2020年(工艺技术)万吨天城市生活污水处理厂AO工艺毕业设计毕业设计说明书
- 格式:doc
- 大小:492.69 KB
- 文档页数:87
污水处理厂计算说明书(毕业设计)摘要本设计是关于A市污水处理厂的设计。
根据毕业设计的原始资料及设计要求对出水水质的要求:即要求脱氮除磷,出水达到一级排放标准,确定A2/O和三沟式氧化沟两大污水处理工艺进行工艺设计和经济技术比较。
一级处理中,进厂原水首先进入中格栅,用以去除大块污染物,以免其对后续处理单元或工艺管线造成损害。
本设计设置中格栅,中格栅后有污水提升泵提升污水进入细格栅。
然后进入平流式沉砂池,用以去除密度较大的无机砂粒,提高污泥有机组分的含率。
以上的污水处理为物理处理阶段,对A2/O和三沟式氧化沟两大工艺是相同的。
下面分别对这两大工艺的生物处理部分进行简要介绍。
三沟式氧化沟设计为厌氧池与氧化沟分建。
氧化沟三沟交替进水,且兼具二沉池的作用。
厌氧池释放磷。
随着曝气器距离的增加,氧化沟内溶解氧浓度不断降低,呈现缺氧区好氧区的交替变化,即相继出现硝化和反硝化的过程,达到脱氮的效果。
同时好氧区吸收磷,达到除磷的效果。
A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池是多功能的,能够去除BOD、硝化和吸收磷。
通过投资概算,运行费用的计算,经济比较及技术比较等最终确定氧化沟工艺为最佳方案。
剩余污泥则经污泥提升泵提升至重力浓缩池。
以降低污泥的含水率,减小污泥体积。
泥经浓缩后,含水率尚还大,体积仍很大。
为了综合利用和最终处置,需对污泥进行干化和脱水处理。
在完成污水和污泥处理构筑物的设计计算后,根据平面布置的原则,综合考虑各方面因素进行了污水厂的平面布置。
据污水的流量对连接各构筑物的管渠进行了选径、确定流速以及水力坡降,然后进行了水力损失计算。
据水力损失计算对污水和污泥高程进行了计算和布置。
在最后阶段完成了对平面图、高程图及各种主要的构筑物的绘制。
为了使工作人员能在清新美丽的环境中工作,我们布置了占总厂面积30%的绿化,还设有喷泉花坛和人工湖。
城市污水处理厂工艺设计毕业设计随着城市的快速发展和人口的不断增长,城市污水的排放量也日益增加。
城市污水处理厂作为城市基础设施的重要组成部分,对于保护水资源、改善环境质量具有至关重要的作用。
本次毕业设计旨在设计一座高效、经济、环保的城市污水处理厂,以满足城市发展的需求。
一、设计任务和要求本次设计的城市污水处理厂处理规模为_____吨/日,进水水质主要指标为:化学需氧量(COD)_____mg/L,生化需氧量(BOD₅)_____mg/L,悬浮物(SS)_____mg/L,氨氮(NH₃N)_____mg/L,总磷(TP)_____mg/L 等。
出水水质需达到国家《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级 A 标准,即COD≤50mg/L,BOD₅≤10mg/L,SS≤10mg/L,NH₃N≤5(8)mg/L,TP≤05mg/L。
二、污水处理厂选址污水处理厂的选址应综合考虑多方面因素,如地形、地质、水文、气象、周边环境、排水去向等。
选址应遵循以下原则:1、位于城市下游,便于污水自流进入处理厂,并能保证处理后的出水顺利排放。
2、有良好的工程地质条件,避免在地质灾害多发区建设。
3、少占农田,尽量利用荒地和劣地。
4、与周边环境协调,减少对周边居民生活和生态环境的影响。
经过综合比选,本次设计的污水处理厂选址在城市的_____方向,占地面积为_____平方米。
三、工艺流程选择目前,常见的城市污水处理工艺有活性污泥法、生物膜法、氧化沟法等。
结合进水水质特点和处理要求,本设计选用改良型 A²/O 工艺。
该工艺具有脱氮除磷效果好、运行稳定、管理方便等优点。
工艺流程简述如下:污水首先经过格栅去除较大的悬浮物和漂浮物,然后进入沉砂池去除砂粒。
经过预处理后的污水进入厌氧池,与回流的污泥混合,进行磷的释放。
接着进入缺氧池,进行反硝化反应,去除氮。
然后进入好氧池,进行有机物的降解、硝化反应和磷的吸收。
万吨天城市生活污水处理厂工艺毕业设计说明书1. 引言生活污水处理是现代城市建设中的重要环保工作之一。
随着城市化进程的不断加快,城市生活污水的排放量也不断增加,给环境带来严重污染和健康隐患。
本文档将对万吨天城市生活污水处理厂的工艺进行毕业设计说明,旨在设计出一个高效、经济、可持续的生活污水处理工艺方案。
2. 目标与要求设计一个万吨天城市生活污水处理厂的工艺,要求满足以下目标和要求:1.处理能力:按照设计要求,达到每天处理万吨的城市生活污水。
2.出水标准:出水达到国家、地方和环保部门规定的合格标准,保证排放水质稳定。
3.设备选型:选择适用于大规模城市生活污水处理厂的成熟、可靠的设备。
4.工艺效益:考虑投资、运行成本,力求经济、高效、节能的工艺方案。
5.后处理:设计适当的处理方案,对剩余污泥、氨氮、废气等进行处理。
3. 工艺选择与设计根据前期调研和分析,本设计方案的工艺选择如下:1.预处理:采用格栅除污器、砂沉池和调节池等工艺进行初步固液分离和调节水质。
2.活性污泥法:采用常温常压下的活性污泥法进行生物处理。
3.二沉池:采用二沉池对污水进行二次固液分离,将活性污泥与水体分离。
4.除磷除氮工艺:引入除磷和除氮工艺,提高出水水质达标率。
5.深度处理:通过混凝、沉淀和过滤等工艺进一步提高水质,确保出水水质稳定。
6.污泥处理:污泥采取浓缩、脱水、干化等处理手段,减少污泥体积,提高处理效率。
4. 设备选型与优化根据设计要求和选用工艺,对各个处理单元进行设备选型和优化。
主要设备包括:1.格栅除污器:选择适合处理大规模污水的自动化格栅除污器,提高初次固液分离效果。
2.活性污泥池:选择适宜的活性污泥曝气设备和搅拌器,保证微生物的正常生长。
3.二沉池:选用结构简单、操作稳定的二沉池设备,实现二次固液分离。
4.混凝剂添加系统:根据实际情况,选择合适的混凝剂添加系统,提高混凝效果。
5.过滤器:选用高效过滤器,去除微小颗粒物和胶体颗粒,提高水质处理效果。
15万吨天城市生活污水处理厂AO工艺毕业设计毕业设计说明书secret2第 1 章 概述1.1 基本设计资料毕业设计名称某市15万吨/天城市生活污水处理厂初步设计 基本资料: 1.设计规模污水设计流量:315/Q m =万天,流量变化系数: 1.2Z K =2.原污水水质指标BOD=180mg/L COD=410mg/L SS=200mg/L NH3-N=30mg/L 3.出水水质指标符合《城镇污水处理厂污染物排放国家二级标准》BOD=20mg/L COD=70mg/L SS=30mg/L NH3-N=15mg/L 4.气象资料某地处海河流域下游,河网密布,洼淀众多。
历史上某的水量比较丰富。
海河上游支流众多,长度在10公里以上的河流达300多条,这些大小河流汇集成中游的永定河、北运河、大清河、子牙河和南运河五大河流。
这五大河流的尾闾就是海河,统称海河水系,是某市工农业生产和人民生活的水源河道。
某属于暖温半湿润大陆季风型气候,季风显著,四季分明。
春季多风沙,干旱少雨;夏季炎热,雨水集中;秋季寒暖适中,气爽宜人;冬季寒冷,干燥少雪。
除蓟县山区外,全年平均气温为摄氏11度以上。
1月份平均气温在摄氏零下4-6度,极低温值在摄氏零下20度以下,多出现于2月份。
7月份平均气温在摄氏26度上下。
某年平均降水量约为500-690毫米。
在季节分配上,夏季降水量最多,占全年总降水量的75%以上,冬季最少,仅占2%。
由于降水量年内分配不均和年际变化大,造成某在历史上经常出现春旱秋涝现象。
某的风向有明显的季节变化。
冬季多刮西北风、偏北风;夏季多东南风、南风;春秋两季多西南风,主导风向东南风。
5.厂址及场地状况某以平原为主,污水处理厂拟用场地较为平整,占地面积20公顷。
厂区地面标高10米,原污水将通过管网输送到污水厂,来水管管底标高为 5米(于地面下5米)。
1.2 设计内容、原则1.2.1 设计内容污水处理厂工艺设计流程设计说明一般包括以下内容:(1)据城市或企业的总体规划或现状与设计方案选择处理厂厂址;(2)处理厂工艺流程设计说明;(3)处理构筑物型式选型说明;(4)处理构筑物或设施的设计计算;(5)主要辅助构筑物设计计算;(6)主要设备设计计算选择;(7)污水厂总体布置(平面或竖向)及厂区道路、绿化和管线综合布置;(8)处理构筑物、主要辅助构筑物、非标设备设计图绘制;(9)编制主要设备材料表。
城市污水处理AO工艺毕业设计城市污水处理是一项重要的环境工程任务,其目的是将城市污水中的有害物质去除,使其达到排放标准,并回收可利用的资源。
AO工艺是一种先进的城市污水处理技术,具有高效、节能、稳定等特点。
本篇毕业设计将探讨城市污水处理AO工艺的设计及优化。
设计目标:1.去除COD、氨氮等主要污染物,使排放水达到国家标准;2.回收污水中的有价值资源,如氮、磷等;3.优化工艺,提高处理效率,节约能源。
设计方案:1.初级处理:城市污水流入调节池,进行物理预处理,去除大颗粒悬浮物及沉淀杂质,减少COD、SS的负荷;2.生物处理:将预处理后的污水引入AO生物反应器,AO工艺包括厌氧区和好氧区。
在厌氧区,利用好氧颗粒污泥中的硝酸盐,将废水中的氮化合物还原为氮气;在好氧区,利用氧气进行氧化降解,COD、氨氮等有机物被微生物降解为二氧化碳和水。
3.沉淀处理:运用沉淀池对已进行生物处理的废水进行沉降,进一步去除SS。
4.通气处理:氨氮从有机形态以氨的形式存在于水中,通气工艺通过通入空气进行气液接触,将氨彻底转化为氮气进行排放。
设计参数:1.对于COD的去除,设置目标为90%以上;2.对于氨氮的去除,设置目标为95%以上;3.设计化学品投加量、厌氧/好氧区的比例、沉淀池的尺寸和通气处理的通气速率等参数。
设计优化:1.利用MATLAB等数学建模软件,建立数学模型,模拟悬浮物、COD、氨氮等在AO工艺中的传质和反应过程,优化设计参数;2.调整好氧颗粒污泥与COD、氨氮等污染物的比例,增强生物降解能力;3.考虑废水中的氮、磷等资源回收利用,引入适当的回收工艺。
总结:综合利用化学预处理、生物处理、沉淀处理和通气处理等工艺,城市污水处理AO工艺能够高效地降解COD和氨氮等主要污染物,使废水达到国家排放标准。
设计优化可通过建立数学模型,调整设计参数,从而提高处理效率和节约能源。
此外,适当引入回收工艺,还可以回收污水中的有价值资源,实现资源利用。
城市生活污水处理工艺初步设计(AO法)毕业设计毕业设计(论文)题目80000m3/d城市生活污水处理工艺初步设计(AO法) 学院化学与化学工程学院专业班级环境工程101学生姓名指导教师成绩年月日摘要本设计是针对城市生活污水处理厂的工艺设计,采取的是A/O工艺,处理能力为80000m3/d。
该设计说明书主要涉及到设计的目的和意义,A/O工艺脱氮除磷的原理,主体设备的计算和选型,以及工艺流程等。
同时也介绍了A/O工艺的特点,并且与其它脱氮除磷工艺进行了对比。
该污水厂的污水处理流程为:从泵房到沉砂池,进入A/O反应池,进入辐流式二次沉淀池,进入接触池,最后出水;污泥的流程为:从A/O反应池排出的剩余污泥进入集泥配水井,再由污水泵送入浓缩池,进入消化池,进入贮泥池,再进入脱水机房,最后外送处置。
所选择的A/O工艺具有良好的脱氮除磷功能。
污水处理厂处理后的水质执行《城镇污水处理厂污染物排放标准》G8918-2002中的一级B标准。
