BC AB BC AC =-=-=-= ∵7AC = ∴ 3.5DE = 故选:A . 【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.3.A解析:A 【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案. 【详解】 解:如图所示:由题意得: ∠1=50︒,∠BAC =100︒ ∴∠2=180°-∠1-∠BAC =180°-50︒-100︒ =30︒故乙位于A 地的南偏东30︒. 故选:A . 【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.4.B解析:B 【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB ,然后根据CD=2,线段AB 的长度是一个正整数,依次对选项进行判断即可解答本题. 【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.5.C解析:C【分析】分两种情形:①当点C在线段AB上时,②当点C在线段AB的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB,AB=8cm,∴BC=4cm①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=8cm,BC=4cm,∴AC=8-4=4cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=8cm,BC=4cm,∴AC=8+4=12cm.综上可得:AC=4cm或12cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.6.C解析:C 【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果. 【详解】 解:①如图所示:∵5AC =,2BC =, ∴527AB AC BC =+=+=; ②如图所示:∵5AC =,2BC =, ∴523AB AC BC =-=-=. 故选:C . 【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差.7.C解析:C 【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断; 【详解】A .射线的长度无法度量,故不是直线的一半,故本选项错误;B .线段AB 的长度是点A 与点B 的距离,故本选项错误;C .两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误; 故选:C . 【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;8.D解析:D 【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点; 3条直线相交有1+2=3个交点; 4条直线相交有1+2+3=6个交点; 5条直线相交有1+2+3+4=10个交点; 6条直线相交有1+2+3+4+5=15个交点; …n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D 【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 9.C解析:C 【分析】根据平面镶嵌的概念逐一判断即可得. 【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A .由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B .由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C .由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D .由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意; 故选:C . 【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.10.D解析:D 【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断. 【详解】解:A .正六边形每个内角为120°,能够整除360°,不合题意; B .正三角形每个内角为60°,能够整除360°,不合题意; C .正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.11.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm∴cm∵点M为线段AB的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.(1)①;②;(2)①相等理由见解析;②【分析】(1)①由再同时加上也相等即可证明;②由即可证明;(2)①由再同时减去也相等即可证明;②由即可证明【详解】解:(1)①∵∴即;②∵∴;(2)①理由:∵ 解析:(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.15.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.16.(1)62°;(2)∠AOC =∠BOD 理由见解析【分析】(1)根据角平分线定义求出∠AOC 根据∠BOC =∠AOC ﹣∠AOB 代入求出即可;(2)∠AOC =∠BOD 理由是根据∠BOD =∠BOC+∠COD解析:(1)62°;(2)∠AOC =∠BOD ,理由见解析【分析】(1)根据角平分线定义求出∠AOC ,根据∠BOC =∠AOC ﹣∠AOB 代入求出即可;(2)∠AOC =∠BOD ,理由是根据∠BOD =∠BOC +∠COD 求出∠BOD =80°,即可得出答案.【详解】解:(1)∵OE 是∠COA 的平分线,∠AOE =40°,∴∠AOC =2∠AOE =80°,∵∠AOB =18°,∴∠BOC =∠AOC ﹣∠AOB =62°;(2)∠AOC =∠BOD ,理由如下:∵∠BOC =62°,∠COD =18°,∴∠BOD =∠BOC +∠COD =80°,∵∠AOC =80°,∴∠AOC =∠BOD .【点睛】本题考查了角平分线定义和角的有关计算,主要考查学生能根据图形求出有关角的度,题目比较典型,是一道比较好的题目.17.(1)见解析;(2)见解析;(3)【分析】(1)根据画出图形即可;(2)根据画出图形即可;(3)根据线段等分的性质可得AB 的长根据线段的和差可得BD 的长【详解】解:(1)点C 如图所示;(2)点D 如图解析:(1)见解析;(2)见解析;(3)4cm BD =【分析】(1)根据3AC AB =,画出图形即可;(2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长.【详解】解:(1)点C 如图所示;(2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =.∵8cm CB =,∴2cm AB =.∵3AD AB =,∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型. 18.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.19.或【分析】分两种情况解答:当点B 位于AC 的延长线上当点B 位于AC 之间根据线段中点把线段分成相等的两部分以及线段的和差关系即可解答【详解】解:∵点M 是线段的中点∴同理(1)当点B 位于AC 外如图1所示( 解析:10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 20.75°【分析】根据角的和差性质计算得∠AOC ;根据角平分线的性质计算得;再根据角的和差性质计算即可得到答案【详解】∵∠AOB =120°∠BOC =30°∴∠AOC =∠AOB-∠BOC =90°又∵OD 是解析:75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线,∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.三、解答题21.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.22.(1)∠AOD=∠BOC ;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD 和∠BOC 的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB 整理即可得到原关系仍然成立.【详解】解:(1)∠AOD 和∠BOC 相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD ,∴∠AOD=∠COB ;(2)∠AOC 和∠BOD 互补 .∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.23.(1)BOC;同角的补角相等;AOD;BOC;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD=180°,∠AOC+∠COB=180°,可以根据同角的补角相等得到∠AOD=∠COB;(2)首先根据角平分线的性质可得∠AOC=2∠COM,∠AON=12∠AOD,然后计算出∠AOC=144°,进而得到∠AON=18°.【详解】解:(1)因为∠AOC与∠AOD互补,所以∠AOC+∠AOD=180°.又因为∠AOC+∠BOC=180°,根据同角的补角相等,所以∠AOD=∠BOC,故答案为:BOC;同角的补角相等;AOD;BOC;(2)∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×72°=144°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣144°=36°,∵ON是∠AOD的平分线.∴∠AON =12∠AOD =18°. 【点睛】 本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系.24.(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.25.(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.26.AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.。
一、选择题1.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =2.如图,OC 是AOB ∠的平分线,3COD BOD ∠=∠,75AOD ∠=︒,则AOB ∠等于( )A .75°B .70°C .65°D .60°3.如图,是一副三角板的摆放图,将一个三角板60角的顶点与另一个三角板的直角顶点重合,∠BAE =1640′,则CAD ∠的大小是( )A .2820︒′B .4320︒′C .4620︒′D .4640︒′4.如图,若2CB =,6DB =,且D 是AC 的中点,则AC =( )A .6B .8C .10D .125.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .6.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒7.B 是线段AD 上一动点,沿A 至D 的方向以2cm/s 的速度运动.C 是线段BD 的中点.10cm AD =.在运动过程中,若线段AB 的中点为E .则EC 的长是( ) A .2cm B .5cmC .2cm 或5cmD .不能确定8.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( )A .8点30分B .9点30分C .10点30分D .以上答案都不对9.探究多边形内角和公式时,从n 边形(4n ≥)的一个顶点出发引出(3n -)条对角线,将n 边形分割成(2n -)个三角形,这(2n -)个三角形的所有内角之和即为n 边形的内角和,这一探究过程运用的数学思想是( ) A .方程思想 B .函数思想 C .数形结合思想 D .化归思想 10.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠βB .∠α>∠βC .∠α<∠βD .无法确定11.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A .42°B .64°C .48°D .24°二、填空题13.已知90AOB EOF ∠=∠=︒,OM 平分∠AOE ,ON 平分∠BOF . (1)如图1,当OE 在∠AOB 内部时, ①AOE ∠ BOF ∠;(填>,=,<) ②求∠MON 的度数;(2)如图2,当OE 在∠AOB 外部时,(1)题②的∠MON 的度数是否变化?请说明理由.14.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数; (2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.15.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使60AOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.求此时BOM ∠度数;(2)如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 以一定速度沿逆时针方向旋转一周,在旋转的过程中,若射线ON 恰好与射线OC 在同一直线上,则此时AOM ∠的角度为_________.(直接写出结果)16.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数; (2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示); (3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .17.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.18.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.19.如图,C 是线段AB 上一点.()1若,M N 分别是,AC BC 的中点,请探究MN 与AB 的数量关系,并说明理由; ()2图中有三条线段,,AB AC BC ,若,M N 分别是其中两条线段的中点,请直接写出MN 与第三条线段的数量关系.20.用直尺和圆规作图,不写作法,但要保留作图痕迹. 如图,已知线段a 、b ,求作:线段AB ,使2AB a b =+.三、解答题21.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长. 22.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数. 23.如图,已知AOC ∠和BOD ∠都是直角,(1)填空:①与BOC ∠互余的角有__________; ②AOD ∠和BOC ∠的关系是_____________. (2)若313AOB AOD ∠=∠,求BOC ∠的度数. 24.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ; (2)连接BC ;(3)反向延长BC 至D ,使得BD =BC ; (4)在直线l 上确定点E ,使得AE +CE 最小; (5)请你判断下列两个生活情景所蕴含的数学道理.情景一:如图从A 地到B 到地有4条道路,除它们外能否再修一条从A 地到B 地的最短道路?如果能,请你联系所学知识,在图上画出最短中线.情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理: .25.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数.26.如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答: (1)画线段AB ,画射线AC ,画直线BC ; (2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设运动时间为t 秒,根据题意可知AP=3t ,BQ=t ,AB=2,然后分类讨论:①当动点P 、Q 在点O 左侧运动时,②当动点P 、Q 运动到点O 右侧时,利用各线段之间的和、差关系即可解答. 【详解】解:设运动时间为t 秒,由题意可知: AP=3t , BQ=t , AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P 、Q 在点O 左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t), ∵OQ= BO- BQ=2-t , ∴PQ= 2OQ ;②当动点P 、Q 运动到点O 右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2), ∵OQ=BQ- BO=t-2, ∴PQ= 2OQ ,综上所述,在运动过程中,线段PQ 的长度始终是线段OQ 的长的2倍, 即PQ= 2OQ 一定成立. 故选: A. 【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.2.D解析:D 【分析】设∠BOD 为x °,3COD BOD ∠=∠,得出∠BOC =2x°,利用角平分线的性质得出∠AOB =2∠BOC ,根据75AOD ∠=︒可以求出x °,再求出AOB ∠. 【详解】解:设∠BOD 为x °,则∠COD 为3x °, ∴∠COB =∠COD ﹣∠BOD =2x °, ∵OC 是∠AOB 的平分线, ∴∠AOB =2∠COB =4x °, ∵∠AOD =75°,∴∠AOD=∠BOD+∠AOB =5 x °=75° ∴x=15∴∠AOB =4×15°=60°. 故选:D . 【点睛】此题主要考查了角的计算和角平分线的定义,能够正确得出∠BOC =2∠BOD 是解题的关键.3.D解析:D 【分析】根据∠BAC=60°,∠BAE=1640′,求出∠EAC 的度数,再根据∠CAD=90°-∠EAC ,即可求出∠CAD 的度数 【详解】解:∵∠BAC=60°,∠BAE=4320′, ∴∠EAC=60°-1640′=43°20′, ∵∠EAD=90°,∴∠CAD=90°-∠EAC=90°-43°20′=46°40′; 故选:D . 