中学数学解题方法研究模拟试题
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
江苏省扬州中学2024学年高三5月底高考模拟考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )A .32B .32-C .23D .23- 2.若执行如图所示的程序框图,则输出S 的值是( )A .1-B .23C .32D .43.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .50504.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤5.抛物线2:2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p =( )A .8B .4C .2D .16.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B=A .{}1B .{}0,1C .{}1,2D .{}0,1,27.函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .8.已知33a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .33y x =±B .3y x =±C .22y x =± D .2y x =± 10.已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()x g x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)11.已知x ,y R ∈,则“x y <”是“1x y <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件12.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.8二、填空题:本题共4小题,每小题5分,共20分。
黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。
湖南省长沙市中学雅培粹学校2025届七年级数学第一学期期末调研模拟试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.把10°36″用度表示为( )A .10.6°B .10.001°C .10.01°D .10.1°2.已知x ,y 都是整数,若x ,y 的积等于8,且x ﹣y 是负数,则|x+y|的值有( )个.A .1B .2C .3D .43.下列计算中,正确的是( )A .2x +3y =5xyB .-2x +3x =xC .x 2+x 2=2x 4D .3x 3-2x 2=x4.如图,点C 是AB 的中点,D 是AB 上的一点,3AB DB =,已知12AB =,则CD 的长是( )A .6B .4C .3D .25.为了解七年级1000名学生的体重情况,从中抽取了300名学生的体重进行统计.有下列判断:①这种调查方式是抽样调查;②1000名学生的体重是总体;③每名学生的体重是个体;④300名学生是总体的一个样本;⑤300是样本容量.其中正确的判断有( )A .1个B .2个C .3个D .4个6.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,⋯,则第8个图形中花盆的个数为( )A .90B .64C .72D .567.-4的绝对值是( )A .14-B .14C .4D .-48.下列图形由同样的棋子按一定的规律组成,图1有3颗棋子,图2有9颗棋子,图3有18颗棋子,.......,图8有棋子( )颗A .84B .108C .135D .1529.下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1C .方程2332t =,系数化为1得,t =1D .方程110.20.5x x --=,去分母得,5( x ﹣1)﹣2x =1 10.小明用x 元买美术用品,若全买彩笔,则可以买3盒;若全买彩纸,则可以买5包,已知一包彩纸比一盒彩笔便宜2元,则下列所列方程中,正确的是( )A .235xx B .235xx C .235xx D .235xx 二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,BO ⊥AO ,∠BOC 与∠BOA 的度数之比为1:5,那么∠AOC 的补角=_____度.12.学校、电影院、公园在平面上的位置分别标为、、A B C ,电影院在学校正东,公园在学校的南偏西40°方向,那么∠=CAB _____.13.黑板上写有1,12,16,112,…,19900共100个数字,每次操作先从黑板上的数中选取2个数a ,b ,然后删去a ,b ,并在黑板上写上数a +b +1,则经过_____次操作后,黑板上只剩下一个数,这个数是_____.14.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走_____步才能追到速度慢的人.15.比较大小:-2020____________-2021(填“>”,“<”或“=”).16.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =12(AC +AF ),②BE =12AF ,③BE =12(AF ﹣CD ),④BC =12(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).三、解下列各题(本大题共8小题,共72分)17.(8分)如图,OA 的方向是北偏东15︒,OB 的方向时北偏西40︒.(1)若AOC AOB ∠=∠,则OC 的方向是 ;(2)OD 是OB 的反方向延长线,OD 的方向是 ;(3)若90BOE ∠=︒,请用方位角表示OE 的方向是 ;(4)在(1)(2)(3)的条件下,则COE ∠= .18.(8分)(1)如图,点C ,D 在线段AB 上,点D 为线段BC 的中点,若3cm AC =,8cm BD =,求线段AB 的长.(2)如图,已知4COB AOC ∠=∠,OD 平分AOB ∠,且30COD ∠=,求AOB ∠ 的度数.19.(8分)先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-. 20.(8分)已知方程4234x m x +=+和方程4(1)152x x -+=-的解相同,求m 的值.21.(8分)同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x 与3的两点之间的距离可以表示为 . (2)如果|x ﹣3|=5,则x= .(3)同理|x+2|+|x ﹣1|表示数轴上有理数x 所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x ,使得|x+2|+|x ﹣1|=3,这样的整数是 .(4)由以上探索猜想对于任何有理数x ,|x+3|+|x ﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.22.(10分)某园林局有甲、乙、丙三个植树队,已知甲队植树()35a +棵,乙队植树的棵树比甲队植的棵数的2倍还多8棵,丙队植树的棵数比乙队植的棵数的一半少6棵。
山西省晋城市第一中学2024届高三下学期网上模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知21,0(),0x x f x x x ⎧-≥=⎨-<⎩,则21log 3f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .2 B .23 C .23- D .32.某几何体的三视图如图所示,则该几何体的体积为( )A .83π33B .4π1633C .33π3D .43π333.设m ∈R ,命题“存在0m >,使方程20x x m +-=有实根”的否定是( )A .任意0m >,使方程20x x m +-=无实根B .任意0m ≤,使方程20x x m +-=有实根C .存在0m >,使方程20x x m +-=无实根D .存在0m ≤,使方程20x x m +-=有实根4.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm )服从正态分布()280,5N ,则直径在(]75,90内的概率为( ) 附:若()2~,X Nμσ,则()0.6826P X μσμσ-<+=,()220.9544P X μσμσ-<+=. A .0.6826 B .0.8413C .0.8185D .0.9544 5.若复数z 满足(1)12i z i +=+,则||z =( )A .22B .32C .102D .12 6.已知集合{}2lgsin 9A x y x x ==+-,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .2,22⎛⎫ ⎪ ⎪⎝⎭ 7.己知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点,M N 分别在抛物线C 上,且30MF NF +=,直线MN交l 于点P ,NN l '⊥,垂足为N ',若MN P '∆的面积为243,则F 到l 的距离为( )A .12B .10C .8D .68.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥9.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列;②若直线l 上有两个不同的点到平面α的距离相等,则//l α;③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件;④若0,0,24a b a b >>+=,则ab 的最大值为2.A .1B .2C .3D .010.设()11i a bi +=+,其中a ,b 是实数,则2a bi +=( )A .1B .2C 3D 511.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( )A .2430x y --=B .2430x y +-=C .4230x y +-=D .2430x y -+= 12.一个正三角形的三个顶点都在双曲线221x ay +=的右支上,且其中一个顶点在双曲线的右顶点,则实数a 的取值范围是( )A .()3,+∞B .()3,+∞C .(),3-∞-D .(),3-∞-二、填空题:本题共4小题,每小题5分,共20分。