关键词:A/O工艺;脱氮除磷;污水处理厂AbstractThis design is for the technological design of urban Sewage treatment plant , that adopts is A/O craft. Handling capacity 80000 m3/d . The design specification mainly related to the purpose and significance of design, and the principle of the A/O craft denitrogenation and eliminates the phosphorus,and Main body equipment's computation and shaping ,and technical process and so on. Simultaneously also introduced the characteristic of A/O craft, And were compared with other nitrogen and phosphorus removal process.The process of the sewage in the plant is that:The sewage runs from pump house to sand sinking pond,etters A/O tank,enters the pond of sedimentation tank,then enters disinfection pond,at last lets out.The process of the sludge is that: Surplus sludge from the A/O tank enters sludge setting tank, enters concentration pond, enters digestion pong,enters sludge reserving pond, then it is dehydrated,at last it is carried out of the plant. The choice of A/O process has the good function of denitrification and phosphorus removal.it prevents sludge from eapending,promots releasing phosphorus . The outlet water of the plant meets the level 1 B standard of the Discharge Standard of Pollutants for Urban Wewage Treatment plant (G8918-2002).Key words:The Anoxic-Oxic; Denitrogenation and eliminates the phosphorus;Sewage disposal plant;目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 设计目的及意义 (1)1.1.1 设计目的和任务 (1)1.1.2 设计意义 (1)1.1.3 国内外污水处理工艺发展现状 (1)1.2 设计规模及设计水质 (3)1.2.1 污水厂的设计规模 (3)1.2.2 进水水质 (3)1.2.3 设计出水水质 (3)1.2.4 处理工艺确定原则 (3)1.3 工艺流程 (3)1.3.1 处理程度的确定 (4)1.3.2 处理方法的确定 (4)1.3.3 工艺流程的比较 (4)1.3.4 处理流程的确定 (9)1.3.5 污泥处理工艺方案 (10)1.3.6 处理水用途 (12)第2章污水处理构筑物设计与计算 (14)2.1 粗格栅 (14)2.1.1 设计说明 (14)2.1.2 设计参数 (14)2.1.3 设计计算 (14)2.1.4 设备选型 (16)2.2 污水提升泵站 (17)2.2.1 设计说明 (17)2.2.2 设计参数 (17)2.2.3 设计计算 (17)2.3 细格栅 (18)2.3.1 设计说明 (18)2.3.2 设计参数 (19)2.3.3 设计计算 (19)2.3.4 设备选型 (20)2.4 沉砂池 (21)2.4.1 设计说明 (21)2.4.2 设计参数 (21)2.4.3 设计计算 (22)2.5 初沉池 (23)2.5.1 设计说明 (23)2.5.2 设计参数 (24)2.5.3 设计计算 (24)2.5.4 设备选型 (26)2.6 A/O池 (27)2.6.1 设计说明 (27)2.6.2 设计参数 (27)2.6.3 设计计算 (28)2.7 二沉池 (37)2.7.1 设计说明 (37)2.7.2 设计参数 (37)2.7.3 设计计算 (38)2.8 消毒接触池 (39)2.8.1 设计说明 (39)2.8.2 设计参数 (41)2.8.3 设计计算 (41)2.8.4 设备选型 (42)2.9 配水井 (42)2.9.1 设计说明 (42)2.9.2 设计参数 (43)2.9.3 设计计算 (43)第3章污泥处理构筑物设计与计算 (45)3.1 污泥泵房 (45)3.1.1 设计参数 (45)3.1.2 污泥泵 (45)3.1.3 集泥池 (46)3.2 鼓风机房 (46)3.3 污泥浓缩池 (47)3.3.1 设计说明 (47)3.3.2 设计参数 (47)3.3.3 工艺尺寸计算 (47)3.3.4 设备选型 (49)3.4 污泥消化池 (50)3.4.1 设计说明 (50)3.4.2 设计参数 (50)3.4.3 设计计算 (50)3.5 贮泥池 (52)3.5.1 设计说明 (52)3.5.2 设计参数 (52)3.5.3 设计计算 (52)3.5.4 搅拌设备 (53)3.6 脱水机房 (53)3.6.1 设计说明 (53)3.6.2 设计参数 (53)3.6.3 设计计算 (53)3.6.4 设备选型 (54)第4章附属建筑物 (55)4.1 平面布置 (55)4.2 管、渠的平面布置 (55)4.3 厂区道路、围墙设计 (56)4.4 辅助建筑物 (56)第5章水力及高程计算 (58)5.1 水力计算 (58)5.2 高程计算 (58)第6章工程投资估算及效益分析 (62)6.1 投资估算 (62)6.1.1 土建费用估算 (62)6.1.2 材料及设备费用估算 (62)6.2 运行成本估算 (62)6.3 效益分析 (62)6.3.1 环境效益 (62)6.3.2 社会效益 (62)结论 (69)参考文献 (71)致谢 (74)第1章绪论1.1 设计目的及意义1.1.1设计目的和任务本次设计任务是建一座城镇污水处理厂,处理来自城市的生活污水,采用的是A/O 工艺,经处理厂处理过的水质执行《城镇污水处理厂污染物排放标准》G8918-2002中的一级B标准。
目录摘要 (1)1 前言 (2)2 设计总则 (3)2.1设计范围 (3)2.2设计依据 (3)2.3设计原则 (3)3 工程规划资料 (3)3.1简阳市概况 (3)3.2自然条件 (4)3.3城市污水排放规划 (4)4 工程设计概况 (7)4.1设计规模 (7)4.2设计水质 (7)4.3设计水量 (7)4.4厂址选择 (8)4.5工艺流程的选择 (9)4.6工艺流程 (14)5 污水处理构筑物设计计算 (15)5.1中格栅 (15)5.2污水提升泵房 (17)5.3细格栅 (18)5.4沉砂池设计及计算 (20)5.5A2O生化反应池 (22)5.6辐流式二沉池 (31)5.7接触池和加氯间 (36)5.8计量设备 (37)6 污泥处理构筑物设计计算 (38)6.1污泥量计算 (39)6.2污泥浓缩池 (40)6.3污泥脱水机房 (43)7 主要附属建筑设计 (43)8 污水处理厂总体布置 (46)8.1污水处理厂平面布置 (46)8.2污水处理厂高程布置 (48)9 组织管理 (53)9.1生产组织 (53)9.2人员编制 (53)9.3安全生产和劳动保护 (54)10 工程投资及成本估算 (54)10.1工程投资 (54)10.2成本估算 (55)10.3工程效益分析 (56)11 结论 (56)总结与体会 (56)谢辞 (56)参考文献 (56)摘要本设计是在简阳市新市镇新伍村拟建一座工程规模为6.09万m3/d的污水处理厂。
通过综合考虑简阳市概况及本工程的规模、进水特性、处理要求、运行费用和维护管理等情况,经技术经济比较分析,确定采用A2O生物脱氮除磷处理工艺。
A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池是多功能的,能够去除BOD、硝化和吸收磷。
此外该工艺还具有高效、节能的特点,且耐冲击负荷较高,出水水质好。
1第一章设计概论1.1设计任务本次毕业设计的主要任务是为新建城市污水处理厂设计(14.4万m 3/天)做的设计。
工程设计内容包括:1、通过现场实习调研,查阅文献,进行传统、典型和先进方案的比较,分析优缺点,论证可行性,通过所给自然条件、城市特点及经济因素确定最终处理方案。
2、据所选方案,正确选择、设计计算污水处理构筑物。
3.进行污水处理厂各构筑物工艺计算:包括初步设计和图纸设计、设备选型,图中应有设备、材料一览表和工程进程表。
4.进行辅助建筑物(包括鼓风机房、泵房、脱水机房等)的设计:包括尺寸、面积、层数的确定;完成设备选型。
1.2.3设计水量与水质1、设计水量:平均流量:14.4万m 3/天2、进水水质条件:COD=600mg/L;BOD=300mg/L ;SS=300mg/LTN=25mg/L;TP=5mg/L ;水温20~30℃;pH=6.5~8.53、出水水质要求:BOD≤20mg/L COD≤60mg/L SS≤20mg/L NH 3-N≤15mg/LTP 5≤1mg/LpH=6~822第二章格栅的计算2.1设计要求1.污水处理系统前格栅条间隙,应该符合以下要求:a:人工清除25~40mm;b:机械清除16~25mm;c:最大间隙40mm,污水处理厂也可设细粗两格栅.2.若水泵前格栅间隙不大于25mm 时,污水处理系统前可不再设置格栅.3.在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m 3),一般采用机械清除.4.机械格栅不宜小于两台,若为若为一台时,应设人工清除格栅备用.5.过栅流速一般采用0.6~1.0m/s.6.格栅前渠道内的水速一般采用0.4~0.9m/s.7.格栅倾角一般采用45~75,人工格栅倾角小的时候较为省力但占地多.8.通过格栅水头损失一般采用0.08~0.15m.9.格栅间必须设置工作台,台面应该高出栅前最高设计水位0.5m.工作台上应有安全和冲洗设施.10.格栅间工作台两侧过道宽度不应小于0.7m.2.2中格栅的设计计算1.栅条间隙数(n):设计平均流量:Q=18×8000=144000(m 3/d)则最大设计流量Q max =144000/12-18×100=10200(m 3/h)栅条的间隙数n,个bhvQ n αsin max =式中Q max ------最大设计流量,m 3/s ;α------格栅倾角,取α=60;b ------栅条间隙,m ,取b=0.030m ;n-------栅条间隙数,个;h-------栅前水深,m ,取h=1.2m ;v-------过栅流速,m/s,取v=0.9m/s ;则:33n 9.02.1026.060sin 83.20⨯⨯⨯==92.59(个)取n=93(个)则每组中格栅的间隙数为93个.2.栅条宽度(B):设栅条宽度S=0.01m栅槽宽度一般比格栅宽0.2~0.3m,取0.2m ;则栅槽宽度B 2=S(n-1)+bn+0.2=0.01×(93-1)+0.030×93+0.2≈3.54m两栅间隔墙宽取0.6m,则栅槽总宽度B=3.54+0.60=4.14m3.进水渠道渐宽部分的长度L 1.设进水渠道B 1=2.0m ,其渐宽部分展开角度α1=20,进水渠道内的流速为0.6m/s.)(94.220tan 200.214.4tan 20111m B B L ≈⨯-=⨯-=α4.格栅与出水总渠道连接处的渐窄部长度L 2m ,)(47.1294.2212m L L ===5.