一阶线性常系数差分方程的解、平衡点及其稳定性
01
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
自然环境下,b=0
02
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
人工孵化条件下
03
差分方程的平衡点
令xk=xk+1=x得
04
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
添加标题
X(k)=p*(xk-1)+q*(xk-2);
添加标题
end
K=(0:20)’; Y1=zwfz(100,21,0.18); Y2=zwfz(100,21,0.19); Y3=zwfz(100,21,0,20); Round([k,y1’,y2’,y3’]) Plot(k,y1,k,y2,’:’,k,y3,’o’), Gtext(‘b=0.18’),gtext(‘b=0.19’),gtext(‘b=0.20’)
plot(k,y2,':') >> plot(k,y2,'--') >> plot(k,y2,'r') >> plot(k,y2,'y') >> plot(k,y2,'y',k,y1,':') >> plot(k,y2,k,y1,':') >> plot(k,y2,'oy',k,y1,':') 用gtext(‘r=0.0194’),gtext(‘r=-0.0324’),gtext(‘r=-0.0382’)在图上做标记。
可以看到时间充分长以后3个城市汽车数量趋于180,300,120 可以考察这个结果与初始条件是否有关 若最开始600辆汽车都在A市,可以看到变化时间充分长以后,各城市汽车数量趋于稳定,与初始值无关