河北省邢台市第八中学2025届高考冲刺数学模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数3()1f x x ax =--,以下结论正确的个数为( ) ①当0a =时,函数()f x 的图象的对称中心为(0,1)-; ②当3a ≥时,函数()f x 在(–1,1)上为单调递减函数; ③若函数()f x 在(–1,1)上不单调,则0<<3a ; ④当12a =时,()f x 在[–4,5]上的最大值为1. A .1B .2C .3D .42.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±3.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .84.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫⎪⎝⎭C .932,2ln 2ln 5⎛⎤⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭5.在ABC 中,12BD DC =,则AD =( ) A .1344+AB AC B .21+33AB ACC .12+33AB ACD .1233AB AC -6.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60 C .80D .1007.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且8.M 、N 是曲线y=πsinx 与曲线y=πcosx 的两个不同的交点,则|MN|的最小值为( ) A .πB 2πC 3πD .2π9.设a ,b ,c 是非零向量.若1()2a cbc a b c ⋅=⋅=+⋅,则( ) A .()0a b c ⋅+=B .()0a b c ⋅-=C .()0a b c +⋅=D .()0a b c -⋅=10.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A .多1斤B .少1斤C .多13斤 D .少13斤 11.执行如图所示的程序框图,若输入ln10a =,lg b e =,则输出的值为( )A .0B .1C .2lg eD .2lg1012.设m ,n 为非零向量,则“存在正数λ,使得λ=m n ”是“0m n ⋅>”的( ) A .既不充分也不必要条件 B .必要不充分条件 C .充分必要条件D .充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定2.已知一个多边形的内角和是外角和的3倍,则这个多边形是( ) A .五边形B .六边形C .七边形D .八边形3.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( ) A .1201806x x=+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 4.已知反比例函数y=﹣6x,当1<x <3时,y 的取值范围是( ) A .0<y <1B .1<y <2C .﹣2<y <﹣1D .﹣6<y <﹣25.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >06.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a≤﹣3B .a <﹣3C .a >3D .a≥37.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元8.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .839.将直线y=﹣x+a 的图象向右平移2个单位后经过点A (3,3),则a 的值为( ) A .4 B .﹣4 C .2 D .﹣210.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°11.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 劳动时间(小时) 3 3.5 4 4.5 人 数1132A .中位数是4,众数是4B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.512.下列运算正确的是( ) A .a 3•a 2=a 6B .(a 2)3=a 5C .9 =3D .2+5=25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.14.已知x +y =8,xy =2,则x 2y +xy 2=_____.15.关于x 的方程kx 2﹣(2k+1)x+k+2=0有实数根,则k 的取值范围是_____. 16.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2kx +b 的解集是▲.17.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.18.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.20.(6分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.21.(6分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,A a .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.22.(8分)解方程(2x+1)2=3(2x+1) 23.(8分)如图,在直角三角形ABC 中,(1)过点A 作AB 的垂线与∠B 的平分线相交于点D (要求:尺规作图,保留作图痕迹,不写作法); (2)若∠A=30°,AB=2,则△ABD 的面积为 .24.(10分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
2024年北京市三帆中学中考模拟数学试题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 下列几何体的三视图之一是长方形的是( )A B. C. D.【答案】B【解析】【分析】分别写出各个立体图形的三视图,判断即可.【详解】解:A 、圆锥的主视图、左视图都是三角形,俯视图是圆形,故本选项不合题意;B 、圆柱的左视图和主视图是长方形,俯视图是圆,故本选项符合题意;C 、球体的主视图、左视图、俯视图都是圆形,故本选项不合题意;D 、三棱锥的三视图都不是长方形,故本选项不合题意.故选:B .【点睛】此题考查了简单几何体的三视图,熟练掌握简单几何体的三视图是解本题的关键.2. 某种新冠病毒的直径约为120纳米,已知1纳米=0.000001毫米,120纳米用科学记数法表示为( )A. 毫米B. 毫米C. 毫米D. 毫米【答案】A【解析】【分析】将其化为的形式,其中满足,为整数即可求解.【详解】120纳米=毫米=0.00012毫米=毫米,故选:A【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.3. 如图,直线,直线EF 分别与直线AB ,CD 交于点E ,F ,点G 在直线CD 上,GE ⊥EF .若.41.210-⨯51.210-⨯51210-⨯612010-⨯10n a ⨯a 110a ≤∣∣<n 120×0.00000141.210-⨯10n a ⨯110a ≤∣∣<n //AB CD,则∠2的大小为( )A. 145°B. 135°C. 125°D. 120°【答案】A【解析】【分析】根据,由两直线平行同位角相等可推导;根据GE ⊥EF ,可知;然后借助三角形外角的性质“三角形外角等于不相邻的两个内角和”,利用()计算∠2即可.【详解】解:∵,∴,∵GE ⊥EF ,∴,∴.故选:A .【点睛】本题主要考查了平行线的性质及三角形外角的定义和性质,解题关键是熟练掌握相关性质并灵活运用.4. 有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:A. 只有甲正确B. 只有甲、乙正确C. 只有甲、丙正确D. 只有丙正确【答案】C【解析】【分析】根据数轴上点的位置关系,可得、的大小,根据绝对值的意义,判断即可.【详解】解:由数轴上点的位置关系,得,.∴,故甲正确;,故乙错误;,故丙正确;155∠=︒//AB CD 1EFG =∠∠90FEG ∠=︒EFG FEG +∠∠//AB CD 155EFG ==︒∠∠90FEG ∠=︒25590145EFG FEG =+=︒+︒=︒∠∠∠b a -<0ab >b a a b-=-a b 0a b >>||||a b >b a -<0ab <()b a b a a b -=--=-故选:C .【点睛】本题考查了有理数的大小比较,利用数轴确定、的大小即与的大小是解题关键.5. 在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A. -3B. -2C. -1D. 1【答案】A【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a=-2-1=-3.【详解】解:∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.a b ||a ||b PQPQ【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B 选项正确;∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM= ,∴∠MCD=,又∠CMN=∠AON=∠COD ,∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7. 已知,,,,精确到的近似值是()A. B. C. D. 【答案】B【解析】的取值范围,再利用四舍五入找出近似值即可.13180-COD2︒∠180-COD ︒∠1223.512.25=23.612.96=23.713.69=23.814.44=0.13.5 3.6 3.7 3.8【详解】解:,,,,精确到的近似值是,故选B .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8. 下面三个问题中都有两个变量:①如图1,货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度y 与从车头进入隧道至车尾离开隧道的时间x ;②如图2,实线是王大爷从家出发匀速散步行走的路线(圆心O 表示王大爷家的位置),他离家的距离y 与散步的时间x ;③如图3,往空杯中匀速倒水,倒满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积y 与所用时间x其中,变量y 与x 之间的函数关系大致符合下图的是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】根据y 值随x 的变化情况,逐一判断.