通过格栅的水头损失h 1,mh 1=h 0⨯k0h 342)(,2sin bSg v βεαε==式中:h 1--------设计水头损失,m ;h 0--------计算水头损失,m ;g--------重力加速度,m/s 2k--------系数,格栅受污物堵塞时水头损失增大倍数,一般采用3;ξ--------阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形断面44β=2.42.g kv b S k h h 2sin (23401αβ==6.19360sin 9.0030.001.0(42.20234⨯⨯==0.060(m)6.栅槽总长度L ,mL αtan 0.10.2121H L L ++++=式中,H 1为栅前渠道深,21h h H +=m.60tan 073.02.10.10.247.194.2+++++=L =8.14(m)7.栅后槽总高度H ,m 设栅前渠道超高h 2=0.3mH=h+h 1+h 2=1.0+0.06+0.3=1.36(m)8.每日栅渣量W ,m 3/d10001864001W Q W ⨯⨯=式中,W 1为栅渣量,m 3/103m 3污水,格栅间隙30~50mm 时,W 1=0.03~0.01m 3/103m 3污水;本工程格栅间隙为30mm ,取W 1=0.03.W=86400×2.83×0.03÷1000=7.34(m3/d)>0.2(m3/d)采用机械清渣.2.3细格栅的设计计算1.栅条间隙数(n):55bhvQ n ⨯=2sin max α式中Q max ------最大设计流量,3.15m 3/s;α------格栅倾角,(o ),取α=60;b ------栅条隙间,m,取b=0.01m;n-------栅条间隙数,个;h-------栅前水深,m,取h=1.0m;v-------过栅流速,m/s,取v=0.7m/s;隔栅设两组,按两组同时工作设计,一格停用,一格工作校核则bhvQ n αsin max=个6129.02.102.060sin 83.20=⨯⨯⨯=取n=61个2.栅条宽度(B):设栅条宽度S=0.01m栅槽宽度一般比格栅宽0.2~0.3m,取0.2m;则栅槽宽度B 2=S(n-1)+bn+0.2=0.01×(61-1)+0.01×61+0.2=2.02m单个格栅宽2.02m,两栅间隔墙宽取0.60m,则栅槽总宽度B=2.02+0.60=4.64m3.进水渠道渐宽部分的长度L 1,设进水渠道B 1=2.0m,其渐宽部分展开角度α1=20°,进水渠道内的流速为0.6m/s.L 1)(63.320tan 200.264.4tan 2011m B B ≈⨯-=⨯-=α4.格栅与出水总渠道连接处的渐窄部分长度L2.L 2)(81.1263.321m L ===5.通过格栅的水头损失h 1,mh 1=h 0⨯k660h 342(,2sin bSg v βεαε==式中h 1-------设计水头损失,m;h 0-------计算水头损失,m;g -------重力加速度,m/s 2k ------系数,格栅受污物堵塞时水头损失增大倍数,一般采用3;ξ------阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形断面,β=1.79.g kv b S k h h 2sin (23401αβ==6.19360sin 7.0)01.001.0(79.10234⨯⨯==0.12(m)(符合0.08~0.15m 范围).6.栅槽总长度L,mL αtan 0.10.2121H L L ++++=式中,H 1为栅前渠道深,21h h H +=m.60tan 3.00.10.10.281.163.3+++++=L ≈9.87m7.栅后槽总高度H,m设栅前渠道超高h 2=0.3mH=h+h 1+h 2=1.2+0.12+0.3=1.42(m)8.每日栅渣量W,m 3/d10001864001W Q W ⨯⨯=7式中,W1为栅渣量,m3/103m3污水,格栅间隙6~15mm时,W1=0.10~0.05m3/103m3污水;本工程格栅间隙为20mm,取W1=0.08污水.W=86400×2.83×0.08÷1000=19.56(m3/d)>0.2(m3/d)采用机械清渣.7-8-8第三章沉砂池的设计计算1.长度v=0.25m/st=30sL=vt=0.25*30=7.5m2.水流截面积2max 32.1125.083.2m v Q A ===3.池总高度设n=6每格高1.8mmnb B 8.108.16=⨯==4.有效水深m B A h 05.18.1032.11===5.沉砂室所需容积设T=2d36max 78.91086400m K T Q v Z =⨯⨯⨯=6.每个沉砂斗容积设每二分格有两沉砂斗3815.06278.9m v =⨯=7.沉砂斗各部分尺寸设斗底宽a=0.5m 斗壁与水平面的倾角060,斗高h=0.35m沉砂斗上口宽:322211203176.0)5.029.05.029.02(635.0)222(60tan m a aa a h a ⨯+⨯⨯+⨯++=8.沉砂教室高度,采用重力排沙,设池底坡度高0.06坡向砂斗m l h h 515.075.206.035.006.02,33=⨯+=+=2/)2.02(2--=a l l =(7.5-2*0.9-0.2)/2=2.75-9-99.池总高度设起高mh 3.01=321h h h H ++==0.3+1.05+0.515=1.87m第四章初次沉淀池的设计计算4.1设计要点1.沉淀池的沉淀时间不小于1小时,有效水深多采用2~4m,对辐流式指池边水深.2.池子的超高至少采用0.3m.3.初次沉淀池的污泥区容积,一般按不大于2日的污泥量计算,采用机械排泥时,可按4小时污泥量计算.4.排泥管直径不应小于200mm.5.池子直径(或正方形的一边)与有效水深的比值一般采用6~12m.6.池径不宜小于16m,池底坡度一般取0.05.7.一般采用机械刮泥,亦可附有气力提升或净水头排泥设施.8.当池径(或正方形的一边)较小(小于20m)时,也可采用多斗排泥.9.进出水的布置方式为周边出水中心进水.10.池径小于20m 时,一般采用中心传动的刮泥机.4.2初次沉淀池的设计(为辐流式)1.沉淀部分的水面面积:设表面负荷q′=2.0m 3/m 2h,设池子的个数为4,则(其中q′=1.0~2.0m 3/m 2h)F=maxQ /nq′=144000/24/4/2.0=750m22.池子直径:)(92.3014.375044m FD =⨯=⨯=π,D 取31m.3.沉淀部分有效水深:设t=1.5h,则h 2=q′t=2.0×1.5=3.0m.(其中h 2=2~4m)-10-104.沉淀部分有效容积:V′=Qmax/ht=144000/3/1.5≈320000m 35.污泥部分所需的容积:V 1′362117.138244)97100(110410024)20150(320000)100(10024)(max V mn r T c c Q o =⨯⨯-⨯⨯⨯⨯⨯-⨯=⋅⋅-⋅⋅-⋅='ρc 1—进水悬浮物浓度(t/m 3)c 2—出水悬浮物浓度r—污泥密度,其值约为1o ρ—污泥含水率6.污泥斗容积:设r 1=2m,r 2=1m,α=60,则h 5=(r 1-r 2)tgα=(2-1)tg60=1.73m V 1=πh s /3(r 12+r 2r 1+r 22)=3.14×1.73/3×(22+2×1+12)=12.7m 37.污泥斗以上部分圆锥体部分污泥体积设池底径向坡度为0.05,则h 4=(R-r 1)×0.05=(16-2)×0.05=0.7m V 2=πh 4/3(R 2+Rr 1+r 12)=3.14×0.7/3×(162+16×2+22)=213.94m 38.污泥总容积:V=V 1+V 2=12.7+213.94=226.64>184.89m 39.沉淀池总高度:设h 1=0.3m,h 3=0.5m,则H=h 1+h 2+h 3+h 4+h 5=0.3+3.75+0.5+0.7+1.73=6.98m 10.沉淀池池边高度:11H′=h1+h2+h3=0.3+3.75+0.5=4.55m11.径深比D/h2=32/3.75=8.53(符合6~12范围)-11-12第五章A2/O反应池的设计计算5.1设计要点1.在满足曝气池设计流量时生化反应的需氧量以外,还应使混合液含有一定的剩余DO值,一般按2mg/L计.2.使混合液始终保持混合状态,不致产生沉淀,一般应该使池中平均流速在0.25m/s左右.3.设施的充氧能力应该便于调节,与适应需氧变化的灵活性.4.在设计时结合了循环流式生物池的特点,采用了类似氧化沟循环流式水力特征的池型,省去了混合液回流以降低能耗,同时在该池中独辟厌氧区除磷及设置前置反硝化区脱氮等有别于常规氧化沟的池体结构,充氧方式采用高效的鼓风微孔曝气、智能化的控制管理,这大大提高了氧的利用率,在确保常规二级生物处理效果的同时,经济有效地去除了氮和磷.5.2设计计算1.判断是否可采用A2/O法:COD/TN=600/25=24>8TP/BOD5=15/300=0.05<0.06符合要求,故可采用此法.2.已知条件:设计流量Q=144000m3/d(不考虑变化系数)设计进水水质:COD=600mg/L,BOD=300mg/L,SS=300mg/L,TN=60mg/L, TP15mg/L;最低水温200C.设计出水水质:COD≤100mg/L,BOD5≤20mg/L,SS≤20mg/L,NH3-N≤15mg/L,TP1mg/L3.设计计算(污泥负荷法)a.有关设计参数b.BOD5污泥负荷N=0.15kg BOD5/(kgMLSS×d)c.回流污泥浓度XR=10000(mg/L)d.污泥回流比R=50%-12--13-13e.混合液悬浮固体浓度)/(3330100005.015.01L mg X R R X R =⨯+=+=混合液回流比R 内TN 去除率%75%100601560%10000=⨯-=⨯-=TN TN TN e TN η混合液回流比%80%1001=⨯+++=R r Rr TN η取R 内=200%回流污泥量Qr:Qr=RQ=0.5×144000=72000m 3/d循环混合液量Qc:Qc=R 内×144000=288000m 3/d 脱氮速度K D:310/)(X NO C C Q Qr N +==(72000+288000)×10/103=3600kg/d 其中XNO C =10mg/Lb.反应池的计算厌氧池计算V 1厌氧池平均停留时间为2h V 1=1.2×(144000/24)×2.0=14400(m 3)AO 反应池容积V,m3)(63423042333015.022014400030m X N S Q V AO ≈⨯⨯=⨯⨯=AO 反应池总水力停留时间:)(6.10)(44.014400042.63423h d Q V t AO AO ≈≈==各段水力停留时间和容积:缺氧∶好氧=1∶3缺氧池水力停留时间:)(65.26.10412h t =⨯=-14-14缺氧池容积:)(86.1585542.634234132m V =⨯=好氧池水力停留时间:)(95.76.10433h t =⨯=好氧池容积:)(57.4756742.634234333m V ≈⨯=反应池总体积:V=V 1+V AO =14400+634230.42=77823.42(m 3)总停留时间:t=t 1+t AO =10.6+2=12.6(h)c.剩余污泥ΔX=Px+PsPx=Y×Q(S 0-S e )-Kd×V×Xv Ps=(TSS-TSS e )Q×50%取污泥增殖系数Y=0.60,污泥自身氧化率Kd=0.05,将各值代入Px=0.60×144000×(0.3-0.02)-0.05×77823.42×3.33×0.7=24192-8988.7=15203(kg/d)Ps=(0.3-0.02)×144000×50%=20160(kg/d)ΔX=Px+Ps=15203+20160=35363(kg/d)d.