【点睛】本题主要考查了度分秒的换算,关键是求出∠EAC 的度数,是一道基础题.4.B解析:B 【分析】根据点D 是线段AC 的中点可知AD=DC ,再根据已知条件计算即可. 【详解】∵2CB =,6DB =, ∴DC=DB-CB=6-2=4, ∵D 是AC 的中点, ∴28AC DC ==;故答案选B . 【点睛】本题主要考查了线段中点的有关计算,准确计算是解题的关键.5.B解析:B 【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示. 【详解】解:A. 不能用∠O 表示,选项A 不符合题意; B. 能用∠1,∠AOB ,∠O ,选项B 符合题意; C 不能用∠O 表示,选项C 不符合题意; D. 不能用∠O 表示,选项D 不符合题意. 故选:B . 【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.6.B解析:B 【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数. 【详解】解:时针超过20分所走的度数为20×0.5=10°, 分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°. 故选:B . 【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.7.B解析:B 【分析】根据线段中点的性质,做出线段AD ,按要求标出各点大致位置,列出EB ,BC 的表达式,即可求出线段EC . 【详解】 设运动时间为t ,则AB=2t ,BD=10-2t ,∵C 是线段BD 的中点,E 为线段AB 的中点,∴EB=2AB =t ,BC=2BD=5-t ,∴EC=EB+BC=t+5-t=5cm , 故选:B . 【点睛】此题考查对线段中点的的理解和运用,涉及到关于动点的线段的表示方法,难度一般,理解题意是关键.8.B解析:B 【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性. 【详解】A 选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B 选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒;C 选项,分针指向6,时针指向10和11的中间,夹角是30415135︒⨯+︒=︒D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.9.D解析:D【分析】根据探究多边形的内角和的过程即可解答.【详解】解:探究多边形内角和公式时,从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割成(n-2)个三角形,这(n-2)个三角形的所有内角之和即为多边形的内角和,这一探究过程运用了化归思想.故答案为D.【点睛】本题考查了多边形的内角和公式的推导以及化归思想,熟练掌握数学思想的意义是解答本题的关键.10.C解析:C【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.【详解】解:∵∠α=21′,∠β=0.36︒=21.6′,∴∠α<∠β.故选:C.【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.11.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT ⊥PQ ,∴∠PQS=138°﹣90°=48°,又∵SQ ⊥QR ,∴∠PQT=90°,∴∠SQT=42°.故选A .【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(1)①=;②;(2)不变化理由见解析【分析】(1)①结合题意根据角度和差的性质计算即可得到答案;②根据角平分线的性质得;结合(1)①的结论通过计算即可得到答案;(2)根据题意根据角度和差性质计算得 解析:(1)①=;②90MON ∠=︒;(2)不变化,理由见解析【分析】(1)①结合题意,根据角度和差的性质计算,即可得到答案;②根据角平分线的性质,得12MOE AOE ∠=∠,12BON BOF ∠=∠;结合(1)①的结论,通过计算即可得到答案; (2)根据题意,根据角度和差性质计算,得AOE BOF ∠=∠;根据角平分线性质计算,得AOM MOE BON NOF ∠=∠=∠=∠;结合90MOB AOM ∠=︒-∠,通过计算即可完成求解.【详解】(1)①∵90AOB EOF ∠=∠=︒∴90AOE BOE BOF BOE ∠+∠=∠+∠=︒∴AOE BOF ∠=∠故答案为:=;②∵OM 平分∠AOE ,ON 平分∠BOF ∴1122MON MOE BOE BON AOE BOE BOF ∠=∠+∠+∠=∠+∠+∠ 结合(1)①的结论AOE BOF ∠=∠∴90MON AOE BOE AOB ∠=∠+∠=∠=︒;(2)90AOB EOF ∠=∠=︒,AOE AOB BOE ∠=∠+∠,BOF BOE EOF ∠=∠+∠∴AOE BOF ∠=∠又∵OM 平分∠AOE ,ON 平分∠BOF ,∴AOM MOE BON NOF ∠=∠=∠=∠∵90MOB AOM ∠=︒-∠∴9090MON MOB BON AOM BON ∠=∠+∠=︒-∠+∠=︒.【点睛】本题考查了角度和差、角平分线的知识;解题的关键是熟练掌握角度和差计算、角平分线的性质,从而完成求解.14.(1);(2)【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数再相加可得∠AOE 的度数;(2)据角平分线的定义和得到再由求得的度数最后由平分求得的度数【详解】解(1)如图∵平分∴∵平分∴∴解析:(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.15.(1)60°;(2)理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得∠BOM=∠BOC=(180°-∠AOC )=(180°-60°)=60°;(2)由∠AOM+∠NOA=90解析:(1)60°;(2)30AOM NOC ∠-∠=︒,理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得,∠BOM=12∠BOC=12(180°-∠AOC )=12(180°-60°)=60°;(2)由∠AOM+∠NOA=90°,∠AON+∠NOC=60°,可得结论;(3)结合旋转过程分情况讨论,并利用角的和差关系计算求解【详解】(1)∵60AOC ∠=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒,又∵OM 平分BOC ∠∴1602BOM BOC ∠=∠=︒ (2)30AOM NOC ∠-∠=︒,理由∵6090AOC MON ∠=︒∠=︒,∴90AOM MON AON AON ∠=∠-∠=︒-∠60NOC AOC AON AON ∠=∠-∠=︒-∠∴30AOM NOC ∠-∠=︒.(3)如图,当点N 在射线OC 上时此时∠AOM=∠MON-∠AOC=90°-60°=30°当点N 在射线OC 的反向延长线上时,此时,∠MOB=∠MON-∠BON=∠MON-∠AOC=90°-60°=30°∴∠AOM=180°-∠MOB=150°综上,∠MON的度数为30°或150°故答案为:30或150【点睛】考查角平分线的意义及角的和差运算,理解题意,注意分类讨论思想解题是关键.16.(1)∠EOF=45°(2)∠EOF=α(3)∠EOF=α【分析】(1)首先求得∠BOC的度数然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF即可求解;(2)根据角的平分线的定义解析:(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α .【分析】(1) 首先求得∠BOC的度数,然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC=12(∠BOC+∠AOC),即可求解;(3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC=2 3(∠BOC+∠AOC) =23∠AOB,即可求解 .【详解】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=12×60°=30°,∠COF=12∠AOC=12×30°=15°,∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC,∠COF=12∠AOC,∴∠EOF=∠EOC+∠COF= 12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC)=12∠AOB= 12α;(3)3∠EOB=∠COB ,3∠COF=2∠COA即∠EOB=13∠BOC,∠COF=23∠AOC,∴∠EOC=23∠BOC∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC )=23∠AOB= 23α. 【点睛】 本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 17.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.18.(1)30;(2)1;(3)【分析】(1)根据可推出即可求出结果(2)根据OMON 分别是和角平分线可得出通过化简计算从而得到进而求出比值结果(3)根据OMON 分别是和角平分线可得到进而求出比值结果【 解析:(1)30;(2)1;(3)12 【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果. 【详解】 (1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD ∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC ∠=∠+∠BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠; 【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.19.(1)AB 见解析;(2)当点MN 分别是线段的中点时;当点MN 分别是线段的中点时MN=BC ;当点MN 分别是线段的中点时MN=AC 【分析】(1)根据线段中点的性质可得MCNC 的长根据线段的和差可得答案;解析:(1)1MN ?2=AB ,见解析;(2)当点M ,N 分别是线段AC BC 、的中点时,12MN AB =;当点M ,N 分别是线段AC AB 、的中点时,MN=12BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC .【分析】(1)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案; (2)分三种情况讨论,依照(1)的方法即可求解.【详解】(1)∵点M 是AC 中点,点N 是BC 中点, 如图,∴CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; (1)分三种情况讨论, 当点M ,N 分别是线段AC BC 、的中点时,如图,CM=12AC ,CN=12BC , ∴MN=CM+CN=12AC+12BC=12(AC+BC)=1 2AB ; 当点M ,N 分别是线段AC AB 、的中点时,如图,AM=12AC ,AN=12AB , ∴MN=AN-AM=12AB-12AC=12(AB-AC)=1 2BC ; 当点M ,N 分别是线段AB CB 、的中点时,如图,BM=12AB ,BN=12BC , ∴MN=BM-BN=12AB-12BC=12(AB-BC)=1 2AC ;综上,当点M ,N 分别是线段AC BC 、的中点时,12MN AB =;当点M ,N 分别是线段AC AB 、的中点时,MN=1 2BC ;当点M ,N 分别是线段AB CB 、的中点时,MN=1 2AC . 【点睛】本题考查了两点间的距离,利用线段中点的性质得出相关线段的长是解题关键,还利用了线段的和差.20.答案见解析【分析】首先作射线然后依次截取线段AC=aCB=bBD=b 则AD 即为所求【详解】解:如图所示线段AD 即为所求:【点睛】本题主要考查了基本作图作图的关键是理解作一条线段等于已知线段的作法解析:答案见解析.【分析】首先作射线,然后依次截取线段AC=a ,CB=b ,BD=b ,则AD 即为所求.【详解】解:如图所示,线段AD 即为所求:【点睛】本题主要考查了基本作图,作图的关键是理解作一条线段等于已知线段的作法.三、解答题21.(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 22.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB ∠=∠∠=∠,由∠BOD+∠AOB=∠AOD ,进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部时,然后分类求解即可.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD , ∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.23.(1)∠AOB、∠COD;(2)互补;(3)63°.【分析】(1)根据∠AOB+∠BOC=∠COD+∠BOC=90°,解答即可;(2)求出∠AOD+∠BOC=∠AOC+∠BOD,代入求出即可;(3)设∠AOB=3x,∠AOD=13x,根据∠AOD-∠AOB=90°得出方程13x-3x=90°,求出即可.【详解】解:(1)因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,所以∠BOC与∠AOB互余,∠BOC与∠COD互余,故答案为:∠AOB、∠COD;(2)∠AOD与∠BOC互补,理由如下:因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,又因为∠AOD=∠AOB+∠BOC+∠COD,所以∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BOC=180°,所以∠AOD与∠BOC互补;故答案为:互补;(3)设∠AOB=3x°、则∠AOD=13x°,所以∠BOD=∠AOD-∠AOB=13x-3x=10x=90,即x=9,所以∠AOD=13x=117°,由(2)可知∠AOD与∠BOC互补,所以∠BOC=180°-117°=63°.【点睛】本题考查了角的有关计算.解题的关键是明确角的有关计算方法,以及能够根据图形进行计算.24.作图见详解;两点确定一条直线.【分析】根据射线,线段、两点之间线段最短,以及两点确定一条直线,即可解决问题;【详解】解:(1)射线AB,如图所示;(2)线段BC,如图所示,(3)线段BD如图所示(4)点E即为所求;(5)情景一:如图:由两点之间线段最短,即可得到线段AB;情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查作图——复杂作图、直线、射线、线段的定义、两点之间线段最短,两点确定一条直线等知识,解题的关键是掌握所学的基本知识,属于中考常考题型.25.(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB、CD相交于点O∴∠+∠+∠=︒AOC COE BOE180∴∠=︒-∠-∠BOE AOC COE180∠=︒∠=︒90,32COE AOCBOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠= 2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.26.(1)见解析;(2)见解析;(3)∠ADC 与∠BDC 互为补角【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D 再连接CD 即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC 与∠BDC 互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.。
