高考数学题型全归纳数列求和的若干常用方法
- 格式:doc
- 大小:106.50 KB
- 文档页数:4
一.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和 公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2n n n ++++=+,222112(1)(21)6n n n n +++=++,33332(1)123[]2n n n +++++=例1、已知{}n a 是首项为1的等比数列,若n S 是{}n a 的前n 项和,且369S S =,求数 列1{}na 的前n 项和n S 。
解析:若1q =,则由369S S =,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由369S S =,得9×a 11-q 31-q =a 11-q 61-q,解得q =2.故1112n n n a a q --==,则111()2n n a -=. 于是数列1{}na 是以1为首项,12为公比的等比数列,其前5项和为111[1()]1222()221212n n n n S -⨯-==-⨯=--。
练习:(1)等比数列{}n a 的前n 项和21n n S =-,则2222123n a a a a +++⋅⋅⋅+=_____(答:413n -);(2)计算机是将信息转换成二进制数进行处理的。
二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是132********123=⨯+⨯+⨯+⨯,那么将二进制120052)11111(个转换成十进制数是_______(答:200521-)二、分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在 一起,再运用公式法求和.例2、数列{(1)}nn -的前2 010项的和2010S 为 ( ) A .-2 010 B .-1 005 C .2 010 D .1 005解、法一: S 2 010=-1+2-3+4-…-2 007+2 008-2 009+2 010=-(1+3+5+…+2 009)+(2+4+6+…+2 010)=-1 005×2 0102+1 005×2 0122=1 005.法二: S 2 010=-1+2-3+4-5+6-…-2 009+2 010=(-1+2)+(-3+4)+(-5+6)+…+(-2 009+2 010) =1005111111005++++⋅⋅⋅+=个练习:求:1357(1)(21)nn S n =-+-+-+--(答:(1)nn -⋅) 三、倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公 式的推导方法),如例3、已知1()()12F x f x =+-是R 上的奇函数, 12(0)()()n a f f f n n=+++⋅⋅⋅+ *1()(1)()n f f n N n-+∈ ,则数列{a n }的通项公式为( ) A .a n =n -1 B .a n =n C .a n =n +1 D .a n =n 2解析:∵1()()12F x f x =+-是奇函数, ∴()()F x F x -=-. 即11()1()122f x f x --=-++,∴11()()222f x f x -++=.即只需m +n =1,则f (m )+f (n )=2,而12(0)()()n a f f f n n =+++⋅⋅⋅+1()(1)n f f n-+ ① 11(1)()()(0)n n a f f f f n n-=++⋅⋅⋅++ ② ①+②,得112[(0)(1)][()()][(1)(0)]2(1)n n a f f f f f f n nn-=++++⋅⋅⋅++=+ ∴a n =n +1.练习:①求证:01235(21)(1)2nn n n n n C C C n C n +++++=+;②已知22()1x f x x =+,则111(1)(2)(3)(4)()()()234f f f f f f f ++++++=___ (答:72) 四、错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构 成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 如例4、设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,求数列{a n b n }的前n 项和S n 。
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的
前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应
用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等
比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一
系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
高考数学压轴题数列求和十种方法总结数列是高考数学的重要内容,其中数列的求和尤为重要,除了等差数列等比数列有各自的求和公式,其余数列的求和讲究一定的技巧。