反应池主要尺寸反应池总容积V=77823.42(m 3)设反应池四组,单组池容积V 单=V/4=77823042/4≈19455.9(m 3)有效水深5m;采用五廊道式推流式反应池,廊道宽b=10m;单组反应池长度:L=S 单/B=19455.9/(5⨯10⨯5)≈77.82(米);校核:b/h=10/5=2(满足b/h=1~2);l/b=86.47/10≈8.65(满足l/h=5~10);取超高为0.7m,则反应池总高H=5.0+0.7=5.7(m)厌氧池尺寸宽L 1=14400/B×5=14400/(50⨯10⨯5⨯5)=11.52(m)尺寸为12.8⨯50⨯5(m)缺氧池尺寸宽L 2=14315/B×4.5=15855.86/(5⨯10⨯5⨯5)≈12.68(m)尺寸为14.09⨯50⨯5(m)-15-15好氧池尺寸宽L 3=47567.57/B×4.5=47567.57/(5⨯10⨯5⨯5)≈38.05(m)尺寸为59.58⨯50⨯5e:反应池进、出水系统计算①Qmax=1.67×1.2=2.004(m 3/s)1.2———为安全系数分四条管道,则每条管道流量为2.004/4≈0.50(m 3/s)管道流速v=0.98m/s管道过水断面积A=Q/v=0.50÷0.98≈0.51(m 2)管径)(81.014.351.044m Ad =⨯=⨯=π取DN=900(mm)②回流污泥管单组反应池回流污泥管设计流量2.1864001440005.02.1⨯⨯=⨯⨯=Q R Q R =1.0(m 3/s)1.2——安全系数;管道流速取v 1=0.98(m/s)取回流污泥管管径DN 900mm ③进水井:反应池进水孔尺寸:进水孔过流量Q 2=(1+R)Q/2=(1+0.5)⨯144000÷86400÷2≈1.25(m 3/s)孔口流速v=0.80m/s,孔口过水断面积A=Q 2/v=1.25÷0.80≈1.56(m 2)取圆孔孔径为1800mm 进水井平面尺寸为6×6(m×m)④出水堰及出水井按矩形堰流量公式计算:Q 3=0.42×g 2×b×H 1.5=1.86b ×H 1.5-16-16式中)/(46.425.367.1)5.01(25.3)5.01(33s m Q Q ≈⨯⨯+=⨯+=b——堰宽,b=7.5m;3.5——安全系数H——堰上水头,m=⨯=⨯=323235.786.146.4(86.1(b Q H 0.4944≈0.5(m)出水井平面尺寸0.5×7.5m ⑤出水管反应池出水管设计流量Q 5=Q 3=4.46(m 3/s)式中:1.2——安全系数管道流速v=0.96m/s管道过水断面A=Q 5/v=4.46÷0.96=4.65(m 2)设置三条出水管管径:)(41.114.33/65.444m Ad ≈⨯=⨯=π取出水管管径DN 1500mm17第六章曝气池的设计计算6.1设计要点:1.在满足曝气池设计流量时生化反应的需氧量以外,还应使混合液含有一定剩余DO值,一般按2mg/L计.2.使混合液始终保持悬浮状态,不致产生沉淀,一般应使池中水流速度为0.25m/s左右.3.设施的充氧能力应比较便于调节,有适应需氧变化的灵活性.4.在满足需氧要求的前提下,充氧装备的动力效率和氧利用率应力求提高. 6.2曝气池的设计:1.供气量:采用穿孔管距池底0.2m,故淹没水深为4.8m,计算温度为30,水温为20的溶解氧(DO)饱和度为Cs(20)=9.2mg/l,Cs(30)=7.6mg/l穿孔管出口处绝对压力Pb=1.013×105+9.8×4.8×103=1.48×105Pa空气离开曝气池时氧的百分比为Q t =21(1-EA)/79+21(1-EA)×100%=21×(1-0.06)/79+21×(1-0.06)×100% =20%注:EA 为穿孔管的氧转移效率取EA=6%曝气池中平均溶解氧的饱和度为(按最不利条件考虑))/ ( 10.11)4220 10066 .210483.1(6.7)4210066.2(555)30()30(LmgQ PCC tbssm=+⨯⨯⨯=+⨯=a:相应最大时的需氧量为:R0max=440×11.1/6.41=761.93kg/h b:曝气池平均时供气量为:G s =R/0.3EA×100=534.3×100/0.3×6=27.7kgO2/kgBOD5去除每立方米污水所需的供气量为:2968.33/192000/24=3.73m/3m污水-17-18 c:相应最大时需氧量的供气量为:Gs(max)=R0max /0.3EA=761.93×100/0.3×6=42329.443m/h总供气量为:G ST =42329.443m/h2.鼓风机的选择:鼓风机所需供气量:最大时:Gsmax=42329.443m/h=7053m/min平均时:Gs=29683.333m/h=4943m/min最小时:Gsmim=0.5Gs=14841.673m/h=6183m/min 根据供气量和压力选用四台RF-350罗茨鼓风机-18--19-19第七章二沉池的设计计算7.1设计要求:1.二次沉淀池是活性污泥系统的重要组成部分,它用以澄清混合液并回收,浓缩活性污泥,因此,其效果的好坏,直接影响出水的水质和回流污泥的浓度.因为沉淀和浓缩效果不好,出水中就会增加活性污泥悬浮物,从而增加出水的BOD 浓度;同时回流污泥浓度也会降低,从而降低曝气中混合及浓缩影响净化效果.2.二沉池也有别于其他沉淀池,除了进行泥水分离外,还进行污泥浓缩,并由于水量水质的变化,还要暂时储存污泥,由于二沉池需要完成污泥浓缩的作用,往往所需要的池面积大于只进行泥水分离所需要的面积.3.进入二沉池的活性污泥混合液浓度(2000~4000mg/L),有絮凝性能,因此属于成层沉淀,它沉淀时泥水之间有清晰的界面,絮凝体结成整体共同下沉,初期泥水界面的沉速固定不变,仅与初始浓度有关.活性污泥的另一个特点是质轻,易被出水带走,并容易产生二次流和异重流现象,使实际的过水断面远远小于设计的过水断面.4.由于进入二沉池的混合液是泥,水,气三相混合液,因此沉降管中的下降流速不应该超过0.03m/s.以利于气,水分离,提高澄清区的分离效果.7.2.二次沉淀池的设计:1.沉淀部分水面面积F ,根据生物处理段的特性,选取二沉池表面负荷))/((5.123h m m q ⋅=,(其中q=1.0~1.5)/(23h m m ⋅)设四座辐流式沉淀池,n=4,则有)(10005.1424144002m q n Q F =⨯⨯=⋅=2.池子直径D)(7.35100044m FD =⨯==ππ3.沉淀部分的有效水深2h ,设沉淀时间:)(5.2h t =(其中t=1.5~2.5h),则)(75.35.25.12m t q h =⨯=⋅=4.沉淀区的有效容积V ′20V′=Qmax﹒t/n=14400×2.5/24/4=3750m35.污泥区容积:V=4(1+R)QR/(1+2R)=4×(1+0.5)×14400×0.5/(1+2×0.5)×24=9000m3 6.污泥部分所需的容积:设S=0.6t/人﹒天,T=4h,则V=SNT/1000n=0.6×90×104×4/1000×2×0.4=45m37.污泥斗容积:设r1=2m,r2=1m,α=60,则h 5=(r1-r2)tg60=(2-1)tg60=1.73mV1=πh5/3(r12+r2r1+r22)=12.7m38.污泥斗以上圆锥体部分污泥容积:设池底径向坡度为0.05,则h4=(R-r)×0.05=(20.6-2)×0.05=0.93mV 2=πh4/3(R2+Rr1+r12)=π0.75/3(20.62+20.6×2+22)=368m39.污泥总容积:V=V1+V2=12.7+368=381.3m3>45m3符合要求.10.沉淀池高度:设超高h1=0.5m,h3=0.5m,则H=h1+h2+h3+h4+h5=0.5+3.75+0.5+0.75+1.73=7.23m11.沉淀池池边高度:H′=h1+h2+h3=0.5+3.75+0.5=4.75m12.径流比:D/h2=41.2/4.75=8.67<12符合要求.-20-21第八章清水池的设计计算经过二沉池出水进入清水池,水流经出水渠道进入河流,设有一座清水池,池高3m,其形状为长方形,20×30m,则清水池的平面尺寸为:20×30×3m-21-22第九章浓缩池的设计计算9.1设计要点1.污泥在最终处置前必须处理,而处理的最终目的是降低污泥中有机物含量并减少其水分,使之在最终处置时对环境的危害减至最小限度,并将其体积减小以便于运输和处置.2.重力式浓缩池用于浓缩二沉池出来的剩余活性污泥的混合污泥.3.按其运转方式分连续流,间歇流,池型为圆形或矩形.4.浓缩池的上清液应重新回至初沉池前进行处理.5.连续流污泥浓缩池可采用沉淀池形式,一般为竖流式或辐流式.6.浓缩后的污泥含水率可到96%,当为初次沉淀池污泥及新鲜污泥的活性污泥的混合污泥时,其进泥的含水率,污泥固体负荷及浓缩后的污泥含水率,可按两种污泥的比例效应进行计算.7.浓缩池的有效水深一般采用4m,当为竖流式污泥浓缩池时,其水深按沉淀部分的上升流速一般不大于0.1mm/s进行核算.浓缩池的容积并应按10~16h进行核算,不宜过长.9.2.浓缩池的设计:1.初次沉淀污泥量:V=100cηQ/103(100-p)ρ=100×350×55%×144000/103×(100-96)×1000 =693m3/d该部分污泥含水率为90%故不需进浓缩池进行浓缩.2.每日排除的剩余污泥量:其含水率为99.2%~99.6%,取其为99.3%Qs=(a QLv-bxv)/fxR=[(0.65×192000×134)-0.05×4000×0.75×32139.13]/0.75×4000(1+0.5)/0.5=(16723200-4820850)/0.75×4000×.=1322.48m3/d其中(a=0.5~0.65,b=0.05~0.1)且浓缩后的污泥含水率为96%-22--23-233.设两座重力式预浓缩池,则n=2其面积为:A=Q 0C 0/nG l =55.1×12/2×35/24=226.7m 2则每座池子的直径为:)(99.16247.2264m n A D =⨯=⋅⨯=ππ,D=17m 4.核算其容积(根据A,t)浓缩时间:t=Ah/Q 0=226.7×4/55.1=15.46h,(符合10~16h 范围)5.故浓缩池的尺寸为D=17m,h=4m(池内有效水深4m)注:C 0为入流污泥浓度;G l 为固体通量;Q 0为入流污泥量.24第十章消化池的设计计算10.1设计要点1.污泥厌氧消化所需用的构筑物为消化池,污泥厌氧消化使污泥中的有机物变质,变为稳定的腐殖质.可减少污泥的的体积(60%~70%),并改善污泥的性质.使之易于脱水,破坏和控制致病的生物,并获得有用的副产物(沼气).2.厌氧消化池至少为两座,防止检修时全部污泥停止厌氧处理.3.固定盖池顶为弧形,截面为圆锥形.池顶中部集气罩,通过管道与沼气柜直接连通,防止产生负压,池顶至少装有两个直径为0.7m的入孔,工作液位与池子圆柱部分墙之间的超高可以低到小于0.3m,为防止固定盖因超高不够而受压,池顶遭到破坏,池顶下沿应装有溢流管.4.管道布置:污泥管包括进泥管,出泥管,循环搅拌管,排上清液管,溢流管,取样管.5.污泥投配:每日投加新鲜污泥体积/消化池有效容积×100%,一般范围为5~10%,其倒数为新鲜污泥在消化池的平均停留时间.6.消化池形状为圆柱形,椭圆形,一般用中温消化,其范围为33~35℃10.2消化池的设计:1.浓缩前的污泥体积V+Qs,浓缩后的污泥体积为V+Qs′其中浓缩前的污泥含水率为99.3%,浓缩后的含水率为96%,则浓缩后的污泥体积为Qs ′=Qs(1-p1)/100-p2=1322.48×(100-99.3)/100-96=231.434m3/d2.