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .5 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( ) A .140°B .130°C .50°D .40°3.观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .4.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒5.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°6.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒7.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-18.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③9.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱10.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +11.用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是( )A.圆柱B.圆锥C.长方体D.球12.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有()A.7个面B.15条棱C.7个顶点D.10个顶点二、填空题13.从起始站A市坐火车到终点站G市中途共停靠5次,各站点到A市距离如下:站点B C D E F G到A市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.15.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.16.如图,在自来水管道AB的两旁有两个住宅小区C,D,现要在主水管道上开一个接口P往C,D两小区铺设水管,为节约铺设水管的用料,接口P应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.17.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.18.将下列几何体分类,柱体有:______(填序号).19.已知∠A=67°,则∠A的余角等于______度.20.下面的几何体中,属于柱体的有______个.三、解答题21.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)22.说出下列图形的名称.23.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”24.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.25.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.26.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.3.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.4.D解析:D 【分析】根据题意结合图形列出方程组,解方程组即可. 【详解】 解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D . 【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.5.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .6.A解析:A 【分析】根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果. 【详解】∵∠AOB=90°,且∠AOC=40°, ∴∠COB=∠AOB+∠AOC=90°+40°=130°, ∵OM 平分∠BOC , ∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°, ∵ON 平分∠AOC , ∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°. ∴∠MON 的度数是45°. 故选:A .本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.7.A解析:A 【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数. 【详解】 解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD , ∴AB=1.5CD , ∴1.5CD+3CD+CD=11, ∴CD=2, ∴AB=3, ∴BD=8,∴ED=12BD=4, ∴|6-E|=4,∴点E 所表示的数是:6-4=2. ∴离线段BD 的中点最近的整数是2. 故选:A . 【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.D解析:D 【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③. 【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠, ∴APA BPB ''∠=∠,∵射线PA '经过刻度27, ∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确;∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45. 故③正确. 故选D . 【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.9.D解析:D 【分析】根据常见的几何体的展开图进行判断,即可得出结果. 【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱; 故选:D 【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.C解析:C 【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解. 【详解】解:由题意得,EC+DF=EF-CD=m-n ∵E 是AC 的中点,F 是BD 的中点, ∴AE=EC ,DF=BF , ∴AE+BF=EC+DF=m-n , ∵AB=AE+EF+FB , ∴AB=m-n+m=2m-n 故选:C本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.11.A解析:A【解析】【分析】用平面截圆锥,得到的截面是圆、椭圆或者三角形等,不可能是四边形,用平面截球体,得到的截面始终是圆形;用平面截长方体,得到的截面是三角形,长方形等;接下来,用平面截圆柱,对得到的截面进行分析,即可得到答案.【详解】∵圆柱体的主视图只有矩形或圆,∴圆柱体的主视图符合题意.故选:A.【点睛】此题考查截一个几何体,熟练掌握常见几何体的特征是解题的关键.12.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.二、填空题13.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.14.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三解析:五,六,七,2n .【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.16.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.17.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.18.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.19.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.20.4【分析】解这类题首先要明确柱体的概念然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:第1356故答案为4个【点睛】本题考查的知识点是认识立体图形解题的关键是熟练的掌握认识立体图形解析:4【分析】解这类题首先要明确柱体的概念,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为4个.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握认识立体图形.三、解答题21.(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.⨯=(平方分米),(2)甲型盒的底面积为248⨯=(立方分米),两个乙型盒中的水的体积为8216÷=(分米).所以甲型盒内水的高度为1682答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.22.依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.23.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.24.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长即可.【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.25.(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.26.见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:。
一、选择题1.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 3.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较 4.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm5.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定6.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒7.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 9.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 10.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 11.如下图,直线的表示方法正确的是( ) ①② ③ ④ A .都正确 B .只有②正确 C .只有③正确 D .都不正确 12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________. 14.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.15.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.16.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.17.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.18.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.19.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.20.如图所示,若∠AOC =90°,∠BOC =30°,则∠AOB =________;若∠AOD =20°,∠COD =50°,∠BOC =30°,则∠BOD =______,∠AOC =________,∠AOB =________.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB =90°,∠BOC =60°时,∠MON 的度数是多少?为什么? (2)如图2,当∠AOB =70°,∠BOC =60°时,∠MON = 度.(直接写出结果) (3)如图3,当∠AOB =α,∠BOC =β时,猜想:∠MON 的度数是多少?为什么? 23.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.24.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.25.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)26.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.2.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.3.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.4.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.5.A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=12∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述错误;故选A.【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.6.A解析:A【分析】根据题意,先求得∠COB的值;OM平分∠BOC,ON平分∠AOC,则可求得∠AOM、∠AON的值;∠MON=∠AOM+∠AON,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM平分∠BOC,∴∠BOM=12∠BOC=65°,∴∠AOM=∠AOB-∠BOM=25°,∵ON平分∠AOC,∴∠AON=12∠AOC=20°,∴∠MON=∠AOM+∠AON=45°.∴∠MON的度数是45°.故选:A.【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.7.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是:故选:B.【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.8.C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.10.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.11.C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.【点睛】本题考查了几何中直线的表示方法,是最基本的知识.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故答案为两点确定一条直线【点睛】本题考查了两点确定一条直线的公理难度适中解析:两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.15.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.16.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.17.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.18.75°160°【分析】钟表表盘被分成12大格每一大格又被分为5小格故表盘共被分成60小格每一小格所对角的度数为6°分针转动一圈时间为60分钟则时针转1大格即时针转动30°也就是说分针转动360°时时解析:75° 160°【分析】钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动(112)度,反过来同理.【详解】解:钟表12个数字,每相邻两个数字之间的夹角为30°,∵8时30分时,时针指向8与9之间,分针指向6,∴8时30分,分针与时针的夹角是:2×30°+15°=75°;∵2时40分时,时针指向2与3之间,分针指向8,∴2时40分,分针与时针的夹角是:5×30°+10°=160°故答案为75°,160°.【点睛】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.19.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键20.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC=90°∠BOC=30°则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD =20°∠COD=50解析:120° 80° 70° 100°【分析】利用角度的和差计算求各角的度数.【详解】若∠AOC=90°,∠BOC=30°,则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=∠COD+∠BOC=50°+30°=80°;∠AOC=∠AOD+∠DOC=20°+50°=70°;∠AOB=∠AOD+∠COD+∠BOC=20°+50°+30°=100°;故答案为:120°,80°,70°,100°.【点睛】此题考查几何图形中角度的和差计算,根据图形确定各角度之间的数量关系是解题的关键.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.(1)45°,理由见解析;(2)35;(3)12α,理由见解析【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)表示出∠AOC度数,表示出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.(3)如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α.【点睛】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC-∠NOC.23.120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.24.见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线,两线的交点D 即为不明物体所处的位置.如图所示,点D 即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键. 25.(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.26.第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.。