【详解】解:①当货车开始进入隧道时y 逐渐变大,当货车完全进入隧道,由于隧道长大于货车长,此时y 不变且最大,当货车开始离开隧道时y 逐渐变小.故①正确;②王大爷距离家先y 逐渐变大,他走的是一段弧线时,此时y不变且最大,之后逐渐离家越来越近直至回223.612.961313.69 3.7=<<=3.6 3.7∴<<23.612.9613=≈ 23.713.6914=≈0.1 3.6家,即y 逐渐变小,故②正确;③往空杯中匀速倒水,倒满后停止,水的体积逐渐增加,一段时间后,再匀速倒出杯中的水,这期间,水量先保持不变,然后逐渐减少,杯中水的体积y 与所用时间x ,变量y 与x 之间的函数关系符合图象,故③正确;故选:D .【点睛】本题主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则的取值范围是______.【答案】【解析】【分析】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式被开方数为非负数.据此即可解答.【详解】解:在实数范围内有意义,∴,解得:,故答案:.10. 因式分解:3a 2-12a +12=______.【答案】【解析】【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【详解】解:==故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11. 分式方程的解是______.【答案】【解析】为x 3x ≥-30x +≥3x ≥-3x ≥-()232a -231212a a -+()2344a a -+()232a -()232a -422x x=-2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:,解得:,检验:当时,,∴原方程解为.故答案为:【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.12. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】##【解析】【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =,∠FAB =180°-∠GAB =180°-60°=120°,的()224x x -=2x =-2x =-()20x x -≠2x =-2x =-43π43π360606︒=︒360606︒=︒∴,故答案为.【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.13. 如图,在中,,过点B 作,交于点D ,若,则的长度为_________.【答案】2【解析】【分析】过点B 作BE ⊥AC 于点E ,设DE=x ,然后通过直角三角形30°角的性质求得BD=2x ,CD=4x ,CE=3x ,再运用由等腰三角形的性质得到AE=CE ,列方程求解x ,即可求出CD 的长.【详解】解:如图,过点B 作BE ⊥AC 于点E ,设DE=x ,则AE=AD+DE=1+x .∵AB=BC ,∠ABC=120°,∴∠A=∠C=30°∵,∴∠DBC=90°∴∠EDB=60°,∠DBE=30°∴BD=2DE=2x ,DC=2DB=4x∴CE=DC-DE=3x∵AB=BC , BE ⊥AC ,∴AE=CE∴1+x=3x ,解得x=∴CD=4x=2.2120443603603FABn r S πππ⨯⨯===扇形43πABC ,120AB BC ABC =∠=︒BD BC ⊥AC 1AD =CD BD BC ⊥12【点睛】本题考查等腰三角形的性质和直角三角形30°所对的边等于斜边的一般,需要熟练运用考查的性质进行解题.14. 如图,在平面直角坐标系中,已知点,将关于直线对称,得到,则点C 的对应点的坐标为___________;再将向上平移一个单位长度,得到,则点的对应点的坐标为_________.【答案】①. ②. 【解析】【分析】根据对称点的性质可知,对应点的纵坐标与点C 的纵坐标相同,然后利用中点坐标公式计算出点C 的横坐标即可解决;点是由点向上平移一个单位长度得到,根据平移规律解决即可.【详解】解:根据对称的性质可知,点的纵坐标为2,设点的横坐标为m ,∵两点关于直线x=4对称∴,∴m=5,∴的坐标为(5,2)根据平移的规律可知,点是由点向上平移一个单位长度得到,故的横坐标不变为5,的纵坐标为:2+1=3.故点的坐标.xOy ()3,2C ABC 4x =111A B C △1C 111A B C △222A B C △1C 2C ()5,2()5,31C 2C 1C 1C 1C 3+m 42=1C 2C 1C 2C 2C 2C ()5,3故答案是:;【点睛】本题考查了对称的性质以及点的平移规律,解决本题的关键是正确理解题意,熟练掌握点的坐标平移规律和计算方法.15. 一组学生春游,预计共需要费用120元,后来又有2人参加进来,总费用不变,于是每人可少摊3元,若设原来这组学生人数为x ,那么可列方程为_____.【答案】【解析】【分析】理解题意找出题意中存在的等量关系,未增加人前每人摊的费用增加人后每人摊的费用,列出方程即可.【详解】解:解:设原来这组学生人数为x ,则原来每人摊的费用为,又有2人参加进来,此时每人摊的费用为,根据题意可列方程为,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键在于找出题中的等量关系.16. 如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在上,边AB 、AC 分别交于D 、E 两点﹐点B 是的中点,则∠ABE =__________.【答案】【解析】【分析】如图,连接 先证明再证明利用三角形的外角可得:再利用直角三角形中两锐角互余可得:再解方程可得答案.()5,2()5,312012032x x -=+-3=120x 1202x +12012032x x -=+12012032x x -=+O O CD13︒,DC ,BDC BCD ∠=∠,ABE ACD ∠=∠,BDC A ACD A ABE ∠=∠+∠=∠+∠()2902,BDC A ABE ∠=︒-∠+∠【详解】解:如图,连接是的中点,故答案为:【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.三、解答题(本大题共11小题,共63分)17. 计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.,DC B CD,,BDBC BDC BCD ∴=∠=∠ ,DEDE = ,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒ ()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒13.︒113tan 302|3-⎛⎫︒+ ⎪⎝⎭5-332-++5=-18. 解不等式组:.【答案】【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由,得:,由,得:此不等式解集为所有实数,不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 已知:如图,为锐角三角形,.求作:点P ,使得,且.作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点D (异于点C );③连接并延长交于点P .所以点P 就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接∵,∴点C 在上.又∵,()312,1122x x x x ⎧-<⎪⎨+-<⎪⎩3x <()312x x -<3x <1122x x +-<∴3x <ABC AB AC =AP AB =APC BAC ∠=∠AB BC A DA A PCAB AC =A DC DC =∴(________________________)(填推理的依据),由作图可知,,∴(________________________)(填推理的依据)________.∴.【答案】(1)见解析(2)同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.【解析】【分析】(1)根据题意画出图形即可;(2)利用圆周角定理解决问题即可.【小问1详解】解:图形如图所示:【小问2详解】证明:连接.,点在上.,(同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半),由作图可知,,∴(同弧或等弧所对的圆心角相等)..故答案为:同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.12DPC DAC =∠∠BD BC =DAB CAB ∠=∠12=∠APC BAC ∠=∠DAC PC AB AC = ∴C A DC DC =12DPC DAC ∴∠=∠BD BC =DAB CAB ∠=∠12DAC =∠APC BAC ∴∠=∠DAC【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 已知关于x 的一元二次方程.(1)不解方程,判断此方程根的情况;(2)若是该方程的一个根,求代数式的值.【答案】(1)见解析(2)【解析】【分析】(1)利用根的判别式判断即可.(2)将代入一元二次方程,整理得,再将变形为,代入求值即可.【小问1详解】解:∵,∴此一元二次方程有两个不相等的实数根;【小问2详解】解:将代入一元二次方程,整理得,即,∴.【点睛】本题考查一元二次方程根的判别式、一元二次方程的解,求代数式的值,牢记:当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程无实数根.21. 已知:如图,菱形,分别延长,到点F ,E ,使得,,连接,,,.-()22210x k x k k +-+-=2x =2265k k ---1-24b ac ∆=-2x =22210x kx k -+-=232k k +=-2265k k ---()2235k k -+-24b ac∆=-()()22214k k k =---2244144k k k k=-+-+10=>2x =()22210x k x k k +-+-=2320k k ++=232k k +=-()()222652352251k k k k ---=-+-=-⨯--=-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-ABCD AB CB BF BA =BE BC =AE EF FC CA(1)求证:四边形为矩形;(2)连接交于点O ,如果,,求的长.【答案】(1)证明见解析;(2)【解析】【分析】本题考查了矩形的性质与判定、菱形的性质、勾股定理等知识.