设消化池池顶为固定盖式,则消化池中容积为:V=(924+231.434)/5%=23108.68m3采用4座消化池,则每座消化池的有效容积为:V=V/4=23108.68/4=5777m3消化池直径取30m;集气罩高度h1=2m;集气罩直径d1=2m;上椎体高度h2=3m;池底下椎体底直径d2=2m;消化柱体高度h3=10m;下椎体高度取h4=1m则消化池总高度:-24-25H=h1+h2+h3+h4=2+3+10+1=16m消化池部分容积计算:集气罩容积:V 1=1/4πd12h1=1/4×3.14×22×2=6.28m3弓形部分容积:V 2=1/24πh2(3D2+4h22)=1/24×3.14×3×(3×302+4×32)=1073m3圆柱部分容积:V 3=1/4πD2h3=1/4×3.14×302×10=7065m3下椎体部分容积:V 4=1/3πh4[(D/2)2+D/2×d2/2+(d2/2)2]=1/3×3.14×1×[(30/2)2+30/2×2/2+(2/2)2]=252.24m3则消化池的有效容积:V 0=V3+V4=7065+252.24=7317>5777m3所以符合要求. 3.消化池表面积计算:a:池盖表面积为:F=F1+F2=(1/4πd12+πd1h1)+π/4(4h22+D)=(1/4×3.14+22+3.14×2×2)+1/4×3.14×(4×33+30)=15.7+51.81=67.51m2b:池壁表面积:F 3=πDh5=3.14×30×6=565.2m2(地面以上部分)F 4=πDh6=3.14×30×4=376.8m2(地面以下部分)c:池底表面积:F 5=πl(D/2+d2/2)=3.14×8.6×(15+1)=432.06m24.消化池热工计算:提高新鲜污泥的温度的耗热量:中温消化温度:TD=35℃(33~35℃)新鲜污泥年平均温度为:TS=17℃-25--26-26日平均最低温度:16℃.范围为(16~18℃)每座消化池投配的最大生污泥量为:V′=5777×5%=288.85m 3/d 则全年平均耗热量为:时千卡/5.2166371000)1735(2485.2881000)T (24D 1=⨯-⨯=⨯-'=S T V Q 最大耗热量为:时千卡/72.228671000)1635(2485.2881000)16T (24D max =⨯-⨯=⨯-'=V Q b:消化池池体的耗热量:消化池各部传热系数:池盖:K=0.7千卡/米2﹒时﹒℃池壁在地面以上的部分:K=0.6千卡/米2﹒时﹒℃池外介质为大气时,全年平均气温为T A =12℃,冬季室外计算温度T A ′=-8℃池外介质为大气时,全年平均气温为T B =12℃,冬季室外计算温度T B =4℃则池盖部分全年平均耗热量为:Q 2=FK(T D -T A )×1.2=61.32×0.7×(35-12)×1.2=1184.70时千卡/[]88.22142.1(-8)-350.732.61max 2=⨯⨯⨯=Q 时千卡/池壁在地面以上部分,全年平均耗热量,最大耗热量为:Q 3max =FK(T D -T A )×1.2=414.48×0.6×(35-18)×1.2=5073.24时千卡/全年平均耗热量:Q 3=FK(T D -T A )×1.2=414.48×0.6×(35-12)×1.2=6863.79时千卡/池壁在地面以下部分,全年平均耗热量:Q 4=FK(T D -T B )×1.2=276.32×0.45×(35-12)×1.2=3320.11时千卡/最大耗热量为:Q 4max =276.32×0.45×(35-4)×1.2=4625.60时千卡/池底部分全年平均耗热量为:Q 5=FK(T D -T A )×1.2=324.05×0.45×(35-12)×1.2=4024.70时千卡/最大耗热量为:Q 5max =324.05×0.45×(35-4)×1.2=5424.60时千卡/-27-27每座消化池池体,全年平均耗热量为:Q x =Q 2+Q 3+Q 4+Q 5=1184.70+6863.79+3320.11+4024.70=15393.3时千卡/最大耗热量为:Q max =Q 2max +Q 3max +Q 4max +Q 5max=2214.88+5073.24+4625.60+5424.60=17338.32时千卡/c:每座消化池总耗热量,全年平均耗热量为:∑Q=Q 1+Q x =216637.5+15393.3=232030.8时千卡/最大耗热量为:∑Q=Q 1max +Q max =22867.72+17338.32=246011.24时千卡/d:热交换器的计算:消化池的加热,采用池外套管式泥水热交换器.全天均匀投配,生污泥在进入消化池之前与回流的消化池污泥先进行混合,再进入热交换器,其比例为1:2,则生污泥量为:Q S1=288.85/24=12.03m 3/h 回流的消化污泥量为:Q S2=12.03×2=24.06m 3/h 进入热交换池的总污泥量为:Q s =Q S1+Q S2=12.03+24.06=36.09m 3/h 生污泥的日平均最低温度为:T S =12℃生污泥与消化污泥混合后的温度为:33.273352121=⨯+⨯=S T ℃热交换器的套管长度按下式计算:2.1max⨯=mT DK Q L σπ热交换器按最大总耗热量计算:Q max =246011.24时千卡/污泥在管中的流速为:s m D Q V S /98.1360006.0414.309.364/22=⨯⨯⨯=⋅=π(1.5~2.0m/s)内管管径Dg=60mm,外管管径Dg=100mm△T 1─热交换器入口的污泥温度(S T )和出口的热水温度Tw′之差-28-28△T 2─热交换器出口的污泥温度(Ts′)和入口热水温度(Tw)污泥循环量:Q s =12.03+24.06=36.09m 3/h,则Ts′=Tw+Q max /Qs1000=27.33+246011.24/36.09×1000=34.39℃热交换器的加热水温度采用:Tw=85℃,(一般采用60~90℃)Tw-Tw′=85-75=10℃则热水循环量为:Qw=Qmax/1000(Tw-Tw′)=246011.24/10×1000=24.6m 3/h 核算内外管之间热水的流速:V=24.6/(4/π×0.12—4/π×0.062)×3600=1.48(符合1.0~1.5m/s 范围)平均温差的对数:=-=∆∆∆-∆=∆61.5067.47ln61.5067.47ln )(2121T T T T T m 2.94/0.05985=49.12℃其中△T 1=Tw′-S T =75-27.33=47.67℃△T 2=Tw -Ts′=85-34.39=50.61℃热交换器的传热系数选用K=600时米千卡⋅2/·℃,则每座消化池的套管式泥水热交换器的总长度为:mT DK Q L m 16.5312.4960006.014.32.1246011.242.1max ≈⨯⨯⨯⨯=∆⨯=π设每根长4m,则其根数为:n=L/4=53.16/4=13.3根,选14根.e:消化池保温结构厚度计算:消化池各部传热系数:池盖:K=0.7千卡/米2﹒时﹒℃池壁在地面以上的部分:K=0.6千卡/米2﹒时﹒℃池壁在地面以下(及池底)部分:K=0.45千卡/米2﹒时﹒℃池盖保温材料厚度的计算:设消化池池盖砼机构厚度为:δG =250mm,砼的导热系数为:λG =1.33千卡/米﹒时﹒℃29采用聚氨酯硬质泡沫塑料为保温材料,导热系数为:λB=0.02千卡/米﹒时﹒℃则保温材料的厚度为:δB盖=mmmKBGGG25025.002.0/33.1)7.033.1(===-λλλλ池壁在地面以上部分保温材料厚度的计算:设消化池池壁砼结构厚度为:δG=400mm,采用聚氨酯硬质泡沫塑料为保温材料,则保温材料的厚度为:δB壁=mmmKBGGG27027.002.0/33.1)6.033.1(===-λλλλ池壁在地面以上的保温材料延伸到地面以下的部分为冻深加0.5m,池壁在地面以下部分以土壤作为保温层时,其最小厚度的核算为:突然导热系数为:λB=1.0千卡/米﹒时﹒℃设消化池池壁在地面以下的砼结构厚度为δG=400mm,则保温层厚度为:δB壁=mmmKBGGG192092.10.1/33.1)4.045.033.1(==-=-λλδλ池底以下土壤作为保温层,其最下厚度的核算:消化池池底砼结构的厚度为:δG=700mm,δB底=mmmKBGGG170070.10.1/33.1)7.045.033.1(==-=-λλδλ地下水位在池底砼结构厚度以下,大于1.7m,故不加其它保温措施,池壁池盖的保温材料采用硬质聚氨酯泡沫塑料,其厚度经计算分别为25mm及27mm计,乘以1.5的系数,采用50mm.f:沼气混合搅拌计算:消化池的混合搅拌采用多路曝气管式(气通式)沼气搅拌:1°.搅拌用气量:单位用气量采用:6m3/min﹒1000m3池容,则:-29-30用气量q=6m3/min×3000/1000=18m3/min=0.3m3/s.2°.曝气管管径计算:曝气管的流速采用12m/s,则:所需立管的总面积为0.3/12=0.025m2选用立管的直径为D=60mm时,每根断面A=0.00283m2所需立管的总数则为0.025/0.00283=8.83根,采用9根.核算立管的实际流速为:v=0.3/9×0.00283=11.78m/s(符合要求).-30-31第十一章污水处理厂总体布置11.1污水厂平面布置11.1.1污水处理厂平面布的原则1、处理单元构筑物的平面布置处理构筑物事务水处理厂的主体建筑物,在作平面布置时,应根据各构筑物的功能要求和水力要求,结合地形和地质条件,确定它们在厂区内平面的位置,对此,应考虑:(1)功能分区明确,管理区、污水处理区及污泥处理区相对独立。
第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5min 的出水量,即:V >0.347m 3/s ×5×60=104.1m 3,可将其设计为矩形,其尺寸为3m ×5m ,池高为7m ,则池容为105m 3。
污水处理A2\O工艺摘要本次毕业设计的题目为新建城市污水处理厂设计(15万m3/天)工艺。
主要任务是完成个该地区污水的处理设计。
其中初步设计要完成设计说明书一份、污水处理厂总平面图一张及污水处理厂污水与污泥高程图一张;单项处理构筑物施工图设计中,主要是完成平面图和剖面图及部分大样图。
该污水处理厂工程,规模为15万吨/日。
A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池是多功能的,能够去除BOD、硝化和吸收磷。
该污水厂的污水处理流程为:从泵房到沉砂池,进入反应池,进入辐流式二次沉淀池,再进入清水池,最后出水;污泥的流程为:从反应池排出的剩余污泥进入集泥配水井,再由污水泵送入浓缩池,再进入消化池,最后进入脱水机房脱水,最后外运处置。
