ANSYS高级接触问题13
- 格式:ppt
- 大小:2.15 MB
- 文档页数:125
接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。
点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。
点─面接触单元点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。
基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
ANSYS接触问题的求解方法接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。
法向关系在法向,必须实现两点:接触力的传递;两接触面间没有穿透。
ANSYS 通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法通过接触接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。
法向关系在法向,必须实现两点:1.接触力的传递;2.两接触面间没有穿透。
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力对面面接触单元17*,接触刚度由实常数FKN来定义。
穿透值在程序中通过分离的接触体上节点间的距离来计算。
接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。
并不改变总刚K的大小。
这种罚函数法有以下几个问题必须解决:1.接触刚度FKN应该取多大?接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
2.既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。
当然,在需要时,也可以把接触刚度直接定义,FKN 输入为负数,则程序将其值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。
ANSYS高级接触分析ANSYS是一种工程仿真软件,可以用于进行各种结构、流体和多物理场的仿真分析。
其中,高级接触分析是ANSYS的一项强大功能,可以用于模拟两个或多个物体之间的接触行为,包括刚性接触、弹性接触和非线性接触。
本文将介绍ANSYS高级接触分析的基本原理、应用领域和实例。
ANSYS高级接触分析的基本原理是通过数值方法来求解接触问题。
其基本思想是将接触问题分解为两个或多个物体之间的几何约束和力学方程,并通过离散化和迭代求解来得到接触状态和接触力。
在求解过程中,可以考虑物体之间的几何形状、材料特性、摩擦力和接触刚度等因素,以模拟真实接触行为。
ANSYS高级接触分析的应用领域非常广泛,例如机械工程、汽车工程、电子工程和生物医学工程等。
在机械工程领域,可以用于模拟齿轮传动、轴承接触和摩擦等问题。
在汽车工程领域,可以用于模拟刹车片与刹车盘之间的接触行为。
在电子工程领域,可以用于模拟芯片与散热器之间的接触热阻。
在生物医学工程领域,可以用于模拟骨骼和关节之间的接触力和摩擦力。
下面以模拟齿轮传动为例,介绍ANSYS高级接触分析的实例。
假设有两个齿轮,需要分析它们之间的接触行为。
首先,在ANSYS中建立齿轮的几何模型,并定义材料特性和接触边界条件。
然后,设置求解器和参数,运行仿真计算。
最后,通过结果分析和后处理,得到齿轮之间的接触力、接触应力和接触变形等信息。
在该实例中,ANSYS高级接触分析可以帮助工程师评估齿轮传动的安全性和可靠性。
通过模拟齿轮之间的接触行为,可以得到接触力的分布和接触应力的大小,进而判断齿轮是否会发生磨损、疲劳和断裂等问题。
如果发现问题,可以进一步优化齿轮设计,以提高传动效率和使用寿命。
总的来说,ANSYS高级接触分析是一种强大的工程仿真技术,可以用于模拟各种接触问题。
通过该技术,工程师可以评估接触行为的性能和可靠性,优化设计方案,提高产品的质量和竞争力。
因此,掌握ANSYS高级接触分析技术对于工程师来说是非常重要的。
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
点-点的接触在ANSYS程序中提供了三种点-点的接触单元,在此,我们主要介绍前二种:[$#8226] CONTAC12[$#8226] CONTAC52[$#8226] COMBIN40我们可以在预先知道接触位置的单点接触问题中使用点-点的接触单元。
也可以在接触面网格完全相同的情况,例如过盈装配问题中,用点-点的接触元来模型两个面之间的接触。
CONTAC12:2-D点-点的接触单元这个单元是通过总体坐标系X-Y平面内的二个结点来定义的,可以用于2-D平面应力,平面应变和轴对段分析中。
程序通过一个相对于总体坐标X轴的输入角Q(用度表示)来定们接触面,接触面不一定垂直于结点I,J的连线,并且结点I,J可以位于同一位置。
CONTAC12的单元坐标系是这样定义的,总体坐标的X轴逆时针旋转Q角便得到正的滑动方向,法向方法N垂直于S,正的法向位移有张开缝隙的作用。
我们可以用下面二种方法来定义初始过盈量或缝隙。
[$#8226] 明确定义实常数INTF,这时单元关键字K4必须设置成“Real Consttant”(这是这个选项的缺省值)。
一个负的INTF值表示处于初始张开的缝隙状态。
[$#8226] 让程序以初始节点位置为基础计算初始过盈量或缝隙,这时单元关键字k4必须设置为“Initnodelocats”。
初始分开的结点定义了初始张开的缝隙。
一个实常数,初始单元状态(START)一旦被定义,程序将忽略由INTF给定的条件,有效的开始条件是:[$#8226] START=0:由INTF决定缝隙状态[$#8226] START=1:缝隙是关闭的,且没有滑动[$#8226] START=2:缝隙是关闭的,且有方向的滑动[$#8226] START=-2:缝隙是关闭的,且有负方向的滑动[$#8226] START=3:缝隙是张开的一个对开始条件的好的估计将有助于问题的收敛。
CONTAC12的实常数:界面角THETA-定义接触面方位的角度法向刚度KN-在法线方向的接触刚度位移过盈量INTF-初始过盈量基缝隙初始单元状态START粘附刚度KS-在滑动方向的接触刚度KS缺省到KNCONTAC12的单元关键字:摩擦类型K1 弹性库仑刚性库仑方位角来源于 K2 实常数THETA运动方向过盈量或缝隙基于 K4 实常数INTF初始接触的位置接触时间预测目标 K7 最小的时间增量合理的增量使用CONTAC12时的一些注意点:1、检查单元坐标系,保证使所定义的是一个间隙而不是一个钩子。
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中变得越来越重要。
ANSYS软件作为一款强大的工程仿真软件,其在接触问题上的分析和处理能力得到了广泛应用。
本文将介绍基于ANSYS软件的接触问题分析及在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种典型的非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS中,接触问题主要通过定义接触对、设置接触面参数、定义接触刚度等方式进行模拟。
2. ANSYS软件接触问题处理流程(1)建立模型:在ANSYS中建立涉及接触问题的物理模型。
(2)定义材料属性:设置模型中各部分的材料属性,包括弹性模量、密度、泊松比等。
(3)划分网格:对模型进行网格划分,以便更好地进行后续的数值分析和计算。
(4)定义接触对:根据实际需求,定义接触对,并设置相应的接触面参数。
(5)求解设置:设置求解器、求解参数等。
(6)结果分析:对求解结果进行分析,包括应力分布、位移变化等。
三、ANSYS软件在工程中的应用1. 机械工程领域在机械工程领域,ANSYS软件被广泛应用于分析各种机械零件的接触问题。
例如,齿轮传动中齿轮与齿轮之间的接触问题、轴承中滚动体与内外圈的接触问题等。
通过ANSYS软件的分析,可以有效地预测机械零件的应力分布、疲劳寿命等,为机械产品的设计和优化提供有力支持。
2. 土木工程领域在土木工程领域,ANSYS软件被广泛应用于分析土与结构之间的接触问题。
例如,桥梁、大坝等结构物与地基之间的相互作用、地震作用下建筑结构的动力响应等。
通过ANSYS软件的分析,可以有效地评估结构的稳定性和安全性,为土木工程的设计和施工提供有力支持。
3. 汽车工程领域在汽车工程领域,ANSYS软件被广泛应用于分析汽车零部件的接触问题。
例如,汽车发动机的缸体与缸盖之间的密封问题、汽车轮胎与地面的摩擦问题等。