题型一、公式求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、 )12)(1(6112++==∑=n n n k S nk n 5、 213)]1(21[+==∑=n n k S n k n例1、已知{}na 是一个首项为a ,公比为(01)q q <≤的等比数列,求2222*123()n n S a a a a n N =++++∈解:由已知得1n n a aq-=,222(1)2212222n n n n a a q q a a q+-+-∴== ∴{}2n a 是首项为2a ,公比为2q 的等比数列。
当1q =时,222212.n n S a a a na =+++=当1q ≠时,2222122[1()](1)11n n n a q a q S q q--==--例2、 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和。
解:由321log log 3x -=得33log log 2x =-,∴ 12x =, 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=x x x n--1)1(=211)211(21--n =112n -例3、 设*123,()n S n n N =+++⋅⋅⋅+∈,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , 11(1)(2)2n S n n +=++ ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当=,即8n =时,m x 1()50a f n =二、倒序相加法求和倒序相加法是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +例1、求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ① 将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …… ② 又因为 1cos sin ),90cos(sin 22=+-=x x x x,①+②得2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)89S =++++⋅⋅⋅++=∴ 44.5S =例2、已知函数()()R x x f x ∈+=241,点()111,y x P ,()222,y x P 是函数()x f 图象上的两个点,且线段21P P 的中点P 的横坐标为21. (Ⅰ)求证:点P 的纵坐标是定值; (Ⅱ)若数列{}n a 的通项公式为n n a f m ⎛⎫= ⎪⎝⎭(),1,2,,m N n m ∈=⋅⋅⋅求数列{}n a 的前m 项的和m S 。
高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
高考数列求和的15种考法
【题型一】求和思维基础:由sn求an的关系
【题型二】错位相消法三种思维求法
【题型三】分组求和法
【题型四】求和难点1:裂项相消基础思维
【题型五】求和难点2:形如函数型裂项相消
【题型六】求和难点3:指数型裂项相消
【题型七】求和难点4:指数等差型裂项相消
【题型八】求和难点5:奇偶正负型裂项相消
【题型九】求和难点6:裂项为“和”型以相消
【题型十】求和难点7:指数型裂项为“和”以相消
【题型十一】求和难点8:无理根式型裂项
【题型十二】求和难点9:三项积式裂项相消
【题型十三】求和难点10:先放缩后裂项
【题型十四】求和难点11:利用组合数公式裂项求和(理科)【题型十五】求和难点12:分段数列求和。
专题:数列及其数列求和一、数列求和的常用方法:(1)公式法:必须记住几个常见数列前n 项和 等差数列:2)1(2)(11d n n na a a n S n n -+=+=; 等比数列:⎪⎩⎪⎨⎧≠--==11)1(111q q q a q na S n n ; (2)分组求和:如:求1+1,41+a ,712+a ,…,2311-+-n an ,…的前n 项和 可进行分组即:2374111111132-+++++++++-n a a a a n 前面是等比数列,后面是等差数列,分别求和 (注:⎪⎪⎩⎪⎪⎨⎧≠-=+=12)13(12)13(a n n a n n S n )(3)裂项法:如)2(1+=n n a n ,求S n ,常用的裂项111)1(1+-=+n n n n ,)211(21)2(1+-=+n n n n ;])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (4)错位相减法:其特点是c n =a n b n 其中{a n }是等差,{b n }是等比 如:求和S n =1+3x+5x 2+7x 3+……+(2n -1)x n -1 注意讨论x , ⎪⎩⎪⎨⎧≠-+++--==+1)1()1()12()12(1212x x x x n x n x n S n n n (5)倒序求和:等差数列的求和公式就是用这种方法推导出来的。