关键词:A2O;同步脱氮除磷;设计说明书AbstractThe topic of this graduate design is about the design of the sewage disposal plant in the area of a City. The technics of the plant is the Anaerobic-Anoxic-Oxic. The main task is the primary design of the plant .The task of the primary design is that a design book、a plan of the plant、the high drawing of the disposal of sludge and sewage ;in the single disposal build design ,the harvest is that the section plane drawing、the plan and some part magnifying drawings of the Anaerobic-Anoxic- Oxic.The construction of this plant is 160000 tones a day.T-oxidize ditch and unoxidize pool are two important part and water flows into three ditchs in turn, also T-oxidize ditch plays the role of secondary settling. The unoxidize pond release phosphorus. Along with aeration distance, the dissolved oxygen density reduces. This make oxidize area and unoxdize area present in ture. Namely appears the nitration and the counter- nitration process in succession , get the result of denitrogenation. At the same time the fine oxygen district absorbs the phosphorus, get the result of getting rid of phosphorus.The process of the sewage in the plant is that: The sewage runs from pump house to sand sinking pond, enters the pond of sedimentation tank, enters disinfection pond, then enters calculation trough ,at last lets out. The process of the sludge is that: Surplus sludge from the sedimentation tank enters concentration pond, enters digestion pond , enters automatically translated text: then enters automatically translated text:, at last it is carried out of the plant.Key words:The Anaerobic-Anoxic-Oxic; Taking off the nitrogen and the phosphorus; Automatically translated text.目录摘要 (I)Abstract (II)目录.......................................................................................................................... I II 第一章设计概论 (1)1.1设计任务 (1)1.2.2 开发区自然条件: (1)1.2.3 设计水量与水质 (2)第二章工程概预算 (4)污水处理厂设计规模 (4)工程估算 (4)第三章污水处理厂设计 (6)3.1 污水处理厂址选择 (6)3.2 污水污泥处理工艺选择 (6)3.2.1水质 (6)3.2.2污水、污泥处理工艺选择 (6)3.3主要生产构筑物工艺设计 (13)3.3.1 进水泵房 (13)3.3.2 细格栅和沉砂池 (13)3.3.3初次沉淀池: (14)3.3.4 A2/O池 (14)3.3.5 鼓风机房 (15)3.3.7 配水集泥井 (15)3.3.8 污泥浓缩池 (15)3.3.9 脱水车间 (16)第四章劳动定员及其附属构筑物 (17)4.1劳动定员 (17)4.2人员培训 (17)4.3技术管理 (18)4.4附属构筑物 (18)4.5附属化验设备 (18)第五章格栅的计算 (20)5.1设计要求 (20)5.2中格栅的设计计算 (20)5.3细格栅的设计计算 (22)第六章沉砂池的设计计算 (26)第七章初次沉淀池的设计计算 (28)7.1设计要点 (28)7.2初次沉淀池的设计(为辐流式) (28)第八章 A2/O反应池的设计计算 (36)8.1设计要点 (36)8.2设计计算 (36)第九章曝气池的设计计算 (42)9.1设计要点 (42)9.2曝气池的设计 (42)第十章二沉池的设计计算 (46)10.1设计要求 (46)10.2.二次沉淀池的设计 (46)第十一章清水池的设计计算 (48)第十二章浓缩池的设计计算 (49)12.1设计要点 (49)12.2.浓缩池的设计 (49)第十三章消化池的设计计算 (51)13.1设计要点 (51)13.2消化池的设计 (51)第十四章污水处理厂总体布置 (58)14.1污水厂平面布置 (58)14.1.1污水处理厂平面布的原则 (58)14.1.2 污水处理厂的平面布置 (60)14.2污水厂的高程布置 (61)14.2.1污水厂高程的布置方法 (61)14.2.2本污水处理厂高程计算 (62)14.2.3 污水处理部分高程计算 (63)14.2.4 污泥处理部分搞程计算 (65)结论 (67)参考文献 .................................................................................... 错误!未定义书签。
摘要随着社会的进步和科学技术的不断发展,人们物质文化生活的需要也日益增加,环境问题成为了人们关注的焦点。
如何控制环境污染就成为我们所要面对的问题。
作为一名环境工程本科毕业生,应以治理污水,改善水质为己任,认真学习本科生的功课,在指导教师的指导下完成毕业设计,为将来的学习工作打下坚实的基础,争取在将来为解决水污染问题贡献自己的一份力量。
本设计是黑龙江省长春地区A市的排水工程,由两部分组成城市排水管网系统的设计和城市污水处理厂的设计两部分组成。
排水管网系统共设计了A和B两套方案,经过技术经济比较,选择A方案。
根据城市所处的地理位置和污水厂的规模,并考虑需脱氮除磷的要求,城市污水处理厂设计采用A2/O工艺。
污水处理流程为:粗格栅→泵房→细格栅→沉砂池→初沉池→厌氧池→缺氧池→好氧池→二沉池→消毒池→电磁流计量→出水排放。
污泥处理流程为:污泥→污泥提升泵房→污泥浓缩池→贮泥池→污泥消化池→贮泥池→污泥脱水间→泥饼外运。
通过此工艺的处理,出水水质将达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。
关键词:城市排水管网;城市污水处理厂;A2/O;沉淀池;污泥处理- I -AbstractWith the improvement of society and the development of technology, more and more resources are needed, Therefore the environment problem has been a focus. So how to control the environment pollution is what we have to be faced with.As college students of environment science and engineering, we should consider the control of water pollution and improvement of water quality as our duty. And study hard to do our devise with the help of our advisers.This design is a drainage system in A city of Heilongjiang Province.It is made up of two parts, the design of the system of urban drainage pipeline networks and design of the urban sewage treatment plant.A and B, two schemes of drainage pipeline network system have been designed altogether, and compare with each other by technological and economical methods, A scheme was chosen.According to the city’s geographical position and scale of sewage treatment plant,combining with the demand of denitrification and dephosphorization in treatment process, the sewage treatment plant designs and adopts A2/O craft. The sewage disposal procedure is: the medium screen → the pumping station → the fine screen → the grit pool → the preliminary settling tank → the anaerobic pool → the anoxic pool → the oxic pool → the secondary settling tank → the disinfection tank → the electromagnetic flow meter→discharged into the river. The sludge treatment procedure is: sludge → the bumping room → the gravity thickening tank → the sludge storing tank → the sludge digesting pool →the sludge storing tank →the sludge dewatering room. After the treatment of this craft, the disposal water quality will reach the first class B standard of《pollutant discharge standard of urban sewage treatment plant 》(GB18918-2002 ).Keywords: urban drainage pipeline networks, urban sewage treatment plant, A2/O, settling tank, sludge treatment- II -哈尔滨工业大学本科毕业设计(论文)目录摘要 (I)Abstract (II)第1章绪论 (1)1.1概述 (1)1.1.1城市概况 (1)1.1.2目的和意义 (1)1.1.3设计内容 (2)1.2 设计原始资料 (2)1.2.1 地形与城市规划资料 (2)1.2.2 气象资料 (4)1.2.3 地质资料 (4)1.2.4 受纳水体水文与水质资料 (4)第2章城市排水管网设计与计算 (6)2.1 城市排水管网设计原则 (6)2.1.1 排水系统的规划设计原则 (6)2.1.2 排水管网定线原则 (7)2.2 设计依据及排水体制的选择 (7)2.2.1 设计依据 (7)2.2.2 排水系统体制的选择 (8)2.3 城市污水管网计算 (9)2.3.1 城市污水管网设计方案的确定 (9)2.3.2 城市污水管网A方案水力计算 (10)2.3.3 城市污水管网B方案水力计算 (16)2.3.4 城市污水管网结果分析 (17)2.4 城市雨水管道水力计算 (18)2.4.1雨水管道定线 (18)2.4.2主要设计参数的确定 (18)2.4.3汇水面积计算 (20)2.4.4雨水管道水力计算 (21)- III -哈尔滨工业大学本科毕业设计(论文)第3章城市污水处理厂设计计算 (22)3.1 城市污水水量水质计算 (22)3.1.1污水水量水质计算 (22)3.1.2 污水中污染物的处理程度确定 (24)3.2 城市污水处理工艺流程的确定 (32)3.2.1 国内城市污水处理工艺的比较和选用 (32)3.2.2 本设计处理工艺的确定 (33)3.3 污水处理构筑物的设计与计算 (34)3.3.1 总泵站 (34)3.3.2 细格栅 (41)3.3.3 沉砂池 (44)3.3.4 初沉池集配水井 (47)3.3.5 初次沉淀池 (49)3.3.6 A2/O生物反应池 (54)3.3.7 二沉池集配水井 (66)3.3.8 二次沉淀池 (68)3.3.9 消毒接触池 (73)3.3.10 计量设备 (75)3.4 污泥处理构筑物的设计与计算 (75)3.4.1 污泥量计算 (75)3.4.2 污泥浓缩池 (78)3.4.3 贮泥池 (83)3.4.4 污泥消化池 (85)3.4.4 污泥脱水 (107)第4章城市污水处理厂的布置 (112)4.1 污水厂的平面布置 (112)4.1.1 各处理单元构筑物的平面布置 (112)4.1.2 管道及渠道的平面布置 (112)4.1.3 附属建筑物 (113)4.2 污水厂的高程布置 (114)4.2.1 污水的高程布置 (114)4.2.1 污泥的高程布置 (116)4.3 土建与公共工程 (116)- IV -哈尔滨工业大学本科毕业设计(论文)4.3.1 土建工程 (116)4.3.2 公共工程 (116)第5章污水处理厂投资估算与技术经济评价 (119)5.1 投资估算 (119)5.1.1 估算范围 (119)5.1.2 编制依据 (119)5.1.3 投资估算 (119)5.2 劳动定员 (121)5.2.1 生产组织 (121)5.2.2 劳动定员 (121)5.2.3 人员培训 (121)5.3 运行费用和成本核算 (122)5.3.1 成本估算的有关单价 (122)5.3.2 运行成本估算 (122)5.3.3 运行成本核算 (124)致谢 (125)参考文献 (126)附录1 污水管网电算结果(方案A) (128)附录2 污水管网电算结果(方案B) (162)附录3 雨水管道电算结果 (201)附录4 空气管路计算表 (204)附录5 污水高程计算表 (206)附录6 污泥高程计算表 (208)- V -哈尔滨工业大学本科毕业设计(论文)第1章绪论1.1概述随着科学技术的不断发展,环境问题越来越受到人们的关注,为保护环境,解决城市排水对水体的污染,需要建立有效的污水处理设施,这不仅对现存的污染状况予以有效的治理,而且对将来工、农业的发展以及人民群众健康水平的提高都有极为重要的意义,因此,城市排水问题的合理解决必将带来重大的社会效益。
城镇生活污水厂处理工艺设计方案摘要本次大赛设计是以相关的资料为依据,设计一座城镇生活污水处理厂,其日处理量为20000 m3/dm。
由于城市污水的主要成分为有机物,所以本次设计采用了改良型氧化沟工艺。
氧化沟,又称循环曝气池,类似活性污泥的延时曝气法,近年来我国中小城市污水处理厂采用这一工艺较多。
氧化沟目前常用的有卡鲁塞尔氧化沟、奥贝尔氧化沟、三沟及双沟等交替式氧化沟等几种形式,其中以前两种更为常用。
氧化沟的共同特点是污水在循环水池中流动,曝气方式主要采用表曝方式(近年来,也有鼓风曝气方式的氧化沟,也被称作氧化沟池型的普曝,结合了氧化沟及微孔曝气的优点)。
改良型氧化沟不设初沉池,处理设施大大简化。
氧化沟具有传统活性污泥法的特点,有机物去除率高,也具有脱氮除磷的功能。
改良型氧化沟这种高效、简单的特点,适合大、中、小型污水处理。
改良型氧化沟内缓慢流动时大量有机物被去除,处理后的水达到国家规定的二级排放标准,允许直接排放入河流和湖泊或用于m。
处理后的活性污泥经脱水后可被用作肥料。
本次设计在构想中充分考虑了环境效益与经济效益之间的联系,尽量最大限度使两者协调。
关键词:改良型氧化沟活性污泥脱氮除磷环境效益目录前言 (5)第一篇设计说明书 (6)一、污水厂的设计规模及进出水水质 (6)二、处理程度的计算 (6)三、城市污水处理设计 (7)1、工艺流程的比较 (7)2、工艺流程的选择 (10)四、污水处理构筑物的设计说明 (10)1、粗格栅的设计 (10)2、集水井和提升泵房 (11)3、细格栅 (12)4、沉砂池 (12)5、氧化沟 (13)6、二沉池 (14)7、接触消毒池 (14)五、污泥处理构筑物的设计计算 (15)1、污泥泵房 (15)2、排泥泵房 (15)3、污泥浓缩池 (15)4、贮泥池及提升泵 (16)5、脱水间 (16)六、污水厂平面、高程布置 (17)1、平面布置 (17)2、管道布置 (17)3、高程布置 (17)第二篇污水厂设计计算书 (18)七、污水处理构筑物设计 (18)1、粗格栅的设计 (18)2、集水井与提升泵房 (20)3、细格栅的设计 (21)4、平流沉砂池的设计 (24)5、氧化沟的设计 (27)6、二沉池的设计 (33)7、接触消毒池与加氯间的设计 (36)八、污泥处理构筑物设计 (36)1、污泥泵房 (36)2、排泥泵房 (37)3、污泥浓缩池 (38)4、贮泥池及提升泵 (41)5、脱水间 (41)九、高程计算 (42)1、选用管道 (42)2、管道计算 (42)3、污水厂的高程布置方法 (48)4、各构筑物高程确定 (48)十、经济分析 (48)1、估算范围及编制依据 (48)2、固定资产投资估算 (49)2.2设备投资 (50)3、运行费用计算 (51)3.2.2 工资福利开支 (52)3.2.3 生产用水水费开支 (52)3.2.4运费 (52)3.2.5 维护维修费 (52)3.2.6 管理费用 (52)3.2.7 运行成本核算 (52)结论 (53)参考文献 (54)致谢 (55)前言水是人类生产、生活中不可缺少的组成部分,在各个领域内发挥着重要的作用。
污水处理厂设计说明书一、引言污水处理是城市发展和环境保护的重要组成部分。
随着人口的增加和工业化的发展,废水排放量也不断增加,对环境造成了严重的污染。
污水处理厂的设计和建设是解决这一问题的关键。
本文将针对污水处理厂的设计进行详细说明,包括工艺流程、设备选择、操作维护等方面。
二、污水处理厂工艺流程(一)进水处理污水处理厂的工艺流程首先是进水处理,确保污水在进入厂区前得到预处理,以去除大颗粒物质和有机负荷。
常见的进水预处理工艺包括格栅、沉砂池、调节池等。
格栅可以去除大颗粒物质,沉砂池可以去除沉积物,而调节池可以平衡进水的流量和水质。
(二)生化处理生化处理是污水处理厂的核心环节,主要通过微生物的降解作用去除有机负荷。
常见的生化处理工艺有活性污泥法、厌氧处理法、膜法等。
活性污泥法是最常用的工艺,通过投加活性污泥,利用微生物对有机物进行降解,同时产生污泥和沼气,具有较高的去除率和较低的投资成本。
(三)沉淀处理生化处理后的污水需要进行沉淀处理,以去除残余的悬浮颗粒物质和污泥。
常见的沉淀池包括一沉池、二沉池和气浮池等。
一沉池适用于较小的处理规模,可以去除大部分悬浮颗粒物质;二沉池则适用于较大的处理规模,能够进一步提高去除率;气浮池则适用于高浓度悬浮物质的去除。
(四)消毒处理为了确保出水质量达标,处理后的污水需要进行消毒处理,杀灭其中的病原微生物。
常见的消毒方法有紫外线照射、氯消毒等。
紫外线照射是一种较为常用的无化学消毒方式,通过紫外线的照射,破坏微生物的生物结构;氯消毒则是通过加入氯化物,生成有氯消毒副产物,达到杀灭微生物的目的。
三、污水处理厂设备选择(一)进水预处理设备进水预处理设备的选择应根据进水水质和处理量来确定。
常见的进水预处理设备有格栅、沉砂池、调节池等。
格栅可采用机械格栅或光栅,选择应考虑排水量和清理方便性;沉砂池可采用圆形或矩形,选择应考虑沉砂效果和占地面积;调节池可根据进水水质的变化确定尺寸和配置。
某市污水处理厂AAO工艺设计水处理毕业设计一、设计背景和目的随着城市规模的不断扩大和人口的增加,城市污水排放量也日益增多。
为了保护环境和人民的健康,对污水进行处理和净化是至关重要的。
市污水处理厂需要进行AAO工艺的设计,以提高污水处理的效率和净化效果,并满足国家和地方对水环境质量的要求。
二、设计方案1.工艺流程设计:采用AAO工艺进行污水处理。
在进水口加装混合器,将污水中的固体颗粒和悬浮物进行混合和搅拌,使其充分与氧气接触。
然后将混合后的污水流入好氧生物反应器,由好氧微生物进行有机物的降解和氨氮的氧化,同时产生污泥。
随后,将反应器中的污水流入厌氧生物反应器,由厌氧微生物对有机物进行进一步降解,并生成甲烷气体。
最后,将反应器产生的污泥和沉淀物进行分离和处理,然后将出水进行消毒和净化处理。
2.设备选型和配置:根据设计要求,选用适合AAO工艺的设备,如搅拌器、曝气设备、好氧反应器、厌氧反应器、污泥分离设备、消毒设备等,确保设备的性能和可靠性。
3.操作管理和自动化控制:建立完善的操作管理制度,培训和管理操作人员,定期对设备和工艺进行检修和维护。
同时,可以使用先进的自动化控制系统,对整个污水处理过程进行实时监测和控制,提高处理效率和稳定性。
三、设计效果和评估通过AAO工艺对污水进行处理,可以有效地去除污水中的有机物和氨氮等污染物,提高处理效果和水质净化率。
同时,AAO工艺还能够产生甲烷气体,可作为能源的利用,降低处理成本和环境负荷。
四、安全和环保措施在设计和运营过程中,需要注重安全和环保措施的落实。
对于设备的选择和安装,要符合相关的国家和行业标准,确保设备的安全可靠性。
同时,要合理排放污泥和废水,并对其进行处理和处置,以避免对环境造成污染和损害。
五、总结和展望污水处理对于城市环境的改善和人民的健康至关重要。
本次毕业设计以市污水处理厂AAO工艺的设计为例,提高了污水处理效率和净化效果。
未来,还需进一步探索和研究,开发更加高效和可持续的污水处理工艺,以满足城市污水排放的不断增长的需求。
A2/O工艺计算说明书1.概述城市污水处理厂的污水主要是来自居民生活污水和市区内的工业废水,该工业废水在排入市政管网之前已经过适当处理,并达到国家二级排放标准,可直接排入污水处理厂进行进一步处理。
该生活污水和工业废水经市政排水管网固定排放口收集。
假定污水中主要是可溶性有机物、氮、磷等,而且有机物的浓度不是特别高,可生化性较好,在处理时需要考虑常规的脱氮除磷。
根据《室外排水设计规范》(GB50014-2006)确定该城区水质特点为:设计水质BOD COD SS TN TPmg/L 240 400 250 40 8污水排放的要求执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准,则出水水质特点为:控制指标BOD COD SS TN TP 含量(≤mg/L)20 60 20 20 12.工艺选择和评价在活性污泥法中,根据《室外排水设计规范》(GB50014-2006)推荐对于设计流量小于10×104m3/d的城市污水处理厂可以采用氧化沟法、A2/O法进行处理。
由于氧化沟对于脱氮除磷效果不是很好,而且占地比较大。
所以应选用A2/O工艺进行生化处理。
A2/O工艺是污水处理工艺中的应用典范,它由脱氮工艺和除磷工艺综合起来的一种能够起到同步脱氮除磷作用的污水处理工艺。
它是传统活性污泥工艺、生物脱氮除磷工艺的综合体,并具有优良的BOD降解和脱氮除磷的效果,其工程投资低,且有丰富的、可借鉴的设计运行经验,所以在国内外城市污水处理厂经常被采用。
A2/O工艺原理是有机氮通过氨化作用转变为氨氮,好氧下继续发生硝化转变为亚硝态氮和硝态氮,含有硝态氮与原污水一起从好氧池流到进行反硝化脱氮作用的缺氧区;磷在厌氧条件下被聚磷菌释放,在好氧区又被聚磷菌吸收,达到除磷目的;污染物在好氧区被氧化降解,去除COD和BOD5。
根据A2/O脱氮除磷工艺主要设计参数来考查该城区污水是否可采用A2/O工艺。
摘要我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