一、选择题1.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 2.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm3.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 12 4.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是( )A .∠BOA >∠DOCB .∠BOA ﹣∠DOC =90° C .∠BOA +∠DOC =180°D .∠BOC ≠∠DOA5.有如下说法:①直线是一个平角;②如果线段AM MC =,则M 是线段AC 的中点;③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;④两点之间,线段最短.其中正确的有( )A .1个B .2个C .3个D .4个6.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒ 7.如图,直线,AB CD 交于点O ,已知EO AB ⊥于点,O OF 平分BOC ∠,若35DOE EOF ︒∠=∠+,则AOD ∠的度数是( )A .71°B .72°C .73°D .74°8.如图,OC 是∠AOB 的平分线,∠BOD =∠COD ,∠AOD =75°,则∠BOD =( )A .35°B .25°C .20°D .15°9.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 10.B 是线段AD 上一动点,沿A 至D 的方向以2cm/s 的速度运动.C 是线段BD 的中点.10cm AD =.在运动过程中,若线段AB 的中点为E .则EC 的长是( ) A .2cmB .5cmC .2cm 或5cmD .不能确定 11.如果α∠与β∠的两边分别平行,α∠比β∠的3倍少40︒,则α∠的度数为( ) A .35︒B .125︒C .20︒或125︒D .35︒或125︒ 12.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm二、填空题13.如图,OC 是∠AOB 的平分线,且∠BOD =13∠COD . (1)当∠BOD =15°时,则∠AOB 的大小为 ;(2)当∠AOB =70°时,则∠AOD 的大小为 ; (3)若射线OP 在∠AOD 的内部,且∠POD =∠AOB ,∠AOP 与∠AOC 数量关系可以表示为 .14.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭(2)48396735''︒+︒ 15.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=. (2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.16.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数;(2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示);(3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .17.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程:因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠ =180°,根据 ,所以∠ =∠ .(2)若∠MOC =72°,求∠AON 的度数.18.尺规作图:如图,已知线段a ,b ,作线段AB ,使AB=3a-b .(不写作法,保留作图痕迹,标清端点字母)19.如图,点A O B 、、在同一条直线上,COD ∠为直角,将COD ∠绕点О在直线AB 上方旋转(AOC ∠大于0︒,且小于或等于90),射线OE 是BOC ∠的平分线.(1)当30AOC ∠=︒时,求DOE ∠的度数﹔(2)若OC 恰好将AOE ∠分成了1:2的两个角,求此时DOE ∠的度数.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .22.已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=. (1)如图1,COD ∠在AOB ∠的内部,①当45COD ∠=︒时,求αβ+的值.②当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.23.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.24.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数.25.如图,点,C D 在线段AB 上,点M 是线段AC 的中点,点N 是线段DB 的中点,若8,3MN CD ==,求线段AB 的长.26.如图1所示,将一副三角尺的直角顶点重合在点O处.(1)①指出∠AOD和∠BOC的数量关系.②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②指出∠AOC和∠BOD的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.2.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.【点睛】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.3.D解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A开始的线段有AB,AC,AD三条;从B开始的线段有BC,BD二条;从C开始的线段有CD一条;所以共有6条线段;车票从A到B和从B到A是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票,故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.4.C解析:C【分析】根据角的和差关系以及角的大小比较的方法,并结合图形计算后即可得出结论.【详解】解:A.∠BOA与∠DOC的大小不确定,故此结论不成立;B.∠BOA−∠DOC 的值不固定,故此结论不成立;C.∵是直角三角板,∴∠BOD =∠AOC =90°,∴∠BOC +∠DOC +∠DOC +∠DOA =180°,即∠DOC +∠BOA =180°,故此结论成立;D.∵是直角三角板,∴∠BOD =∠AOC =90°,∴∠BOD −∠COD =∠AOC −∠DOC ,即∠BOC =∠DOA ,故此结论不成立;故选:C .【点睛】本题考查了角的比较与运算,正确根据图形进行角的运算与比较是解题的关键. 5.A解析:A【分析】根据平角的定义、中点定义、角的和差以及两点之间,线段最短的性质直接判断即可.【详解】解:①直线是一个平角,角是由有公共端点的两条射线组成的,故错误;②如果线段AM MC =,则M 是线段AC 的中点;M 不一定在线段AC 上,故错误; ③在同一平面内,60AOB ∠=︒,30BOC ∠=︒,30AOC ∠=︒;射线OC 不一定在∠AOB 内部,故错误;④两点之间,线段最短.正确,故选:A .【点睛】本题考查了平角的定义、线段中点的定义、角的和差和线段的性质,准确掌握定义,画出图形是解题关键.6.A解析:A【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】解:如图所示:由题意得:∠1=50︒,∠BAC =100︒∴∠2=180°-∠1-∠BAC=180°-50︒-100︒=30︒故乙位于A地的南偏东30︒.故选:A.【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.7.D解析:D【分析】根据垂直的定义得∠AOE=∠BOE=90°,由角平分线的定义和对顶角的性质可得∠AOD=∠BOC=2∠COF.把∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF代入∠DOE=3∠EOF+5°可求出∠COF,进而可求出∠AOD的值.【详解】⊥,解:∵EO AB∴∠AOE=∠BOE=90°.∠,∵OF平分BOC∴∠AOD=∠BOC=2∠COF.∵∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF,35∠=∠+,DOE EOF︒∴∠AOD+90°=3(90°-∠COF)+5°,∴2∠COF+90°=270°-3∠COF+5°,∴∠COF=37°,∴∠AOD=2×37°=74°.故选D.【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.8.B解析:B【分析】根据角平分线的定义和∠BOD=∠COD,用∠BOD表示其它的角,再利用∠AOD=75°即可求得∠BOD的度数.【详解】解:∵∠BOD=∠COD,∴∠BOC=2∠BOD,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=2∠BOD,∵∠AOD=75°,∴∠BOD+2∠BOD=75°,即∠BOD=25°,故选:B .【点睛】本题考查了角平分线的定义及角的计算,本题的解题关键是根据已知条件找出角度的关系,即可得出答案.9.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B .【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.10.B解析:B【分析】根据线段中点的性质,做出线段AD ,按要求标出各点大致位置,列出EB ,BC 的表达式,即可求出线段EC .【详解】设运动时间为t ,则AB=2t ,BD=10-2t ,∵C 是线段BD 的中点,E 为线段AB 的中点,∴EB=2AB =t ,BC=2BD =5-t , ∴EC=EB+BC=t+5-t=5cm ,故选:B .【点睛】 此题考查对线段中点的的理解和运用,涉及到关于动点的线段的表示方法,难度一般,理解题意是关键.11.C解析:C【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x,则∠α为3x−40°,若两角互补,则x+3x−40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x−40°,解得x=20°,∠α=20°.故选:C.【点睛】本题考查角有关的运算,关键在于根据两角的两边分别平行打开此题的突破口.12.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.二、填空题13.(1)60°;(2)875°;(3)∠【分析】(1)先根据∠BOD=∠COD求出∠COB=30°再根据角平分线的定义求解即可;(2)角平分线的定义求出∠COB=35°由∠BOD=∠COD求出∠BOD解析:(1)60°;(2)87.5°;(3)∠12AOP AOC=∠【分析】(1)先根据∠BOD=13∠COD求出∠COB=30°,再根据角平分线的定义求解即可;(2) 角平分线的定义求出∠COB=35°,由∠BOD =13∠COD 求出∠BOD 的度数,从而可进一步得出结论; (3)先得出∠BOD AOP =∠,再由∠1122BOD COB AOC =∠=∠即可得出结论. 【详解】解:(1)∵∠BOD =15°,∠BOD =13∠COD ∴∠331545COD BOD =∠==︒⨯︒ ∴∠451530COB COD BOD =∠-∠=︒-︒=︒又∵OC 是∠AOB 的平分线∴∠223060AOB COB =∠=⨯︒=︒故答案为:60°;(2)∵1,3BOD COD COD COB BOD ∠=∠∠=∠+∠ ∴∠1()3BOD COB BOD =∠+∠ ∴∠12BOD COB =∠ ∵∠AOB =70°,OC 是∠AOB 的平分线,∴∠11703522COB AOB =∠==︒⨯︒ ∴∠113517.522BOD COB ︒=∠=⨯=︒ ∴∠70=187.57.5AOD AOB BOD =∠+︒∠=+︒︒故答案为:87.5°; (3)∵∠POD POB BOD =∠+∠,∠AOB AOP POB =∠+∠,且∠POD AOB =∠ ∴∠BOD AOP =∠,又∠1122BOD COB AOC =∠=∠ ∴∠12AOP AOC =∠ 【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键. 14.(1)-8;(2)【分析】(1)先算乘方和括号再算乘法后算加法;(2)两个度数相加度与度分与分对应相加分的结果若满60则转化为度从而得出答案【详解】解:(1)==-9+1=-8;(2)==【点睛】本解析:(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键. 15.(1);;(2)57°【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得然后根据两角互余的关系即可求解【详解】(1)原式因解析:(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.16.(1)∠EOF=45°(2)∠EOF=α(3)∠EOF=α【分析】(1)首先求得∠BOC 的度数然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF 即可求解;(2)根据角的平分线的定义解析:(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α . 【分析】(1) 首先求得∠BOC 的度数, 然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF 即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC= 12(∠BOC+∠AOC),即可求解; (3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC= 23(∠BOC+∠AOC) =23∠AOB ,即可求解 . 【详解】解:(1)∠BOC=∠AOB ﹣∠AOC=90°﹣30°=60°,∵OE 平分∠BOC ,OF 平分∠AOC ,∴∠EOC=12∠BOC=12×60°=30°,∠COF= 12∠AOC=12×30°=15°, ∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE 平分∠BOC ,OF 平分∠AOC , ∴∠EOC=12∠BOC ,∠COF=12∠AOC , ∴∠EOF=∠EOC+∠COF=12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC )= 12∠AOB= 12α; (3)3∠EOB=∠COB ,3∠COF=2∠COA 即∠EOB=13∠BOC ,∠COF=23∠AOC , ∴∠EOC=23∠BOC∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC)=23∠AOB= 23α.【点睛】本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 17.(1)BOC;同角的补角相等;AOD;BOC;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD=180°∠AOC+∠COB=180°可以根据同角的补角相等得到∠AOD=∠COB;(2解析:(1)BOC;同角的补角相等;AOD;BOC;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD=180°,∠AOC+∠COB=180°,可以根据同角的补角相等得到∠AOD=∠COB;(2)首先根据角平分线的性质可得∠AOC=2∠COM,∠AON=12∠AOD,然后计算出∠AOC=144°,进而得到∠AON=18°.【详解】解:(1)因为∠AOC与∠AOD互补,所以∠AOC+∠AOD=180°.又因为∠AOC+∠BOC=180°,根据同角的补角相等,所以∠AOD=∠BOC,故答案为:BOC;同角的补角相等;AOD;BOC;(2)∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×72°=144°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣144°=36°,∵ON是∠AOD的平分线.∴∠AON=12∠AOD=18°.【点睛】本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系.18.见解析【分析】首先作射线AP再截取AD=DC=CE=a在线段AE上截取EB=b 即可得出AB=3a-b【详解】解:如图所示线段AB即为所求【点睛】此题主要考查了复杂作图正确作出射线进而截取得出是解题关解析:见解析【分析】首先作射线AP,再截取AD=DC=CE=a,在线段AE上截取EB=b,即可得出AB=3a-b.【详解】解:如图所示,线段AB即为所求.【点睛】此题主要考查了复杂作图,正确作出射线进而截取得出是解题关键.解决此类题目需要熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.(1);(2)或【分析】(1)利用平角的定义求得∠BOC=150利用角平分线的性质求得∠COE=75再利用余角的性质即可求得∠DOE=15;(1)分:①∠AOC :∠COE=1:2;②∠AOC :∠CO解析:(1)15DOE ∠=;(2)18DOE ∠=或45【分析】(1)利用平角的定义求得∠BOC=150︒,利用角平分线的性质求得∠COE=75︒,再利用余角的性质即可求得∠DOE=15︒;(1)分:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1两种情况讨论,利用平角的定义和角平分线的性质求解即可.【详解】解:(1)∵30180AOC AOB ∠=︒∠=︒,,∴150BOC AOB AOC ∠=∠-∠=︒,∵射线OE 是BOC ∠的平分线,∴75COE BOE ∠=∠=,∵90COD ∠=,∴907515DOE COD COE ∠=∠-∠=︒-︒=;(1)∵OC 恰好将AOE ∠分成了1:2的两个角,∴有两种情况:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1;①如答图1,当∠AOC :∠COE=1:2时,设∠AOC=x ,∠COE=2x ,则2BOE COE x ∠=∠=,∵180AOB ∠=︒,∴22180x x x ++=︒,解得,36x =︒,∴272EOC x ∠==︒,∴907218DOE COD COE ∠=∠-∠=︒-︒=︒;②如答图2,当∠AOC :∠COE=2:1时,设∠AOC=2x ,∠COE=x ,则BOE COE x ∠=∠=,∵180AOB ∠=︒∴2180x x x ++=︒,解得,45x =︒,∴45EOC x ∠==︒,∴904545DOE COD COE ∠=∠-∠=︒-︒=︒;综上所述18DOE ∠=或45.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形并且运用好有关性质准确计算角的和差倍分是解题的关键.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:; 解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠,∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】 本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.见解析【分析】(1)画直线AB 、AC 注意两端延伸;(2)以B 点为端点,向点C 方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB 、AC 为所作;(2)射线BC 为所作;(3)EF 为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.22.