根据菱形的判定和性质以及直角三角形的性质解答是关键.(1)根据菱形的性质以及矩形的判定证明即可;(2)连接,根据菱形的判定和性质以及直角三角形的性质解答即可.【小问1详解】证明:∵,,∴四边形为平行四边形,∵四边形为菱形,∴,∴,∴,即,∴四边形为矩形;【小问2详解】连接,,与交于点G ,由(1)可知,,且,∴四边形为平行四边形,AEFC DE AB DE AB ⊥4AB =DE ED =DB BF BA =BE BC =AEFC ABCD BA BC =BE BF =BA BF BC BE +=+AF EC =AEFC DB DE DE AB AD EB ∥AD EB =AEBD∵,∴四边形为菱形,∴,,,∵矩形中,,,∴,,∴在中,∴22. 在平面直角坐标系xOy 中,函数y=(x>0)的图象与直线y=x+1交于点A (2,m ).(1)求k 、m 的值;(2)已知点P (n ,0),过点P 作平行于 y 轴的直线,交直线y=x+1于点B ,交函数y=(x>0)的图象于点C .若y=(x>0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(不包括边界),记作图形G .横、纵坐标都是整数的点叫做整点.①当n=4时,直接写出图形G 的整点坐标;②若图形G 恰有2 个整点,直接写出n 的取值范围.【答案】(1)k =4,m =2;(2)①(3,2),②0<n <1或4<n ≤5.【解析】【分析】(1)将A 点代入直线解析式可求m ,再代入y =,可求k .(2)①根据题意先求B ,C 两点,可得图形G 的整点的横坐标的范围2<x <4,且x 为整数,所以x 取3.再代入可求整点的纵坐标的范围,即求出整点坐标.②根据图象可以直接判断2≤n <3.【详解】解:(1)∵点A (2,m )在y =x +1上,∴m =×2+1=2.∴A (2,2).∵点A (2,2)在函数y =的图象上,∴k =4.故答案为:k =4,m =2.(2)①当n =4时,B 、C 两点的坐标为B (4,3)、C (4,1).DE AB ⊥AEBD AE EB =2AB AG =2ED EG =AEFC EB AB =4AB =2AG =4AE =Rt AEG △EG =ED =k x 1212k x k xk x1212k x∵整点在图形G 的内部,∴2<x <4且x 为整数∴x =3∴将x =3代入y =x +1得y =2.5,将x =3代入y =得y =,∴<y <2.5,∵y 为整数,∴y =2,∴图形G 的整点坐标为(3,2).②当x =3时,<y <2.5,此时的整点有(3,2)共1个;当x =4时,1<y <3,此时的整点有(4,2)共1个;当x =5时,<y <3.5,此时的整点有(5,1),(5,2),(5,3)共3个;∵图形G 恰有2 个整点,∴4<n ≤5,当x =1时,1.5<y <4,此时的整点有(1,2),(1,3)共2个;∵图形G 恰有2 个整点,∴0<n <1,综上所述,n 的取值范围为:0<n <1或4<n ≤5.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23. 为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,分为良好,分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:124x 434343458089~6079~65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:,,,,)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81八年级82请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【解析】【分析】(1)根据题意可得七年级成绩位于的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100)x ≤≤m 167.979.5108.3m 82m =6070x ≤<(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【小问1详解】解:根据题意得:七年级成绩位于的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数;【小问2详解】解:根据题意得:八年级成绩良好的所占的百分比为∴八年级成绩优秀的所占的百分比为,∴八年级成绩达到优秀的学生有(人),七年级成绩达到优秀的学生有人,(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.【小问3详解】解:八年级获得参加挑战赛的机会的学生人数约为:(人),七年级获得参加挑战赛机会的学生人数约为:(人),∵,∴七年级获得参加挑战赛的机会的学生人数更多.的6070x ≤<8183822m +==72100%20%360︒⨯=︒120%45%5%30%---=30030%90⨯=53007520⨯=9075165+=()30020%30%150⨯+=1130016520⨯=150165<【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.24. 如图,在中,,,点是线段上的动点,将线段绕点 顺时针度转至,连接.已知,设为,为.小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)请利用直尺和量角器,在草稿纸上根据题意画出准确的图形,并确定自变量的取值范围是________;(2)通过取点、画图、测量,得到了与的几组值,如下表:则表中的值为__________;(3)建立平面直角坐标系,通过描点、连线,画出该函数的完整图象.(4)结合画出的函数图象,解决问题:① 线段长度的最小值为__________;② 当,,三点共线时,线段的长为__________.【答案】(1)(2)(3)函数图象见解析(4);【解析】【分析】(1)利用直尺和量角器,根据,,画出准确的图形,从而得到的长度,即可得到自变量的取值范围;ABC 90ABC ∠=︒40C ∠=︒D BC AD A 50︒AD 'BD '2cm AB =BD cm x BD 'cm y y x x x y /cm x 00.50.7 1.0 1.5 2.0/cm y 1.7 1.3 1.1m0.70.9m BD 'cm D B D ¢BD cm 0 2.5x <<0.90.70.990ABC ∠=︒40C ∠=︒2cm AB =BC x(2)根据表格内的数据在时,的值逐渐减小,在时,的值逐渐增大,可得该函数是以为对称轴的抛物线,则和为对称点,故两点的值相等,即可得到的值;(3)根据(2)中的数据描点,连线即可得到该函数的完整图象;(4)①结合(2)(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,结合表格中的数据可知,最小值为,即线段的最小值为.②当,,三点共线时,则在中,由于,可得到,即,由(3)中图象可得的值,即的长.【小问1详解】解:由题可得,利用直尺和量角器画出准确的图形如下:则用直尺量得,∵点是线段上的动点,为,∴自变量的取值范围为:,故答案为:.【小问2详解】解:由表格中的数据可得:在时,的值逐渐减小;在时,的值逐渐增大,∴该函数是以为对称轴的抛物线,∴和为对称点,∴当和时,值相等,∴当时,,即.【小问3详解】解:由(2)表格中的数据可得到该函数的完整图象如下:【小问4详解】解:①结合(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,0 1.5x <≤y 1.52x ≤<y 1.5x = 1.0x = 2.0x =y m 1.5x =y 0.7BD '0.7cm D B D ¢ADD ' AD AD ='AB DD '⊥BD BD '=x y =x BD 2.5cm BC =D BC BD cm x x 0 2.5x <<0 2.5x <<0 1.5x <≤y 1.52x ≤<y 1.5x =1.0x = 2.0x =1.0x = 2.0x =y 1.0x =0.9y =0.9m = 1.5x =结合(2)中表格的数据可知,最小值为,∴线段的最小值为.②如图所示:当,,三点共线时,∵,∴为等腰三角形,∵,∴,即,由(2)得,∴.【点睛】本题考查函数图象实际应用问题,能根据数据画出函数图象是解题的关键.25. 某校为了更好地开展阳光体育二小时活动,对本校学生进行了“写出你最喜欢的体育活动项目”(只写一项)的随机抽样调查,如图是根据得到的相关数据绘制的统计图的一部分.请根据以上信息解答下列问题:(1)该校对 名学生进行了抽样调查;(2)通过计算请将图1和图2补充完整;(3)图2中跳绳所在的扇形对应的圆心角的度数是 ;(4)若该校共有2400名同学,请利用样本数据估计全校学生中最喜欢跳绳运动的人数约为多少?【答案】(1)200;(2)补全图形见解析;(3)144°;(4)估计全校学生中最喜欢跳绳运动的人数约为960人.【解析】的y 0.7BD '0.7cm D B D ¢AD AD ='ADD ' AB DD '⊥BD BD '=x y =0.9x y ==0.9BD =【分析】(1)由最喜欢跳绳运动的人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得最喜欢投篮运动的人数,再除以总人数可得其对应百分比,从而补全图1和图2;(3)用360°乘以最喜欢跳绳运动的人数所占百分比可得跳绳所在的扇形圆心角的度数;(4)总人数乘以样本中最喜欢跳绳运动的人数所占百分比即可得.【详解】(1)被调查的学生总人数为80÷40%=200(人),故答案为:200;(2)最喜欢投篮运动的人数为200﹣(40+80+20)=60(人),最喜欢投篮运动的人数所占百分比为×100%=30%, 补全图形如下:(3)图2中跳绳所在的扇形对应的圆心角的度数是为360°×40%=144°.故答案为144°;(4)2400×40%=960(人).答:估计全校学生中最喜欢跳绳运动的人数约为960人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.26. 二次函数(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.【答案】(1)开口向下,对称轴为直线,顶点为;(2)不在函数图象上,理由详见解析;(3) 12.602002642y x x =--()3, 4-=1x -(1,8)-【解析】【分析】(1)先把抛物线解析式配成顶点式得到,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将代入函数解析式求出对应的y 即可判断;(3)确定抛物线与轴的交点坐标为,然后根据三角形面积公式求解.【详解】解:(1)解:(1),抛物线开口向下;,抛物线对称轴方程为,顶点坐标;开口向下,对称轴为直线,顶点为;(2)不在函数图象上.