如求证:C n 0+3C n 1+5C n 2+… +(2n —1) C n n =(n+1)2n ►名题归类例释错位相减法:例1 n n 2n 164834221S +⋯⋯++++=求和 例2 求数例1,3a ,5a 2,7a 3,…(2n-1)a n-1,…(a≠1)的前n 项和.解:因 S n =1+3a +5a 2+7a 3+…+(2n -1)a n-1, (1)(1)×a 得aS n =a +3a 2+5a 3+…(2n-3)a n-1+(2n -1)a n ,(2)两式相减得(1-a)S n =1+2a +2a 2+2a 3+…+2a n-1-(2n -1)a n=2(1+a +a 2+a 3+…+a n-1)-(2n -1)a n -1=1)12(1)112-----⋅n n a n aa ( 所以:a a n a a S n n n -+----=11)12()1()1(22例3.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列; (Ⅱ)数列{}nn a 的前n 项和n S . 解:(Ⅰ) 121n n n a a a +=+, ∴ 111111222n n n na a a a ++==+⋅, ∴ 11111(1)2n na a +-=- 又123a =,∴11112a -=, ∴数列1{1}n a -是以12为首项,12为公比的等比数列.(Ⅱ)由(Ⅰ)知1111111222n n n a -+-=⋅=,即1112n n a =+,∴2n n n n n a =+. 设23123222n T =+++ (2)n n +, ① 则23112222n T =++…1122n n n n +-++,② 由①-②得 2111222n T =++…11111(1)1122112222212n n n n n n n n n +++-+-=-=---, ∴11222n n n n T -=--.又123+++…(1)2n n n ++=. ∴数列{}n n a 的前n 项和 22(1)4222222n n n n n n n n n S +++++=-+==. 例4:已知数列{a n }是等差数列,且a 1=2,a 1+ a 2+ a 3=12,令b n = a n x n (x ∈R),求数列{b n }的前n 项和公式。
数列求和的若干常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。
除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。
本文就此总结如下,供参考。
一、分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
例1.数列{an}的前n 项和12-=n n a S ,数列{bn}满)(,311*+∈+==N n b a b b n n n . (Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n 项和Tn 。
解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同,,21=∴+nn a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b aΛ,2,2,2234123012=-=-=-b b b b b b,221--=-n n n b b 等式左、右两边分别相加得:,222121322211211+=--+=++++=---n n n n b b Λn T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴--ΛΛ=.12222121-+=+--n n n n已知等差数列{}n a 的首项为1,前10项的和为145,求:.242n a a a +++Λ解析:首先由3145291010110=⇒=⨯⨯+=d da S 则:6223221)21(232)222(322323)1(1224221--⋅=---=-+++=+++∴-⋅=⇒-=-+=+n n n a a a a n d n a a n n n n n n n ΛΛ二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。
高考数学:数列求和——三大类高频题型的命题规律和满分答题要点近几年出题频率较高的三类数列求和题型有:错位相减法、裂项相消法、分类讨论法等。
下面将它们的解题程序归纳如下:1.错位相减法求和一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是在等式的两边同乘以等比数列{bn}的公比,然后作差求解.若{bn}的公比为参数(字母),则应对公比分等于1和不等于1两种情况分别求和.例题:2.利用裂项相消法探求数列的前n项和如果一个数列的通项为分式或根式的形式,且能拆成结构相同的两式之差,那么通过累加将一些正、负项相互抵消,只剩下有限的几项。
从而求出该数列的前n项和.破解此类题的关键点如下:①裂项技巧.一般将an通过恒等变形拆成形如an=f(n)-f(n-k)的形式(k=1,2,……) ②抵消规律.正、负项相互抵消后,所剩项的一般规律是:前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项,注意剩下的项有前后对称的特点,否则,极易出错.例题:[2018长春市高三第一次质量监测,17]总结:利用裂项相消法求数列的和时,要过好三关:一是通过基本运算快速求出数列的通项;二是根据所求通项的结构特点,借助常见的裂项技巧,找准裂项方向,准确裂项;三是把握消项规律,准确求和,切忌出现丢项或多项的问题,导致结果错误.3.利用分类讨论法探求数列的前n项和若数列的通项公式为分段函数、周期函数或形如(-1)^nan,|an|等形式,在求数列的前n项和时,没有固定的方法可套用,观察数列的规律,发现按照某种标准分类后,每类均可求和,最后相加即可得出结果,在解决问题的过程中渗透着转化与化归、分类讨论数学思想方法。