(1)①90°;②45°;(2)3360αβ+=︒.【分析】(1)①根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论; ②设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)①∵180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;②设2COD x ∠=,∵OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∵180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∵3αβ=, ∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∵45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∵90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∵180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒, ∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键. 23.(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠,∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】 本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.24.(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.25.13【分析】根据已知条件得出2,2==AC MC BD DN ,再求出22+=+AC BD MC DN =10,根据AB AC BD CD =++求出A B 的长即可;解: 8,3MN CD ==835,MC DN ∴+=-=点M 是AC 的中点,点N 是BD 的中点2,2,AC MC BD DN ∴==22,AC BD MC DN ∴+=+()2MC DN =+25=⨯10=.AB AC BD CD ∴=++103=+13=【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力. 26.(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.本题考查角度关系求解,解题的关键是掌握三角板的角度.。
一、选择题1.下列说法正确的是( ) A .经过两点可以作无数条直线 B .各边相等,各角也相等的多边形是正多边形C .长方体的截面形状一定是长方形D .棱柱的每条棱长都相等2.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =3.周末早上,小兰9:00从家里出发去图书馆看书,上午10:30回到家中,这段时间内钟面上的时针转了( )A .37.5°B .45°C .52.5°D .60°4.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°5.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°6.在射线AK 上截取线段10,4AB cm BC cm ==,点,M N 分别是,AB BC 的中点,则点M 和点N 之间的距离为( ) A .3cm B .5cmC .7cmD .3cm 或7cm7.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点( )A .60B .50C .45D .408.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cmB .4cmC .12cm 或4cmD .8cm 或12cm9.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①② B .②③ C .①④ D .③④ 10.如果α∠与β∠的两边分别平行,α∠比β∠的3倍少40︒,则α∠的度数为( ) A .35︒ B .125︒ C .20︒或125︒ D .35︒或125︒ 11.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°12.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要( )A .三个正三角形、两个正六边形B .四个正三角形、两个正六边形C .两个正三角形、两个正六边形D .三个正三角形、一个正六边形二、填空题13.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数; (2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.14.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长; (2)当13CN CD =时,求BD 的长. 15.已知()090AOB αα∠=︒<<︒.(1)如图1,反向延长射线OA 得到射线OC ,用量角器画BOC ∠的平分线OD .当30α=︒时,求AOD ∠的度数;(2)如图2,90AOC ∠=︒,用量角器画BOC ∠的角平分线OD .判断AOD ∠与BOD ∠互为余角吗?说明理由;(3)利用“备用图”画图研究:画BOC ∠,使BOC ∠与AOB ∠互为补角,进一步画出AOB ∠、BOC ∠的平分线OM ,ON ,并求MON ∠的度数(若需要,可以用含α的式子表示) .16.已知:80AOB COD ∠=∠=︒(1)如图1,AOC BOD ∠=∠吗?请说明理由.(2)如图2,直线MN 平分AOD ∠,直线MN 平分BOC ∠吗?请说明理由. (3)若150BOD ∠=︒,20BOE ∠=︒,求COE ∠的大小.17.如图,OB,OC 是AOD 内部的两条射线,OM 平分AOB ,ON 平分COD ,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数; (2)若118AOD ∠=︒,求MON ∠的度数.18.如图,已知点M 是线段AB 的中点,点E 将AB 分成:3:4AE EB =的两段,若2cm EM =,求线段AB 的长度.19.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =; (2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度. 20.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长; (2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________.三、解答题21.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长; (2)当13CN CD =时,求BD 的长. 22.如图,平面上有三个点A 、B 、C ,根据下列要求画图. (1)画直线AB 、AC ; (2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .23.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值. 24.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上; (1)画图:(只要求画图,不必写画法) (2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.25.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.26.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴画线段AC、直线AB、射线DC,且直线AB与射线DC相交于点O;延长线段DA至点E,使AE=AC;⑵若AC=2cm,AD=3cm,点F为线段AD的中点,求线段EF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】两点确定一条直线,长方体的截面有多种形状,棱柱的棱长可能相等.【详解】∵两点确定一条直线,∴A说法是错误;∵各边相等,各角也相等的多边形是正多边形,是正确的,∴B说法是正确;∵长方体的截面形状可以是正方形,也可以是六边形,∴C说法是错误;一般长方体的棱长是不相等的,∴D说法是错误;故选B.【点睛】本题考查了一些列的数学基本概念和性质,熟记数学概念和性质是解题的关键.2.A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 3.B解析:B【分析】9时是分针指向12,时针指向9,10:30时分针指向6,时针指向10和11正中间,所以时针走了1.5个大格,因为每个大格所对的角度是30度,所以3个大格之间的夹角是30°×1.5=45°,据此解答即可.【详解】解:由分析得出:从上午9:00到上午10:30,钟面上的时针转了:30°×1.5=45°.故选:B.【点睛】解决本题要先分析时针位置的变化,再利用每个大格所对的角度是30度进行解答.4.C解析:C根据时针与分针相距的份数乘以每份的度数,可得答案. 【详解】解:8:20时,时针与分针相距4+2060=133份, 8:20时,时针与分针所夹的角是30°×133=130°, 故选:C . 【点睛】本题考查了钟面角,确定时针与分针相距的分数是解题关键.5.C解析:C 【分析】根据角平分线的定义和角的和差计算即可. 【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°, ∴∠ABE =∠ABC +∠CBE =30°+90°=120°, ∵BM 平分∠ABE , ∴∠ABM =12∠ABE =12×120°=60°, ∴∠CBM =∠ABM−∠ABC =60°−30°=30°, 故答案为:30°. 【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.6.D解析:D 【分析】分情况讨论,点C 在线段AB 外,点C 在线段AC 上,根据中点的性质计算线段长度. 【详解】 解:如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点,∴122BN BC cm ==, ∴527MN BM BN cm =+=+=; 如图,∵M 是AB 中点,∴152BM AB cm ==, ∵N 是BC 中点,∴122BN BC cm ==, ∴523MN BM BN cm =-=-=. 故选:D . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.7.C解析:C 【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点,然后计算求解即可. 【详解】解:两条直线相交,最多一个交点, 三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6= 4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点, 故10条直线相交,最多有1+2+3+…+9= 10(101)2-=5×9=45个交点, 故选:C . 【点睛】本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.8.C解析:C【分析】分两种情形:①当点C在线段AB上时,②当点C在线段AB的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB,AB=8cm,∴BC=4cm①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=8cm,BC=4cm,∴AC=8-4=4cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=8cm,BC=4cm,∴AC=8+4=12cm.综上可得:AC=4cm或12cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.B解析:B【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.10.C【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x,则∠α为3x−40°,若两角互补,则x+3x−40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x−40°,解得x=20°,∠α=20°.故选:C.【点睛】本题考查角有关的运算,关键在于根据两角的两边分别平行打开此题的突破口.11.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.12.C解析:C【分析】根据平面镶嵌的概念逐一判断即可得.【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A.由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B.由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C.由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D.由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意;【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.二、填空题13.(1);(2)【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数再相加可得∠AOE 的度数;(2)据角平分线的定义和得到再由求得的度数最后由平分求得的度数【详解】解(1)如图∵平分∴∵平分∴∴解析:(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.14.(1)14(2)【分析】(1)根据题意可得出CM =ACCN =CD 所以MN =CM+CN =(AC+CD)=AD =9从而得出AD 的长根据AB :BC :CD =2:3:4可得出AB 的长继而求出BD 的长;(2)根解析:(1)14(2)37823 【分析】(1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M 是线段AC 的中点,可得CM =2.5x ,因为CN =13CD ,可求出CN= 43x ,根据MN=9,可解出x 的值,继而得出BD 的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.15.(1)105°;(2)互余理由见解析;(3)90°或90°-α【分析】(1)根据角平分线的定义得到∠BOD=∠COD=(180°-∠AOB)从而算出∠AOD;(2)根据∠AOC=90°得到∠AOD+解析:(1)105°;(2)互余,理由见解析;(3)90°或90°-α【分析】(1)根据角平分线的定义得到∠BOD=∠COD=12(180°-∠AOB),从而算出∠AOD;(2)根据∠AOC=90°得到∠AOD+∠COD=90°,结合OD平分∠BOC,可证明结论;(3)分两种情况,画出图形,根据互补的定义和角平分线的定义可得结果.【详解】解:(1)∵OD平分∠BOC,∴∠BOD=∠COD=12(180°-∠AOB)=75°,∴∠AOD=∠AOB+∠BOD=105°;(2)互余,∵∠AOC=90°,∴∠AOD+∠COD=90°,∵OD平分∠BOC,∴∠BOD=∠COD,∴∠AOD+∠BOD=90°,即互为余角;(3)如图3,∠BOC+∠AOB=180°,∵OM平分∠AOB,ON平分∠BOC,∴∠MON=∠MOB+∠NOB=12∠AOB+12∠BOC=90°;如图4,∠BOC+∠AOB=180°,∵OM平分∠AOB,ON平分∠BOC,∴∠MON=∠NOB-∠MOB=12∠BOC-12∠AOB=12(180°-∠AOB)-12∠AOB=12(180°-α)-12α=90°-α.【点睛】本题考查了互余和互补的定义,角平分线的定义,解题的关键是画出图形,结合角平分线的定义证明和求解.16.(1)见解析;(2)直线平分见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分在内部和外部两种情况进行求解即可【详解】解:(1)理由如解析:(1)AOC BOD ∠=∠,见解析;(2)直线MN 平分BOC ∠,见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分OE 在AOB ∠内部和外部两种情况进行求解即可.【详解】解:(1)AOC BOD ∠=∠.理由如下:80AOB COD ∠=∠=︒AOB AOD COD AOD ∴∠+∠=∠+∠即BOD AOC ∠=∠(2)直线MN 平分BOC ∠.理由如下:180AOB MOA NOB ∠+∠+∠=︒,180COD MOD NOC ∠+∠+∠=︒又80AOB COD ∠=∠=︒100MOA NOB MOD NOC ∠+∠=∠+∠=︒∴直线MN 平分AOD ∠MOA MOD ∠=∠∴NOB NOC ∠=∠∴即直线MN 平分BOC ∠.(3)150BOD ∠=︒,80AOB COD ∠=∠=︒70AOD ∴∠=︒,130COB ∠=︒①当OE 在AOB ∠内部时,如图所示:13020150COE BOC BOE ∠=∠+∠=︒+︒=︒②当OE 在AOB ∠外部时,如图所示:13020110COE BOC BOE ∠=∠-∠=︒-︒=︒综上所述,COE ∠的度数为150°或110°.【点睛】本题考查了解度的计算,角平分线的定义,正确识别图形是解题的关键.17.(1)∠AOC=80°;(2)∠MON=79°【分析】(1)根据角平分线的定义可得相加可得∠MON 的度数;(2)先求得根据角平分线的定义可得相加可得∠MON 的度数【详解】(1)∵平分∴∴;(2)∵∵解析:(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒;(2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠, ∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒. 