理由:当时,所以点不在函数图象上.(3)令,得,解得,,所以抛物线与轴的交点坐标为,,当x =0时,y =6.抛物线与轴交于点,.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线;对称轴为直线;抛物线与轴的交点坐标为.27. 在中,,,是边上一点,点与关于直线对称,过点作交于,交于.22(1)8y x =-++3x =y (0,6)226422(1)8y x x x =--=-++ 20a =-< ∴22(1)8y x =-++ ∴=1x -(1,8)-=1x -1,8-()3x =29436244y =-⨯-⨯+=-≠-4-(3,)0y =26420x x --=13x =-21x =x (3,0)-(1,0)y 0,6A ()()1136122ABC S ∆=⨯+⨯=2(0)y ax bx c a =++≠2b x a=-y (0,)c ABC 90BAC ∠=︒AB AC =D AB D E AC E EF CD ⊥CD G BC F(1)补全图形;(2)探究线段和的数量关系,并证明;(3)直接写出线段的的数量关系______.【答案】(1)见详解(2),证明见详解 (3)【解析】【分析】(1)先根据点对称的性质作出点E ,再根据垂直平分线的性质作,通过尺规作图过点E 作即可;(2)先通过直角三角形的性质证明,再根据等腰直角三角形的性质和三角形外角的性质证明,从而,最终证得;(3)过点F 作,垂足为P ,先证明得到,再根据是等腰直角三角形得到,从而得到答案.【小问1详解】延长,以点A 为圆心,以为半径画圆弧交延长线于点E ,以点E 为圆心作圆弧,和分别相交于点M 、点N ,再分别以点M 、点N为圆心,大于为半径画圆弧,相交于点Q ,连接,分别于、相交于点G 和点F ;图形补全如下: 【小问2详解】解:,证明如下,如下图所示,连接,交于点O ,CD EF BF DE CD EF =BF DE =EF CD ⊥AEO ACE ∠=∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥()PEF ACD ASA ≌12PF DA DE ==BPF △BF =DA DA DA CD 2MN EQ CD BC CD EF =EC AC EF∵点与关于直线对称,∴是的垂直平分线,∴,,∴,∵,∴,∵,∴,∴,∵,,∴,∴,,∴,∴,∴;【小问3详解】解:如下图所示,过点F 作,垂足为P ,∵,D E AC AC DE DC EC ==90EAC ∠︒DCA ACE∠=∠90EOA AEO ∠+∠=︒EF CD ⊥90GOC GCO ∠+∠=︒GOC AOE ∠=∠OEA GCO ∠=∠AEO ACE ∠=∠90BAC ∠=︒AB AC =45B BCA ∠=∠=︒45EFC B BEF AEO ∠=∠+∠=︒+∠45FCE BCA ACE AEO ∠=∠+∠=︒+∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥90EPF CAD CD EF PEF DAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴,∴,∵,∴,∴,∵,∴,∵,∴.【点睛】本题考查垂直平分线的性质、等腰直角三角形的性质、等腰三角形的性质和全等三角形的性质,解题的关键是添加正确的辅助线构造出等腰三角形.28. 平面直角坐标系中,点和图形,若上存在点与点对应,则称是图形的“呼应点”.(1)点的“呼应点”的坐标为_______;(2)是否存在点是直线的“呼应点”,若存在,求的值;若不存在,说明理由;(3)直线上存在以为半径的的“呼应点”,直接写出的取值范围______.【答案】(1)(2)存在, (3)【解析】【分析】(1)根据“呼应点”的含义即可完成;(2)由题意可得P 的“呼应点”,把此点坐标代入直线中,即可求得t 的值;(3)设是上的“呼应点”,点N 是直线上点M 的对应点,则可得,从()PEF ACD ASA ≌12PF DA DE ==45B ∠=︒90BPF ∠=︒45B BFP ∠=∠=︒BP PF =222BF BP PF =+BF =12PF DE =BF =xoy (),M a b W W (),N b a --M M W )1Q -(),P t t 3y =+t 2y mx =-()0,4T T e m (1,t =117m -≤≤-3y =+(),M a b T e 2y mx =-(,)N b a --。
2022学年福建省厦门市第十一中学中考数学模拟测试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知AB ∥CD ,∠1=115°,∠2=65°,则∠C 等于( )A .40°B .45°C .50°D .60°2.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .213 3.3的倒数是( )A .3B .3-C .13D .13- 4.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时5.如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是( )A .235∠=B .245∠=C .255∠=D .2125∠=6.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个7.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,58.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟9.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B .C .D .10.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=-B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 二、填空题(共7小题,每小题3分,满分21分)11.若顺次连接四边形ABCD 四边中点所得的四边形是矩形,则原四边形的对角线AC 、BD 所满足的条件是_____.12.分解因式:2a 4﹣4a 2+2=_____.13.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.14.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A ,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P ,以MP 为对角线作矩形MNPQ ,连结NQ ,则对角线NQ 的最大值为_________.15.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.16.如图,和是分别沿着AB ,AC 边翻折形成的,若,则的度数是______度17.矩形ABCD 中,AB=8,AD=6,E 为BC 边上一点,将△ABE 沿着AE 翻折,点B 落在点F 处,当△EFC 为直角三角形时BE=_____.三、解答题(共7小题,满分69分)18.(10分)如图,Rt △ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC .(1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.19.(5分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.20.(8分)先化简分式: (a -3+4+3a a )÷-2+3a a ∙+3+2a a ,再从-3、5-3、2、-2 中选一个你喜欢的数作为a 的值代入求值.21.(10分)如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).请画出△ABC 关于y 轴对称的△A 1B 1C 1;以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.22.(10分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB =4,BC =8,求图中阴影部分的面积.23.(12分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?24.(14分)如图,AC ⊥BD ,DE 交AC 于E ,AB =DE ,∠A =∠D .求证:AC =AE+BC .2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】分析:根据两直线平行,同位角相等可得1115EGD ∠=∠=︒,再根据三角形内角与外角的性质可得∠C 的度数. 详解:∵AB ∥CD ,∴1115EGD ∠=∠=︒,∵265∠=,∴1156550C ∠=-=,故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.2、D【答案解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1.设⊙O 的半径为r ,则OC=r -2,在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=-=-=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=.故选D.3、C【答案解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.4、C【答案解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】1010×360×24=3.636×106立方米/时,故选C.【答案点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【答案解析】测试卷解析:A 、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;B 、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;C 、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB ∥CD ,故本选项正确;D 、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;故选C .6、D【答案解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.7、D【答案解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【题目详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D.8、C【答案解析】根据题目数据求出函数解析式,根据二次函数的性质可得.