本设计要求处理水量为28000m3/d 的城市生活污水,设计方案针对已运行稳定有效的A2/O 活性污泥法工艺处理城市生活污水。
A2/ O工艺由于不同环境条件,不同功能的微生物群落的有机配合,加之厌氧、缺氧条件下,部分不可生物降解的有机物(COD NB)能被开环或断链,使得N、P、有机碳被同时去除,并提高对COD NB- 的去除效果。
它可以同时完成有机物的去除,硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3 -N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
厌氧池和好氧池联合完成除磷功能。
关键词:城市生活污水,活性污泥,A2/O第一章设计任务书1.1设计题目某县污水处理厂设计1.2设计资料1.2.1城市概况西北某县,十年后城区规划人口为16 万,城市工业主要有食品、酿造、机械、电子、纺织等。
工业废水占城市总废水量的20%,各工业废水经过处理达到国家标准后排入城市污水管网。
1.2.2排水系统雨水与污水采用分流制,生活污水与工业废水为合流制,污水处理厂只考虑处理生活污水与工业废水,输入污水厂的污水干管直径为1000mm,管底埋深为地面以下5.3m,充满度为0.5 。
水量(1)综合生活污水量每人每日平均污水量定额取n 为120L,生活污水量总变化系数根据公式K z=2.72/Q 0.108计算,其中Q的单位为L/s 。
第1 章概述1.1 基本设计资料毕业设计名称某市15万吨/天城市生活污水处理厂初步设计基本资料:1.设计规模污水设计流量:,流量变化系数:2.原污水水质指标BOD=180mg/L COD=410mg/L SS=200mg/LNH3-N=30mg/L3.出水水质指标符合《城镇污水处理厂污染物排放国家二级标准》BOD=20mg/L COD=70mg/L SS=30mg/LNH3-N=15mg/L4.气象资料某地处海河流域下游,河网密布,洼淀众多。
历史上某的水量比较丰富。
海河上游支流众多,长度在10公里以上的河流达300多条,这些大小河流汇集成中游的永定河、北运河、大清河、子牙河和南运河五大河流。
这五大河流的尾闾就是海河,统称海河水系,是某市工农业生产和人民生活的水源河道。
某属于暖温半湿润大陆季风型气候,季风显著,四季分明。
春季多风沙,干旱少雨;夏季炎热,雨水集中;秋季寒暖适中,气爽宜人;冬季寒冷,干燥少雪。
除蓟县山区外,全年平均气温为摄氏11度以上。
1月份平均气温在摄氏零下4-6度,极低温值在摄氏零下20度以下,多出现于2月份。
7月份平均气温在摄氏26度上下。
某年平均降水量约为500-690毫米。
在季节分配上,夏季降水量最多,占全年总降水量的75%以上,冬季最少,仅占2%。
由于降水量年内分配不均和年际变化大,造成某在历史上经常出现春旱秋涝现象。
某的风向有明显的季节变化。
冬季多刮西北风、偏北风;夏季多东南风、南风;春秋两季多西南风,主导风向东南风。
5.厂址及场地状况某以平原为主,污水处理厂拟用场地较为平整,占地面积20公顷。
厂区地面标高10米,原污水将通过管网输送到污水厂,来水管管底标高为5米(于地面下5米)。
1.2 设计内容、原则1.2.1 设计内容污水处理厂工艺设计流程设计说明一般包括以下内容:(1)据城市或企业的总体规划或现状与设计方案选择处理厂厂址;(2)处理厂工艺流程设计说明;(3)处理构筑物型式选型说明;(4)处理构筑物或设施的设计计算;(5)主要辅助构筑物设计计算;(6)主要设备设计计算选择;(7)污水厂总体布置(平面或竖向)及厂区道路、绿化和管线综合布置;(8)处理构筑物、主要辅助构筑物、非标设备设计图绘制;(9)编制主要设备材料表。
1.2.2 设计的原则考虑城市经济发展及当地现有条件,确定方案时考虑以下原则:(1)要符合适用的要求。
首先确保污水厂处理后达到排放标准。
考虑现实的技术和经济条件,以及当地的具体情况(如施工条件),在可能的基础上,选择的处理工艺流程、构(建)筑物型式、主要设备、设计标准和数据等,应最大限度地满足污水厂功能的实现,使处理后污水符合水质要求。
(2)污水厂设计采用的各项设计参数必须可靠。
(3)污水处理厂设计必须符合经济的要求。
设计完成后,总体布置、单体设计及药剂选用等要尽可能采取合理措施降低工程造价和运行管理费用。
(4)污水处理厂设计应当力求技术合理。
在经济合理的原则下,必须根据需要,尽可能采用先进的工艺、机械和自控技术,但要确保安全可靠。
(5)污水厂设计必须注意近远期的结合,不宜分期建设的部分,如配水井、泵房及加药间等,其土建部分应一次建成;在无远期规划的情况下,设计时应为以后的发展留有挖潜和扩建的条件。
(6)污水厂设计必须考虑安全运行的条件,如适当设置分流设施、超越管线等。
第2 章工艺方案的选择2.1 水质分析本项目污水处理的特点:污水以有机污染物为主,BOD/COD=0.44,可生化性较好,采用生化处理最为经济。
BOD/TN>3.0,COD/TN>7,满足反硝化需求;若BOD/TN>5,氮去除率大于60%。
2.2 工艺选择按《城市污水处理和污染防治技术政策》要求推荐,20万t/d规模大型污水厂一般采用常规活性污泥法工艺,10-20万t/d 污水厂可以采用常规活性污泥法、氧化沟、SBR、AB 法等工艺,小型污水厂还可以采用生物滤池、水解好氧法工艺等。
对脱磷或脱氮有要求的城市,应采用二级强化处理,如工艺,A/O工艺,SBR 及其改良工艺,氧化沟工艺,以及水解好氧工艺,生物滤池工艺等。
2.2.1 方案对比工艺类型氧化沟SBR法A/O法技术比较1.污水在氧化沟内的停留时间长,污水的混合效果好2.污泥的BOD负荷低,对水质的变动有较强的适应性1.处理流程短,控制灵活2系统处理构筑物少,紧凑,节省占地1.低成本,高效能,能有效去除有机物2.能迅速准确地检测污水处理厂进出水质的变化。
经济比较可不单独设二沉池,使氧化沟二沉池合建,节省了二沉池合污泥回流系统投资省,运行费用低,比传统活性污泥法基建费用低30%能耗低,运营费用较低,规模越大优势越明显使用范围中小流量的生活污水和工业废水中小型处理厂居多大中型污水处理厂稳定性一般一般稳定考虑该设计是中型污水处理厂,A/O工艺比较普遍,稳定,且出水水质要求不是很高,本设计选择A/O工艺。
2.2.2 工艺流程第3 章污水处理构筑物的设计计算3.1中格栅及泵房格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。
本设计采用中细两道格栅。
3.1.1 中格栅设计计算1.设计参数:最大流量:栅前水深:,栅前流速:()过栅流速()栅条宽度,格栅间隙宽度格栅倾角2.设计计算:(1)栅条间隙数:根设四座中格栅:根(2)栅槽宽度:设栅条宽度(3)进水渠道渐宽部分长度:设进水渠道宽,渐宽部分展开角度根据最优水力断面公式(4)栅槽与出水渠道连接处的渐宽部分长度:(5)通过格栅的水头损失:,h0─────计算水头损失;g─────重力加速度;K─────格栅受污物堵塞使水头损失增大的倍数,一般取3;ξ─────阻力系数,其数值与格栅栅条的断面几何形状有关,对于锐边矩形断面,形状系数β= 2.42;m(6)栅槽总高度:设栅前渠道超高(7)栅槽总长度:(8)每日栅渣量:格栅间隙情况下,每污水产。
所以宜采用机械清渣。
(9)格栅选择选择XHG-1400回转格栅除污机,共4台。
其技术参数见下表。
表3-1-1 GH-1800链式旋转除污机技术参数型号电机功率/kw 设备宽度/mm设备总宽度/mm栅条间隙/mm安装角度HG-1800 1.5 1800 2090 40 60°3.1.2 污水提升泵房泵房形式取决于泵站性质,建设规模、选用的泵型与台数、进出水管渠的深度与方位、出水压力与接纳泵站出水的条件、施工方法、管理水平,以及地形、水文地质情况等诸多因素。
泵房形式选择的条件:(1)由于污水泵站一般为常年运转,大型泵站多为连续开泵,故选用自灌式泵房。
(2)流量小于时,常选用下圆上方形泵房。
(3)大流量的永久性污水泵站,选用矩形泵房。
(4)一般自灌启动时应采用合建式泵房。
综上本设计采用半地下自灌式合建泵房。
自灌式泵房的优点是不需要设置引水的辅助设备,操作简便,启动及时,便于自控。
自灌式泵房在排水泵站应用广泛,特别是在要求开启频繁的污水泵站、要求及时启动的立交泵站,应尽量采用自灌式泵房,并按集水池的液位变化自动控制运行。
集水池:集水池与进水闸井、格栅井合建时,宜采用半封闭式。
闸门及格栅处敞开,其余部分尽量加顶板封闭,以减少污染,敞开部分设栏杆及活盖板,确保安全。
1.选泵(1)城市人口为1000000人,生活污水量定额为。
(2)进水管管底高程为,管径,充满度。
(3)出水管提升后的水面高程为。
(4)泵房选定位置不受附近河道洪水淹没和冲刷,原地面高程为。
2.设计计算(1)污水平均秒流量:(2)污水最大秒流量:选择集水池与机器间合建式泵站,考虑4台水泵(1台备用)每台水泵的容量为。
(3)集水池容积:采用相当于一台泵的容量。
有效水深采用,则集水池面积为(4)选泵前扬程估算:经过格栅的水头损失取集水池正常工作水位与所需提升经常高水位之间的高差:(集水池有效水深,正常按计)(5)水泵总扬程:总水力损失为,考虑安全水头一台水泵的流量为根据总扬程和水量选用型潜污泵表3-1-2 500WQ2700-16-185型潜污泵参数型号流量转速扬程功率效率%出水口直径2700 725 16 185 82 5003.2 细格栅3.2.1 细格栅设计计算1.设计参数:最大流量:栅前水深:,栅前流速:()过栅流速:()栅条宽度:,格栅间隙宽度格栅倾角:2.设计计算(1)栅条间隙数:根设四座细格栅:根(2)栅槽宽度:设栅条宽度(3)进水渠道渐宽部分长度:设进水渠道宽,渐宽部分展开角度根据最优水力断面公式(4)栅槽与出水渠道连接处的渐宽部分长度:(5)通过格栅的水头损失:,h0——计算水头损失;g ——重力加速度;K ——格栅受污物堵塞使水头损失增大的倍数,一般取3;ξ——阻力系数,其数值与格栅栅条的断面几何形状有关,对于锐边矩形断面,形状系数β= 2.42;(6)栅槽总高度:设栅前渠道超高(7)栅槽总长度:(8)每日栅渣量:格栅间隙情况下,每污水产。
所以宜采用机械清渣。
(9)格栅选择选择XHG-1400回转格栅除污机,共2台。
其技术参数见下表:表3-2 XHG-1400回转格栅除污机技术参数型号电机功率kw设备宽度mm设备总宽度mm沟宽度mm沟深mm安装角度XHG-1400 0.75~1.1 1400 1750 1500 4000 60°3.3曝气沉砂池沉砂池的功能是去除比重较大的无机颗粒,设于初沉池前以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。
该厂共设两座曝气沉砂池,为钢筋混凝土矩形双格池。
池上设移动桥一台,(桥式吸砂机2格用一台,共2台)安装吸砂泵2台,吸出的砂水经排砂渠通过排砂管进入砂水分离器进行脱水。
桥上还安装浮渣刮板,池末端建一浮渣坑,收集浮渣。
3.3.1 曝气沉砂池主体设计1.设计参数:最大设计流量最大设计流量时的流行时间最大设计流量时的水平流速2.设计计算:(1)曝气沉砂池总有效容积:设则一座沉砂池的容积(2)水流断面积:设,(3)沉砂池断面尺寸:设有效水深,池总宽每格宽池底坡度,超高(4)每格沉砂池实际进水断面面积:(5)池长:(6)每格沉砂池沉砂斗容量:(7)每格沉砂池实际沉砂量:设含沙量为污水,每两天排沙一次,﹤(8)每小时所需空气量:设曝气管浸水深度为。
取。
3.3.2 曝气沉砂池进出水设计1.沉砂池进水曝气沉砂池采用配水槽,来水由提升泵房和细格栅后水渠直接进入沉砂池配水槽,配水槽尺寸为:,其中槽宽取。
,与池体同宽取。
为避免异重流影响,采用潜孔入水,过孔流速控制在之间,本设计取。
则单格池子配水孔面积为:设计孔口尺寸为:,查给排水手册1第671页表得,水流径口的局部阻力系数,则水头损失:2.沉砂池出水出水采用非淹没式矩形薄壁跌水堰,堰宽同池体宽。