【点睛】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.18.线段AB 的长为28cm 【分析】由点E 将AB 分成的两段设AE=3kBE=4k 可用k 表示AB=7k 由点M 是线段AB 的中点AM=由EM=AM-AE==2cm 求出k=4cm 即可【详解】解:∵点E 将AB 分成的解析:线段AB 的长为28cm .【分析】由点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,可用k 表示AB=7k ,由点M 是线段AB 的中点,AM=17AB=22k ,由EM=AM-AE=71322k k k -==2cm ,求出k=4cm 即可.【详解】解:∵点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,∴AB=AE+BE=3k+4k=7k ,∵点M 是线段AB 的中点,∴AM=17AB=22k , ∴EM=AM-AE=71322k k k -==2cm , ∴k=4cm ,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.19.(1)见解析;(2)见解析;(3)【分析】(1)根据画出图形即可;(2)根据画出图形即可;(3)根据线段等分的性质可得AB 的长根据线段的和差可得BD 的长【详解】解:(1)点C 如图所示;(2)点D 如图解析:(1)见解析;(2)见解析;(3)4cm BD =【分析】(1)根据3AC AB =,画出图形即可;(2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长.【详解】解:(1)点C 如图所示;(2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =.∵8cm CB =,∴2cm AB =.∵3AD AB =,∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型. 20.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.三、解答题21.(1)14(2)378 23【分析】(1)根据题意可得出CM=12AC,CN=12CD,所以MN=CM+CN=12(AC+CD)=12AD=9,从而得出AD的长,根据AB:BC:CD=2:3:4,可得出AB的长,继而求出BD的长;(2)根据题意,当CN=13CD时,设AB=2x,BC=3x,CD=4x,可得AC=5x,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN =52x+43x =MN =9, ∴x =5423, ∴BD =7x =37823; 【点睛】 本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.22.见解析【分析】(1)画直线AB 、AC 注意两端延伸;(2)以B 点为端点,向点C 方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB 、AC 为所作;(2)射线BC 为所作;(3)EF 为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.23.(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒; ③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去);综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键.24.(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=,又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.26.(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cm,F为线段AD的中点,所以 AF=1.5cm,又因为AE=AC=2cm,所以 EF=AE+AF=3.5cm.【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.。
一、选择题1.如图,点C ,点D 在线段AB 上,若3AC BC =,点D 是AC 的中点,则( )A .23AD BC =B .35AD BD =C .3AC BD DC += D .2AC BC DC -= 2.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°3.如图,90,50,AOB COD OE ∠=︒∠=平分,AOC OF ∠平分∠BOD ,则EOF ∠的大小为( )A .110B .105C .100D .954.如图,线段CD 在线段AB 上,且3CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .不能确定 5.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条6.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等 7.如图,经过创平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直8.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( ) A . B . C .D .9.在同一平面上,若60BOA ∠=︒,20BOC ∠=︒,则AOC ∠的度数是( ) A .80° B .40° C .20°或40° D .80°或40° 10.在直线l 上有四个点A ,B ,C ,D ,已知10AB =,6AC =,点D 是BC 的中点,则线段AD 的长是( )A .2B .8C .4或8D .2或8 11.如果α∠与β∠的两边分别平行,α∠比β∠的3倍少40︒,则α∠的度数为( ) A .35︒B .125︒C .20︒或125︒D .35︒或125︒ 12.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55° 二、填空题13.如图,已知线段m ,n .射线AP .实践与操作:在射线AP 上作线段AB =m ,AC =m+n .(要求:尺规作图,保留作图痕迹,不写作法).推理与计算:若线段AB 的中点是点D ,线段AC 的中点是点E .请在上图中标出点D ,E .当m=4,n=2时,求线段DE 的长度.14.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=. (2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.15.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ;(3)反向延长BC 至D ,使得BD =BC ;(4)在直线l 上确定点E ,使得AE +CE 最小;(5)请你判断下列两个生活情景所蕴含的数学道理.情景一:如图从A 地到B 到地有4条道路,除它们外能否再修一条从A 地到B 地的最短道路?如果能,请你联系所学知识,在图上画出最短中线.情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理: .16.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.17.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC 是AOB ∠的平分线,这时有数量关系:AOB ∠=______. (2)如图2:AOB ∠被射线OP 分成了两部分,这时有数量关系:AOB ∠=______. (3)如图3:直线AB 上有一点M ,射线MN 从射线MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止.①请直接回答AMN ∠与BMN ∠是如何变化的?②AMN ∠与BMN ∠之间有什么关系?请说明理由.18.如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答: (1)画线段AB ,画射线AC ,画直线BC ;(2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.19.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线.(1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=. (1)如图1,COD ∠在AOB ∠的内部,①当45COD ∠=︒时,求αβ+的值.②当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.22.如图,已知AOC ∠和BOD ∠都是直角,(1)填空:①与BOC ∠互余的角有__________;②AOD ∠和BOC ∠的关系是_____________.(2)若313AOB AOD ∠=∠,求BOC ∠的度数. 23.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使60AOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.求此时BOM ∠度数;(2)如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 以一定速度沿逆时针方向旋转一周,在旋转的过程中,若射线ON 恰好与射线OC 在同一直线上,则此时AOM ∠的角度为_________.(直接写出结果)24.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭(2)48396735''︒+︒25.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.26.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先利用中点的定义得出AC=2CD=2AD ,再利用3AC BC =以及线段的和差分别表示出各线段的关系,即可得出结论.【详解】解:∵3AC BC =,点D 是AC 的中点,∴AC=2CD=2AD=3BC ,∴2AD=3BC ,A 选项正确,符合题意;∵2CD=2AD=3BC ,∴CD=AD=32BC ,3AD=92BC , ∴BD=BC+CD= BC+32BC=52BC ,5BD=252BC , ∴35AD BD ≠,B 选项错误,不符合题意; ∵AC+ BD=3BC+52BC=112BC ,3DC=3AD=92BC , ∴3AC BD DC +≠,C 选项错误,不符合题意;∵AC- BC=3BC- BC=2 BC ,2CD= AC =3BC ,∴2AC BC DC -≠,D 选项错误,不符合题意;故选:A .【点睛】本题主要考查了中点的定义,线段的计算,得出AC=2CD=2AD=3BC 是解题的关键. 2.C解析:C【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:8:20时,时针与分针相距4+2060=133份,8:20时,时针与分针所夹的角是30°×133=130°, 故选:C .【点睛】 本题考查了钟面角,确定时针与分针相距的分数是解题关键.3.A解析:A【分析】由OE 平分AOC ∠,OF 平分BOD ∠可知12COE AOC ∠=∠,12DOF BOD ∠=∠.即可求出1122EOF AOC BOD COD ∠=∠+∠-∠,又由360AOC BOD AOB COD ∠+∠=︒-∠+∠,即可求出EOF ∠的大小.【详解】EOF EOD COD COF ∠=∠+∠+∠,()()COE COD COD DOF COD =∠-∠+∠+∠-∠,COE DOF COD =∠+∠-∠.∵OE 平分AOC ∠,OF 平分BOD ∠. ∴12COE AOC ∠=∠,12DOF BOD ∠=∠. ∴1122EOF AOC BOD COD ∠=∠+∠-∠, ∵360AOC BOD AOB COD ∠+∠=︒-∠+∠, ∴1(360)2EOF AOB COD COD ∠=︒-∠+∠-∠,即1(3609050)501102EOF ∠=︒-︒+︒-︒=︒. 故选:A .【点睛】本题考查角平分线的性质.根据题意结合角平分线的性质找出角的等量关系是解答本题的关键.4.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD )=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD ,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.5.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.6.A解析:A【分析】根据基本平面图的性质判断即可;【详解】A两点之间线段最短,故错误;B两点确定一条直线,故正确;C一个锐角的补角一定比它的余角大90°,故正确;D等角的补角相等,故正确;故答案选A.【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.7.A解析:A【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】本题考查了直线的性质在实际生活中的运用,牢记“经过两点有且只有一条直线”是解题的关键..8.C解析:C【分析】根据角的表示方法和图形选出即可.【详解】A 、图中的∠MON 不能用∠O 表示,故本选项错误;B 、图中的∠1和∠O 不是表示同一个角,故本选项错误;C 、图中的1∠、O ∠、MON ∠表示同一个角,故本选项正确;D 、图中∠1、∠MON 、∠O 不表示同一个角,故本选项错误;故选:C .【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力. 9.D解析:D【分析】分两种情况考虑:如图1与图2所示,分别求出∠AOC 的度数即可.【详解】解:分两种情况考虑:如图1所示,此时∠AOC=∠AOB-∠BOC=60°-20°=40°;如图2所示,此时∠AOC=∠AOB+∠BOC=60°+20°=80°,综上,∠AOC 的度数为40°或80°.故选:D .【点睛】此题考查了角的计算,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键. 10.D解析:D【分析】分点C 在线段AB 上和点C 在线段AB 反向延长线上,分别计算即可.【详解】解:①C 在线段AB 上:∵10AB =,6AC =,∴4CB =,又∵D 为BC 的中点,∴2CD =,∴268AD =+=.②点C 在线段AB 反向延长线上:∵10AB =,6AC =,∴16BC =,又∵D 为BC 的中点,∴8CD BD ==,∴1082AD =-=,故选D .【点睛】本题考查了线段的中点,线段的和差,解题关键是对点C 的位置分类讨论,依据中点的定义求对应线段长.11.C解析:C【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x ,则∠α为3x−40°,若两角互补,则x +3x−40°=180°,解得x =55°,∠α=125°;若两角相等,则x =3x−40°,解得x =20°,∠α=20°.故选:C .【点睛】本题考查角有关的运算,关键在于根据两角的两边分别平行打开此题的突破口. 12.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.二、填空题13.实践与操作:见解析;推理与计算:图见解析1【分析】实践与操作:在射线AP上分别顺次截取线段AB=mBC=n即可推理与计算:先求出AC长再根据线段的中点求出AD和EE长即可求出答案;【详解】实践与操作解析:实践与操作:见解析;推理与计算:图见解析,1【分析】实践与操作:在射线AP上分别顺次截取线段AB=m,BC=n即可.推理与计算:先求出AC长,再根据线段的中点求出AD和EE长,即可求出答案;【详解】实践与操作:如图,线段AB,AC即为所求.推理与计算:∵m=4,n=2,∴AC=4+2=6因为D, E分别是AB,AC的中点,所以AD=12AB=12×4=2,AE=12AC=12×6=3,∴DE=AE-AD=3-2=1【点睛】本题主要考查两点间的距离,掌握中点的定义是解题的关键.14.(1);;(2)57°【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a和b的值然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得然后根据两角互余的关系即可求解【详解】(1)原式因解析:(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.15.作图见详解;两点确定一条直线【分析】根据射线线段两点之间线段最短以及两点确定一条直线即可解决问题;【详解】解:(1)射线AB 如图所示;(2)线段BC 如图所示(3)线段BD 如图所示(4)点E 即为所求; 解析:作图见详解;两点确定一条直线.【分析】根据射线,线段、两点之间线段最短,以及两点确定一条直线,即可解决问题;【详解】解:(1)射线AB ,如图所示;(2)线段BC ,如图所示,(3)线段BD 如图所示(4)点E 即为所求;(5)情景一:如图:由两点之间线段最短,即可得到线段AB;情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查作图——复杂作图、直线、射线、线段的定义、两点之间线段最短,两点确定一条直线等知识,解题的关键是掌握所学的基本知识,属于中考常考题型.16.(1)∠BOD=60°;(2)∠BOD=2∠EOF理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°由OF平分∠BOC求出∠BOC=120°进而求出∠BOD=180°-120°=60°;解析:(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF .【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.17.(1)(答案不唯一);(2);(3)①逐渐增大逐渐减小;②见解析【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线从射线开始绕着点顺时针旋转可知逐渐增大逐渐减小;②由∠A 解析:(1)2AOC ∠(答案不唯一);(2)AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒,见解析.