【题目详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【答案点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.9、C【答案解析】的大小,进而在数轴上找到相应的位置,即可得到答案.详解:49 911,4 <<由被开方数越大算术平方根越大,<<即73,2<<故选C.的大小.10、D【答案解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.二、填空题(共7小题,每小题3分,满分21分)11、AC⊥BD【答案解析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【题目详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【答案点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.12、1(a+1)1(a﹣1)1.【答案解析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=1(a 4﹣1a 1+1)=1(a 1﹣1)1=1(a +1)1(a ﹣1)1,故答案为:1(a +1)1(a ﹣1)1【答案点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.13、a≤1且a≠0【答案解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩ ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.14、4【答案解析】∵四边形MNPQ 是矩形,∴NQ=MP ,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P , ∴当点M 是抛物线的顶点时,MP 的值最大.∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4),∴当点M 的坐标为(2,4)时,MP 最大=4,∴对角线NQ 的最大值为4.15、【答案解析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】列表得:第一次黑白白第二次黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故答案为:.【答案点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.16、60【答案解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.17、3或1【答案解析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【题目详解】当△CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=8,∴AC=22AB BC=10,∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,设BE=x,则EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点F落在AD边上时,如图2所示.此时ABEF为正方形,∴BE=AB=1.综上所述,BE的长为3或1.故答案为3或1.【答案点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.三、解答题(共7小题,满分69分)18、(1)见解析2【答案解析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【题目详解】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=12 AC,∴平行四边形DBEC是菱形;(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=12S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB=22AC BC-= 2262-= 42.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=12AB•BC=12×42×1=42.点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBE C=S△ABC是解(1)的关键.19、(1)364y x=-+;(2)86b-≤≤;(3)12k>-【答案解析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.【题目详解】解:(1)8 , 6OA OC ==()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩∴直线AC 表达式为364y x =-+;(2)直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-. 当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3)10y kx =+,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =-∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【答案点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中. 20、3a + ;5 【答案解析】原式=((3)3a a a ++-3+4+3a a )32a a +⋅-∙+3+2a a =(3)343a a a a +--+32a a +⋅-∙+3+2a a=243a a -+32a a +⋅-∙+3+2a a =3a + a=2,原式=521、(1)见解析;(2)图见解析;14. 【答案解析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可.(2)连接A 1O 并延长至A 2,使A 2O=2A 1O ,连接B 1O 并延长至B 2,使B 2O=2B 1O ,连接C 1O 并延长至C 2,使C 2O=2C 1O ,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答. 【题目详解】解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 2如图所示.∵△A 1B 1C 1放大为原来的2倍得到△A 2B 2C 2,∴△A 1B 1C 1∽△A 2B 2C 2,且相似比为12. ∴S △A1B1C1:S △A2B2C2=(12)2=14.22、(1)证明见解析;(2)1. 【答案解析】测试卷分析:(1)根据矩形的性质得到AB =CD ,∠B =∠D =90°,根据折叠的性质得到∠E =∠B ,AB =AE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF =CF ,EF =DF ,根据勾股定理得到DF =3,根据三角形的面积公式即可得到结论. 测试卷解析:(1)∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°,∵将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴∠E =∠B ,AB =AE ,∴AE =CD ,∠E =∠D ,在△AEF 与△CDF 中,∵∠E =∠D ,∠AFE =∠CFD ,AE =CD ,∴△AEF ≌△CDF ;(2)∵AB =4,BC =8,∴CE =AD =8,AE =CD =AB =4,∵△AEF ≌△CDF ,∴AF =CF ,EF =DF ,∴DF 2+CD 2=CF 2,即DF 2+42=(8﹣DF )2,∴DF =3,∴EF =3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =12×4×8﹣12×4×3=1. 点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.23、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分. 【答案解析】测试卷分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值. 测试卷解析:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,依题意得:185{80%20%91x y x y +=+=,解之得:90{95x y ==.答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.答:他的测试成绩应该至少为1分.考点:一元一次不等式的应用;二元一次方程组的应用.24、见解析.【答案解析】由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.【题目详解】证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC【答案点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.。
初中数学优秀试题研究论文试题提供者:李林华(广州市越秀区广州市铁二中学)1.解题的主要策略和方法:试题是一道几何与函数的综合题,突出对数形结合、函数思想的应用和考查。
试题让学生在运动中探究问题的本质,发现变量之间互相依存的函数关系,改变了中学数学原来的“静止”状态,把“运动”的观点与思想渗透到传统的数学知识内容之中,培养学生的数学能力。
试题第(1)问运用三角形全等的判定与性质、直角三角形两锐角互余等几何知识给予解答;第(2)问根据图形的面积关系,运用勾股定理列出函数关系式,然后用配方法求最值;第(3)问已知函数值S ,求对应的自变量t 的值。
2.试题的知识载体:试题主要考查了正方形、全等三角形、二次函数及一元二次方程等基础知识,考查演绎推理能力和数形结合的数学思想。