对项数的奇偶进行分类讨论求数列的前n项和时,一般是先求项思路分析:数为偶数的一组,但要注意n的取值变化不再是1,2,3,…,而是2,4,6,…,当代入公式求和时.注意首项、公差(比)和项数都会对应发生改变;项数为奇数求和时,可代入相应公式求和,也可利用偶数项的结论(Sn=S↓(n-1)+bn),能简化求和过程.总结:破解此类题的关键点如下.①找规律.根据数列的通项公式或递推公式去发现或证明存在某一规律:如通项公式为分段函数的形式等.②定标准.根据规律确定如何分类,是以项数的奇偶分类还是其他.③分类求和.若该类是等差(比)数列可直接求和,但要注意新首项、新公差(比)、新项数分别是多少;若不是特殊数列,再转化为其他方法求和.。
高考数列求和五种常用方法典例1.已知函数321(),212x F x x x -⎛⎫=≠ ⎪-⎝⎭(1)求122009201020102010F F F ⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 的值;(2)已知数列{}n a 满足()112,n n a a F a +==,求证数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(3)已知212n nn b -=,求数列{}n n a b 的前n 项和n S . 解.(和定倒序求和法)(1)因为323(1)2()(1)3212(1)1x x F x F x x x ---+-=+=---. 所以设S =122009201020102010F F F ⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L (1)S =200920081201020102010F F F ⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L . (2)(1)+(2)得:1200922008200912201020102010201020102010S F F F F F F ⎧⎫⎧⎫⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++⎨⎬⎨⎬⎨⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭⎩⎭⎩⎭L 320096027=⨯=,所以S =60272. (2)由()1n n a F a +=两边同减去1,得1321112121n n n n n a a a a a +---=-=--.所以()1211211121111n n n n n n a a a a a a +-+-===+----,所以111211n n a a +-=--,11n a ⎧⎫⎨⎬-⎩⎭是以2为公差以1111a =-为首项的等差数列.(3)(差比积数列错位相减法)因为1122(1)221112121n n nn n a a n n =+-⨯=-⇒=+=---.因为212n n n b -=,所以12n nn na b -= 01211232222n n nS -++++=L (3)123112322222n n nS +++=+L (4) 由(3)-(4)得012311111112222222n n n n S -++++-=+L =11222n n n --- 所以n S =1242n n-+-.典例2.已知数列{}n a 前n 项和为n S ,且()*2n n n S a n N =-∈.(1)证明:{}1n a +是等比数列; (2) 若数列()2log 1n n b a =+,求数列21211·n n b b -+⎧⎫⎨⎬⎩⎭的前n 项和n T . 解.(1)当1n =时,111211S a a =-∴=, ()11122121n n n n n n S a n S a n a a +++=-∴=-+∴=+Q ,()1121n n a a +∴+=+∴ {}1n a +是以112a +=为首项,2为公比的等比数列.2(分式数列裂项相消法))由(1)得:212log 2n nn n a b n +=∴==,()()212111111·212122121n n b b n n n n -+⎛⎫∴==- ⎪-+-+⎝⎭1111111?··2335212121n nT n n n ⎛⎫∴=-+-++-= ⎪-++⎝⎭ 典例3.已知{}n a 满足:3122332222n n a a a a n +++⋯+=(*n ∈N ). (1)求数列{}n a 的通项公式; (2)求数列{}21n a n +-的前n 项和n S . 解.(1)因为3122332222n n a a a a n ++++=L ,所以当n =1时,132a =,所以16a =. 当2n ≥时,31122313(1)2222n n a a a a n --+++⋯+=-,与3122332222n n a a a a n ++++=L 作差,得32nna =,所以32(2)n n a n =⋅…;显然当n =1时上式也成立,所以()*32nn a n =⋅∈N .(差比和数列分组求和法)(2)由(1)有()*32nn a n =⋅∈N ,则213221n n a n n +-=⋅+-,所以()()()23(321)3233253221nn S n =⋅++⋅++⋅++⋯+⋅+-()23222(13521)n n =++++++++-L L ()2212312n n-=⋅+-12326n n +=⋅+-.典例4.