【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线MN 从射线MA 开始绕着点M 顺时针旋转可知AMN ∠逐渐增大,BMN ∠逐渐减小;②由∠AMB 是平角即可得出结论.【详解】解:(1)∵射线OC 是AOB ∠的平分线,∴22AOB AOC COB ∠=∠=∠,故答案为:2AOC ∠(或2COB ∠);(2)由图可知,AOB AOP BOP ∠=∠+∠,故答案为:AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒.证明:∵180AMB ∠=︒,AMN BMN AMB ∠+∠=∠,∴180AMN BMN ∠+∠=︒.【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想.18.(1)见解析;(2)见解析;(3)∠ADC 与∠BDC 互为补角【分析】(1)根据直线射线线段的定义画出图形即可;(2)根据中点的定义找到点D 再连接CD 即可;(3)根据补角的性质即可得出答案【详解】解:解析:(1)见解析;(2)见解析;(3)∠ADC 与∠BDC 互为补角【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D 再连接CD 即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC 与∠BDC 互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.19.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:;解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠,∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.(1)①90°;②45°;(2)3360αβ+=︒.【分析】(1)①根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论; ②设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)①∵180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;②设2COD x ∠=,∵OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∵180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∵3αβ=,∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∵45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∵90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∵180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒, ∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键. 22.(1)∠AOB 、∠COD ;(2)互补;(3)63°.【分析】(1)根据∠AOB+∠BOC=∠COD+∠BOC=90°,解答即可;(2)求出∠AOD+∠BOC=∠AOC+∠BOD ,代入求出即可;(3)设∠AOB=3x ,∠AOD=13x ,根据∠AOD-∠AOB=90°得出方程13x-3x=90°,求出即可.【详解】解:(1)因为∠AOC 和∠BOD 都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,所以∠BOC 与∠AOB 互余,∠BOC 与∠COD 互余,故答案为:∠AOB 、∠COD ;(2)∠AOD 与∠BOC 互补,理由如下:因为∠AOC 和∠BOD 都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,又因为∠AOD=∠AOB+∠BOC+∠COD ,所以∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BOC=180°,所以∠AOD 与∠BOC 互补;故答案为:互补;(3)设∠AOB=3x°、则∠AOD=13x°,所以∠BOD=∠AOD-∠AOB=13x-3x=10x=90,即x=9,所以∠AOD=13x=117°,由(2)可知∠AOD 与∠BOC 互补,所以∠BOC=180°-117°=63°.【点睛】本题考查了角的有关计算.解题的关键是明确角的有关计算方法,以及能够根据图形进行计算.23.(1)60°;(2)30AOM NOC ∠-∠=︒,理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得,∠BOM=12∠BOC=12(180°-∠AOC )=12(180°-60°)=60°;(2)由∠AOM+∠NOA=90°,∠AON+∠NOC=60°,可得结论;(3)结合旋转过程分情况讨论,并利用角的和差关系计算求解【详解】(1)∵60AOC ∠=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒,又∵OM 平分BOC ∠ ∴1602BOM BOC ∠=∠=︒ (2)30AOM NOC ∠-∠=︒,理由∵6090AOC MON ∠=︒∠=︒,∴90AOM MON AON AON ∠=∠-∠=︒-∠60NOC AOC AON AON ∠=∠-∠=︒-∠∴30AOM NOC ∠-∠=︒.(3)如图,当点N 在射线OC 上时此时∠AOM=∠MON-∠AOC=90°-60°=30°当点N 在射线OC 的反向延长线上时,此时,∠MOB=∠MON-∠BON=∠MON-∠AOC=90°-60°=30°∴∠AOM=180°-∠MOB=150°综上,∠MON 的度数为30°或150°故答案为:30或150︒【点睛】考查角平分线的意义及角的和差运算,理解题意,注意分类讨论思想解题是关键. 24.(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键.25.(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.26.AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,AM AP MP=-=-=20416cm当点M在点P右边时,如图2,=+=+=20424cmAM AP MP综上,AM的长为16cm或24cm.【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.。
一、选择题1.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =2.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( )A .B .C .D .3.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( ) A .1个B .2个C .3个D .4个4.如图,经过创平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直5.如图,OC 是∠AOB 的平分线,∠BOD =∠COD ,∠AOD =75°,则∠BOD =( )A .35°B .25°C .20°D .15°6.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒7.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( )A .32cmB .64cmC .32cm 或64cmD .64cm 或128cm 8.在同一平面上,若60BOA ∠=︒,20BOC ∠=︒,则AOC ∠的度数是( ) A .80°B .40°C .20°或40°D .80°或40°9.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒'10.下列命题中,正确的有( )①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短. A .1个B .2个C .3个D .4个11.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 12.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°二、填空题13.已知90AOB EOF ∠=∠=︒,OM 平分∠AOE ,ON 平分∠BOF . (1)如图1,当OE 在∠AOB 内部时, ①AOE ∠ BOF ∠;(填>,=,<) ②求∠MON 的度数;(2)如图2,当OE 在∠AOB 外部时,(1)题②的∠MON 的度数是否变化?请说明理由.14.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 15.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数.16.如图,已知点D 在线段AB 上,且:7:3,6cm AD DB DB ==,若点M 是线段AD 的中点,求线段BM 的长.17.(1)已知||7x =,||5y =,且0x y +<,求x y -的值?(2)推理填空:如图所示,点O 是直线AB 上一点,130BOC ∠=︒,OD 平分AOC ∠.求:COD ∠的度数. 解:O 是直线AB 上一点,AOB ∴∠= . 130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠= .OD 平分AOC ∠,COD AOD ∴∠=∠.理由是 COD ∴∠= .18.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.19.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线. (1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.20.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值.三、解答题21.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由. 22.用直尺和圆规作图,不写作法,但要保留作图痕迹. 如图,已知线段a 、b ,求作:线段AB ,使2AB a b =+.23.已知射线AB ,线段6AB =,在直线AB 上取一点P ,使3AP PB ,Q 为PB 的中点.(1)根据题意,画出图形; (2)求线段AQ 的长.24.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使60AOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.求此时BOM ∠度数;(2)如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 以一定速度沿逆时针方向旋转一周,在旋转的过程中,若∠的角度为_________.(直接写出射线ON恰好与射线OC在同一直线上,则此时AOM结果)26.如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2, ∴PQ= 2OQ ,综上所述,在运动过程中,线段PQ 的长度始终是线段OQ 的长的2倍, 即PQ= 2OQ 一定成立. 故选: A. 【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.2.A解析:A 【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得. 【详解】 A 、90180αβ∠+∠+︒=︒, 90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意;B 、90β∠=︒,α∠为锐角, 90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意;C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意;D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒,4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意;故选:A . 【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.3.B解析:B 【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可. 【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC 不共线时,点C 不是线段AB 的中点,故本说法错误; ③射线OB 与射线OC 可能是两条不同的射线,故本说法错误; ④连接两点的线段的长度叫做这两点的距离,故本说法错误; ⑤符合两点确定一条直线,故本说法正确. 故选:B . 【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.4.A解析:A根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题考查了直线的性质在实际生活中的运用,牢记“经过两点有且只有一条直线”是解题的关键..5.B解析:B【分析】根据角平分线的定义和∠BOD=∠COD,用∠BOD表示其它的角,再利用∠AOD=75°即可求得∠BOD的度数.【详解】解:∵∠BOD=∠COD,∴∠BOC=2∠BOD,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=2∠BOD,∵∠AOD=75°,∴∠BOD+2∠BOD=75°,即∠BOD=25°,故选:B.【点睛】本题考查了角平分线的定义及角的计算,本题的解题关键是根据已知条件找出角度的关系,即可得出答案.6.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.7.C【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题. 【详解】 解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折, ∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm ,∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折, ∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm ∴PB=12 cm ∴AP=12×143=cm ∴绳子全长=2PB+2AP=12×2+4×2=32 cm ; 故选:C . 【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.8.D解析:D 【分析】分两种情况考虑:如图1与图2所示,分别求出∠AOC 的度数即可. 【详解】解:分两种情况考虑:如图1所示,此时∠AOC=∠AOB-∠BOC=60°-20°=40°;如图2所示,此时∠AOC=∠AOB+∠BOC=60°+20°=80°,综上,∠AOC 的度数为40°或80°.故选:D .【点睛】此题考查了角的计算,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键. 9.D解析:D【分析】根据OA ⊥OB ,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA ⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90° ∠ 1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键.10.B解析:B【分析】根据直线的性质,两点间的距离的定义,线段的性质进行分析.【详解】解:①两点之间线段最短,正确;②连接两点的线段的长度,叫做两点间的距离,故原说法错误;③角的大小与角的两边的长短无关,正确;④直线无限长,射线无限长,射线是直线的一部分,所以射线比直线短的说法是错误的. 故选:B【点睛】本题考查了直线、射线、线段,关键是熟悉它们的定义.属于基础题.11.D解析:D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 12.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.二、填空题13.(1)①=;②;(2)不变化理由见解析【分析】(1)①结合题意根据角度和差的性质计算即可得到答案;②根据角平分线的性质得;结合(1)①的结论通过计算即可得到答案;(2)根据题意根据角度和差性质计算得 解析:(1)①=;②90MON ∠=︒;(2)不变化,理由见解析【分析】(1)①结合题意,根据角度和差的性质计算,即可得到答案;②根据角平分线的性质,得12MOE AOE ∠=∠,12BON BOF ∠=∠;结合(1)①的结论,通过计算即可得到答案;(2)根据题意,根据角度和差性质计算,得AOE BOF ∠=∠;根据角平分线性质计算,得AOM MOE BON NOF ∠=∠=∠=∠;结合90MOB AOM ∠=︒-∠,通过计算即可完成求解.【详解】(1)①∵90AOB EOF ∠=∠=︒∴90AOE BOE BOF BOE ∠+∠=∠+∠=︒∴AOE BOF ∠=∠故答案为:=;②∵OM 平分∠AOE ,ON 平分∠BOF ∴1122MON MOE BOE BON AOE BOE BOF ∠=∠+∠+∠=∠+∠+∠ 结合(1)①的结论AOE BOF ∠=∠∴90MON AOE BOE AOB ∠=∠+∠=∠=︒;(2)90AOB EOF ∠=∠=︒,AOE AOB BOE ∠=∠+∠,BOF BOE EOF ∠=∠+∠∴AOE BOF ∠=∠又∵OM 平分∠AOE ,ON 平分∠BOF ,∴AOM MOE BON NOF ∠=∠=∠=∠∵90MOB AOM ∠=︒-∠∴9090MON MOB BON AOM BON ∠=∠+∠=︒-∠+∠=︒.【点睛】本题考查了角度和差、角平分线的知识;解题的关键是熟练掌握角度和差计算、角平分线的性质,从而完成求解.14.