3.试题的原型:(2006年佛山市课改实验区中考试题)已知:在四边形ABCD 中,AB=1,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AE=BF=CG=DH . 设四边形EFGH 的面积为S ,AE=x (0≤x ≤1).(1) 如图1,当四边形ABCD 为正方形时,① 求S 关于x 的函数解析式,并求S 的最小值S 0;② 在图2中画出①中函数的草图,并估计S=0.6时x 的近似值(精确到0.01);(2) 如图3,当四边形ABCD 为菱形,且∠A= 30时,四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.4.编制的试题:如图,在边长为4cm 的正方形ABCD 中,点E F G H ,,,分别按A B →, B C →,C D →,D A →的方向同时出发,以1cm/s 的速度匀速运动.在运动过程中,设四边形EFGH 的面积为2(cm )S ,运动时间为(s)t .(1)试证明四边形EFGH 是正方形;(2)写出S 关于t 的函数关系式,并求运动几秒钟时,面积最小?最小值是多少?图1 A C H 图3 A B D E F G H(3)是否存在某一时刻t ,使四边形EFGH 的面积与正方形ABCD 的面积比是5:8?若存在,求出t 的值;若不存在,请说明理由。
2022学年潜江市重点中学中考数学全真模拟测试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在测试卷卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.﹣0.2的相反数是( )A .0.2B .±0.2C .﹣0.2D .22.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)23.如图,将函数21(3)12y x =++的图象沿y 轴向上平移得到一条新函数的图象,其中点A (-4,m ),B (-1,n ),平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A . 21(3)22y x =+- B . 21(3)72y x =++ C . 21325y x =+-() D . 21342y x =++() 4.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .145.下列计算结果等于0的是( )A .11-+B .11--C .11-⨯D .11-÷6.一元二次方程x 2﹣2x =0的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣2 7.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数A.B.C.D.8.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或239.下列命题是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形10.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.化简11x-÷211x-=_____.12.函数1xy+=x的取值范围是.13.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则AD BC=14.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).15.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为______.16.计算:a 3÷(﹣a )2=_____.17.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.三、解答题(共7小题,满分69分)18.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?19.(5分)如图,在平行四边形ABCD 中,BD 是对角线,∠ADB=90°,E 、F 分别为边AB 、CD 的中点. (1)求证:四边形DEBF 是菱形;(2)若BE=4,∠DEB=120°,点M 为BF 的中点,当点P 在BD 边上运动时,则PF+PM 的最小值为 ,并在图上标出此时点P 的位置.20.(8分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.21.(10分)综合与探究:如图1,抛物线y=﹣33x2+233x+3与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣3).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.(10分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23.(12分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43时,求QD的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.24.(14分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【答案解析】根据相反数的定义进行解答即可.【题目详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【答案点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.2、C【答案解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.3、D【答案解析】分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),∴AC=-1-(-1)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACD A′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=12(x-2)2+1+3=12(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.4、B【答案解析】测试卷分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.5、A【答案解析】各项计算得到结果,即可作出判断.【题目详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A.【答案点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.6、C【答案解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【题目详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,【答案点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7、D【答案解析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【题目详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【答案点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.8、C【答案解析】过B 作直径,连接AC 交AO 于E ,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD 、OE 、DE 的长,连接OD ,根据勾股定理得到结论.【题目详解】过B 作直径,连接AC 交AO 于E ,∵点B 为AC 的中点,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【答案点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.9、D【答案解析】根据真假命题的定义及有关性质逐项判断即可.【题目详解】A 、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B 、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C 、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D 、∵a 2+b 2+c 2=ac +bc +ab ,∴2a 2+2b 2+2c 2-2ac -2bc -2ab =0,∴(a -b )2+(a -c )2+(b -c )2=0,∴a =b =c ,故本选项正确. 故选D.【答案点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.10、A【答案解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【题目详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【答案点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、x+1【答案解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x -÷1(1)(1)x x +- =11x -•(x+1)(x ﹣1) =x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.12、x 1≥-且x 2≠.【答案解析】测试卷分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使12x x +-在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠. 考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.13、62【答案解析】连接AC,过点C 作CE ⊥AB 的延长线于点E,,如图,先在Rt △BEC 中根据含30度的直角三角形三边的关系计算出BC 、CE ,判断△AEC 为等腰直角三角形,所以∠BAC=45°,AC=6x ,利用AD AC BC BC =即可求解. 【题目详解】连接AC,过点C 作CE ⊥AB 的延长线于点E,∵∠ABC=2∠D=120°, ∴∠D=60°, ∵AD =CD, ∴△ADC 是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°, ∴∠ACB=∠DCB-∠DCA=75°-60°=15°, ∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°, ∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=223BE CE x +=,在RT △AEC 中,AC=()222236BE CE x x +==,∴6622AD AC x BC BC x ===,故答案为62.