(1)14(2)【分析】(1)根据题意可得出CM =ACCN =CD 所以MN =CM+CN =(AC+CD)=AD =9从而得出AD 的长根据AB :BC :CD =2:3:4可得出AB 的长继而求出BD 的长;(2)根解析:(1)14(2)37823 【分析】(1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.15.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得由∠BOD+∠AOB=∠AOD进而问题可求解;(2)由题意可分当射线OC在∠MON的外部时和当射线OC 在∠MON 的内部解析:(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB ∠=∠∠=∠,由∠BOD+∠AOB=∠AOD ,进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部时,然后分类求解即可.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD , ∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.16.13cm 【分析】根据线段的长度和比的关系求AD 的长然后利用线段中点的定义求得DM 的长度从而求解BM 【详解】解:∵∴∵点M 是线段的中点∴∴∴线段的长为13cm 【点睛】本题考查线段的和差计算及中点的定义 解析:13cm【分析】根据线段的长度和比的关系求AD 的长,然后利用线段中点的定义求得DM 的长度,从而求解BM .【详解】解:∵:7:3,6cm AD DB DB ==,∴=637=14AD cm ÷⨯∵点M 是线段AD 的中点 ∴172DM AD cm == ∴7613BM MD BD cm =+=+=∴线段BM 的长为13cm .【点睛】 本题考查线段的和差计算及中点的定义,理解题意,找准线段间数量关系正确列式计算是解题关键.17.(1)或;(2)角平分线定义【分析】(1)根据绝对值的定义可得由题意中可得即可求解;(2)根据平角的定义角平分线的定义即可求解【详解】解:(1)∵∴∵∴∴或;(2)是直线上一点180°50°平分理由解析:(1)2-或12-;(2)180︒,50︒,角平分线定义,25︒【分析】(1)根据绝对值的定义可得7=±x ,5y =±,由题意中0x y +<,可得7x =-,5y =±,即可求解;(2)根据平角的定义、角平分线的定义即可求解.【详解】解:(1)∵||7x =,||5y =,∴7=±x ,5y =±,∵0x y +<,∴7x =-,5y =±,∴2x y -=-或12-;(2)O 是直线AB 上一点,AOB ∴∠=180°.130BOC ∠=︒,AOC AOB BOC ∴∠=∠-∠=50°. OD 平分AOC ∠,COD AOD ∴∠=∠.理由是角平分线定义,COD ∴∠=25°.【点睛】本题考查绝对值的定义、有理数加法的符号、角平分线的定义,掌握上述知识内容是解题的关键.18.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.19.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.20.(1)是;(2)15°或225°或30°;(3)或或或【分析】(1)若OC 为∠AOB 的角平分线则有则根据题意可求解;(2)根据幸运线的定义可得当时当时当时然后根据角的和差关系进行求解即可;(3)由题解析:(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t =【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒; ③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去); 综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键. 三、解答题21.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点,∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.22.答案见解析.【分析】首先作射线,然后依次截取线段AC=a ,CB=b ,BD=b ,则AD 即为所求.【详解】解:如图所示,线段AD 即为所求:【点睛】本题主要考查了基本作图,作图的关键是理解作一条线段等于已知线段的作法. 23.(1)见解析;(2)7.5或5.25【分析】(1)分P 在AB 的延长线上和在AB 之间两种情况画出图形即可;(2)分两种情况,先根据3AP PB 求得AB 和BP ,再根据线段的中点求得BQ ,根据线段的和差即可求得AQ .【详解】解:(1)由于点P 与点B 的位置关系没有确定,∴根据题意,可画出满足条件的两个图形,如图1,图2所示(2)①在图1中,点P 在点B 右边,设PB x =,∵3AP PB ,∴3AP x =,26AB x ==.∴3x =,∵Q 为BP 的中点,∴ 1.5BQ =,6 1.57.5AQ =+=,②在图2中,点P 在点B 左边,∵3AP PB , ∴3 4.54AP AB ==, 1.5PB =, ∵点Q 为PB 中点,∴0.75PQ =, 4.50.75 5.25AQ =+=.【点睛】本题考查线段的和差.能正确识图是解题关键,解题时注意分类思想的运用. 24.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.25.(1)60°;(2)30AOM NOC ∠-∠=︒,理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得,∠BOM=12∠BOC=12(180°-∠AOC )=12(180°-60°)=60°;(2)由∠AOM+∠NOA=90°,∠AON+∠NOC=60°,可得结论;(3)结合旋转过程分情况讨论,并利用角的和差关系计算求解【详解】(1)∵60AOC ∠=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒,又∵OM 平分BOC ∠ ∴1602BOM BOC ∠=∠=︒ (2)30AOM NOC ∠-∠=︒,理由∵6090AOC MON ∠=︒∠=︒,∴90AOM MON AON AON ∠=∠-∠=︒-∠60NOC AOC AON AON ∠=∠-∠=︒-∠∴30AOM NOC ∠-∠=︒.(3)如图,当点N 在射线OC 上时此时∠AOM=∠MON-∠AOC=90°-60°=30°当点N在射线OC的反向延长线上时,此时,∠MOB=∠MON-∠BON=∠MON-∠AOC=90°-60°=30°∴∠AOM=180°-∠MOB=150°综上,∠MON的度数为30°或150°故答案为:30或150【点睛】考查角平分线的意义及角的和差运算,理解题意,注意分类讨论思想解题是关键.26.(1)80°;(2)60°【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质,得出∠DOE═12∠AOB即可.【详解】解:(1)如图1,∵∠AOB =120°,∠AOC =40°;∴∠BOC=∠AOB-∠AOC=120°-40°=80°;(2)如图2,∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC ∵OE平分∠BOC,∴∠BOE=∠COE=12∠BOC ∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12∠AOB=12×120°=60°.【点睛】本题考查角平分线的意义,根据图形直观,得出角的和或差,是解决问题的关键.。
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 3.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 4.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 5.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个6.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =.A .1个B .2个C .3个D .4个7.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16 8.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .189.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 P D .两点确定一条直线 10.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 11.22°20′×8等于( ). A .178°20′ B .178°40′ C .176°16′ D .178°30′ 12.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D .二、填空题13.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 14.分别指出图中截面的形状;15.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.16.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.17.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.18.在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______. 19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.20.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.三、解答题21.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?22.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点, 且MN=8cm ,求EF 的长.23.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.24.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.25.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.26.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.3.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.4.C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C,有四个直角三角形构成的特殊四边形.故选C.5.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.6.A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.7.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC=+=+=⨯+⨯=,故选:B.【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.8.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.9.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.10.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 11.B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 12.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A 、射线OA 与OB 不是同一条射线,选项错误;B 、射线OA 与OB 是同一条射线,选项正确;C 、射线OA 与OB 不是同一条射线,选项错误;D 、射线OA 与OB 不是同一条射线,选项错误.故选B .【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.二、填空题13.(1)度量比较法叠合比较法;(2)3a >ba=ba <b 【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a 和b 的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a >b 、a =b 、a <b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.14.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得解析:长方形;五边形;圆.【解析】【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答.【详解】①截面与长面平行,可以得到长方形形截面;②截面与棱柱的底面平行,可得到五边形截面;③截面与圆锥底平行,可以得到圆形截面.故答案为:长方形、五边形、圆.【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.16.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键17.n(n+1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n+1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.18.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB、OC在射线OA同侧和异侧的情况,问题可解【详解】解:如图(1)当OB、OC在射线OA同侧时,701560BOC AOB AOC∠=∠-∠=︒-︒=︒如图(2)当OB、OC在射线OA异侧时,701590BOC AOB AOC∠=∠+∠=︒+︒=︒故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 19.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.【分析】首先根据∠1与∠2互补可得∠1+∠2=180°再表示出∠1的余角90°-(180°-∠2)即可得到结论【详解】∵的余角是∴∵与互补∴故答案为126°【点睛】本题考查了余角和补角关键是掌握余角解析:126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【详解】∵2∠的余角是36︒,∴2903654︒︒︒∠=-=.∵1∠与2∠互补,∴118054126︒︒︒∠=-=.故答案为126°.【点睛】本题考查了余角和补角,关键是掌握余角和补角的定义.三、解答题21.(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.22.12cm【解析】【分析】由已知设设EA=x ,AB=2x ,BF=3x ,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12. 【详解】解:∵EA :AB :BF=1:2:3,可以设EA=x ,AB=2x ,BF=3x ,而M 、N 分别为EA 、BF 的中点,∴MA=12EA ,NB=12BF , ∴MN=MA+AB+BN=12x+2x+32x=4x , ∵MN=8cm ,∴4x=8,∴x=2, ∴EF=EA+AB+BF=6x=12,∴EF 的长为12cm .【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.23.(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.24.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.25.(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E 点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC 与BD 的交点处.【详解】(1)如图所示:点E 即为所求;(2)如图所示:点M 即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.26.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.。
明博教育数学第七册第四单元练习(A)
一、口算。
(6')
1.2+1.5= 1.7-1.3=0.8+9.4=
0.5+0.5= 1.5-1.5=
6.05-5.05=
二、填空。
(15')
1.一个小数中,小数点的左边是()部分,右边是()部分。
2.小数点右边第一位是(),第二位是()。
3.以前学过的数,像0、1、2、3、4、5……都是()。
现在学的数,像0.1、0.2、1.3、2.4等都是()。
4.0.50读作:();80.06读作:()。
5.在0.06、1.36、58.6、120.03这四个数中最大的数是(),最小的数是()。
三、判断题。
(10’)
1.所有的小数都比1小。
()
2.计算小数加减法时,要把小数末位对齐。
()
3.30元4角用元作单位是30.4元。
()
4.0.8里面有6个十之一。
()
5.一百点三三,写作:10.33 ()
四、用竖式计算。
(15)
2.3-1.6=
3.8+5.9=1.36-0.26=
0.35+0.21= 56.12+100.21=
五、列式计算。
(12)
1.比4.12多3.65的数是多少?
2.一数是0.87另一个数是6.5,它们的和是多少?
3.甲数是9.34,它比乙数大3.64,乙数是多少?
六、应用题。
(42)
1.化肥厂上半月生产化肥55.7吨,下半月生产62.5吨,结果比计划多生产45.1吨。
化肥厂本月计划和实际生产各多少吨?
2.一本数学书的价钱是0.69元,比一支钢笔便宜2.64元,这支钢笔多少钱?两件东西共多少钱?
3.一盒白粉笔和一盒彩色粉笔共17.6元,一盒白粉笔比一盒彩色粉笔多3.6元,白粉笔和彩色粉笔个多少钱?。