【答案点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键.14、1.【答案解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.15、10 5000300034000 x yx y+=⎧⎨+=⎩【答案解析】测试卷解析:根据题意得:10 5000300034000. x yx y+=⎧⎨+=⎩故答案为10 5000300034000. x yx y+=⎧⎨+=⎩16、a【答案解析】利用整式的除法运算即可得出答案.【题目详解】原式,.【答案点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.17、8【答案解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【题目详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·2AB CE=8,故答案为8.【答案点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.三、解答题(共7小题,满分69分)18、这项工程的规定时间是83天【答案解析】依据题意列分式方程即可.【题目详解】设这项工程的规定时间为x天,根据题意得.解得x=83.检验:当x=83时,3x≠0.所以x=83是原分式方程的解.答:这项工程的规定时间是83天.【答案点睛】正确理解题意是解题的关键,注意检验.19、(1)详见解析;(2)23【答案解析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.【题目详解】(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=12AB=AE=BE.同理,BF=DF.∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)连接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4×32=23.即PF+PM的最小值是23.故答案为:23.【答案点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.20、(1)见解析;(2)见解析;(3)见解析,5CE .【答案解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【题目详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【答案点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.21、(1)A(﹣1,0),B(3,0),y=3x3;(2)①A′(32t﹣13t);②A′BEF为菱形,见解析;(3)存在,P点坐标为(5343)或(7323.【答案解析】(1)通过解方程﹣33x 2+233x+3=0得A (−1,0),B (3,0),然后利用待定系数法确定直线l 的解析式; (2)①作A′H ⊥x 轴于H ,如图2,利用OA =1,OD =3得到∠OAD =60°,再利用平移和对称的性质得到EA =EA′=t ,∠A′EF =∠AEF =60°,然后根据含30度的直角三角形三边的关系表示出A′H ,EH 即可得到A′的坐标; ②把A′(32t−1,32t )代入y =−33x 2+233x +3得−33(32t−1)2+233(32t−1)+3=32t ,解方程得到t =2,此时A′点的坐标为(2,3),E (1,0),然后通过计算得到AF =BE =2,A′F ∥BE ,从而判断四边形A′BEF为平行四边形,然后加上EF =BE 可判定四边形A′BEF 为菱形;(3)讨论:当A′B ⊥BE 时,四边形A′BEP 为矩形,利用点A′和点B 的横坐标相同得到32t−1=3,解方程求出t 得到A′(3,433),再利用矩形的性质可写出对应的P 点坐标;当A′B ⊥EA′,如图4,四边形A′BPE 为矩形,作A′Q ⊥x 轴于Q ,先确定此时A′点的坐标,然后利用点的平移确定对应P 点坐标.【题目详解】(1)当y=0时,﹣33x 2+233x+3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 设直线l 的解析式为y=kx+b ,把A (﹣1,0),D (0,﹣3)代入得0{3k b b -+==-,解得3{3k b =-=-, ∴直线l 的解析式为y=﹣3x ﹣3;(2)①作A′H ⊥x 轴于H ,如图,∵OA=1,3,∴∠OAD=60°,∵EF ∥AD ,∴∠AEF=60°,∵点A 关于直线l的对称点为A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=12EA′=12t,A′H=3EH=32t,∴OH=OE+EH=t﹣1+12t=32t﹣1,∴A′(32t﹣1,32t);②把A′(32t﹣1,32t)代入y=﹣33x2+233x+3得﹣33(32t﹣1)2+233(32t﹣1)+3=32t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2;此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,3),E(1,0),∵∠OEF=60°∴OF=3OE=3,EF=2OE=2,∴F(0,3),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则32t﹣1=3,解得t=83,则A′(343),∵OE=t﹣1=53,∴此时P点坐标为(53,433);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴33•32t=32t,∴32t﹣1+32t=3,解得t=43,此时A′(123,E(13,0),点A′向左平移23个单位,向下平移33个单位得到点E,则点B(3,0)向左平移23个单位,向下平移33个单位得到点P,则P(7323,综上所述,满足条件的P点坐标为(5343)或(7323.【答案点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.22、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【答案解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23、(1)详见解析;(2)143 ;(3)4<OC<1. 【答案解析】(1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt △APO ≌Rt △BQO ,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ ,从而可得P 、O 、Q 三点共线,在Rt △BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【题目详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=QB OB == ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【答案点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.24、见解析【答案解析】先连接AC ,根据菱形性质证明△EAC ≌△FCA,然后结合中垂线的性质即可证明点G 在BD 上.【题目详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA, ∴△EAC≌△FCA,∴∠ECA=∠FAC, ∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【答案点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.。
中学数学解题方法研究模拟试题
一、填空题:(每题4分,共28分)
1.递推方法是根据具体问题,首先关系,再通过递推关系进行求解,从而解决这一具体问题的方法。
2.三角代换可以沟通数学学科的联系,在解题过程中要善于捕捉这方面的素材,引入适当的三角变换,可以扩展解题视野,拓宽解题思路。
3.对于任意两个实数a、b,总存在实数t,使,我们称t为增量,这种代换称为增量代换。
4.利用数学模型法解答实际问题(包括数学应用题),一般要做好三方面的工作:(1)建模;(2)推理、演算;(3)。
5. 分析解题包括两方面的内容:一是;二是对题解进行深入地思考。
6. 的主要表现形式是:综合与单一间的分合;整体与部分间的分合;无限与有限间的分合等。
在解数学问题时,分合并用策略的主要体现为拼凑、拆与并、割与补等。
7.中学数学中,包含两个方面的内容:一是运用代数、三角知识,通过对数量关系的讨论,去处理几何图形问题;二是运用
中学数学解题方法模拟试题
中学数学解题方法模拟试题
几何知识,通过对图形性质的研究,去解决数量关系的问题。
二、单选题:在下列各题的备选答案中选择一个正确的。
(每题4分,共12分)
8.函数)2(log )(22x x x f +=的单调递减区间是( )
A. ),0[+∞;
B. ),2(+∞-;
C.),0(+∞;
D. )2,(--∞
9.等差数列{}{}n n b a ,的前n 项和分别为n n T S 和,若
132+=n n T S n n ,则n n n b a ∞→lim 等于( )
A. 1
B.36
C. 32
D. 9
4 10.已知函数()2sin (0)f x x ωω=>在区间34ππ⎡⎤-⎢⎥⎣⎦
,上的最小值是2-,则ω的最小值等于( ) A.23 B.32
C.2 D.3
三、解答题(每题15分,共45分)
11.已知函数R m m x m x x f ∈++-=,)1()(2。
若tan A ,tan B 是方程04)(=+x f 的两个实根,A 、B 是锐角三角形ABC 的两个内角,求m 的取值范围。
中学数学解题方法模拟试题 12. 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 13. B A C C A ABC sin 232cos sin 2cos sin 22=+∆中,已知在,且 B C A sin 2sin sin =+,C C A A cos 5cos cos 4cos 5+-计算.
四、 证明题, (15分).
14.用分析法证明不等式: 4321---<---x x x x ,(x ≥4)。