(奇偶数列分组求和法)已知数列{}n a 满足11221nn n n a a ++=-,数列{}n b 是各项均为正数的等比数列,且46574b b b b =,111a b ==. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设1,2,n n n n p b n +⎧⎪=⎨⎪⎩为偶数为奇数,求数列{}n p 的前2n 项和2n S .解.(Ⅰ)根据题意,11221n n n n a a ++-=,所以{2}nn a 是以2为首项,1为公差的等差数列,所以22(1)11nn a n n =+-⨯=+, 所以12n nn a +=.因为2224657561444b b b b b b q =⇒=⇒=, 因为{}n b 为正项数列,所以12q =.所以112n n b -⎛⎫ ⎪⎝⎭=;(Ⅱ)根据题意,11,21,2n n n n p n -+⎧⎪⎪=⎨⎛⎫⎪ ⎪⎪⎝⎭⎩为偶数为奇数, 所以()()21321242n n n S p p p p p p -=+++++++……,设2422132********n n n Q p p p --⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……211111444n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭ (1114114)n ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-41134n ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 设2423521(2)2222n n n n n R p p p ++=+++=+++=……. 所以21441(2)(2)1433422343nn n n n n n n n S Q R -++⎛⎫=+=-⋅+=-+⎪⨯⎝⎭. 典例5.(绝对值数列分类讨论)设数列{}n a 前n 项和为S ,且满足()*1111,3232n n a S a n N +==-∈. (1)证明{}n a 为等比数列,并求数列{}n a 的通项公式;(2)在(1)的条件下,设2log n n b a =,求数列{}n b 的前n 项和n T . 解.(1)当1n =时,12132S a =-,21132a a =+, 当2n ≥时,1132n n S a -=-,与已知式作差得1n n n a a a +=-,即()122n n a a n +=≥, 又21132a a =+,∴2116a =,∴212a a =, 故数列{}n a 是以132为首项,2为公比的等比数列, 所以62n n a -=(2)由(1)知6n b n =-,∴6,66,6n n n b n n -<⎧=⎨-≥⎩,若6n <,212112n n n n T b b b -=--⋅⋅⋅-=,若6n ≥,2125611302n n n nT b b b b b -=---⋅⋅⋅-++⋅⋅⋅+=+,∴2211,621130,62n n n n T n n n ⎧-<⎪⎪=⎨-⎪+≥⎪⎩.。
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和问题的常用解法数列求和问题是数学中常见的问题,解决这类问题的方法有很多,以下是常用的几种解法:1. 高斯求和法高斯求和法是一种快速求和方法,适用于求等差数列的和。
具体步骤如下:将数列首项和末项相加,得到和S1。
将数列第二项和倒数第二项相加,得到和S2。
将S1和S2相加,得到数列的总和。
例如,求1+2+3+4+5的和,按照高斯求和法的步骤,我们有:S1 = 1 + 5 = 6S2 = 2 + 4 = 61+2+3+4+5的和为6+6=12。
2. 套公式法套公式法适用于求一些特殊数列的和,例如等比数列和等于首项与公比的幂函数的差值除以公比减一。
具体步骤如下:确定数列类型,找到对应的求和公式。
确定数列的首项和末项。
将首项、末项以及对应的求和公式代入计算。
例如,求1+2+4+8+16的和,由于该数列为2的幂次方数列,因此我们可以使用求和公式:S = a(1-q^n)/(1-q)其中,a为首项,q为公比,n为项数。
代入计算可得,S = 1(1-2^5)/(1-2) = 1-32/-1 = 31。
3. 化简法化简法适用于一些特殊的数列求和问题,例如求等差数列前n项和的问题。
具体步骤如下:将数列相邻两项相减,得到数列的公差d。
将数列的每一项写成首项加公差的形式。
将每一项展开并合并同类项,得到一个关于n的代数式。
将代数式化简得到最终的结果。
例如,求1+2+3+...+100的和,按照化简法的步骤,我们有:d = 2-1 = 11+2+3+...+100 = (1+100)+(2+99)+...+(50+51)= 50(1+100) + (1+2+...+50) - (1+2+ (49)= 5050。
通过以上三种方法,我们可以解决数列求和问题。
需要注意的是,在使用求和公式或者化简法时,需要确保数列满足特定的条件,否则公式无法使用或者计算结果不正确。
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
数列求和的基本技巧和方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n )1-x +1-(4n-3)x n ]三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 练习:已知lg(xy)=a ,求S ,其中S=nn n n y y x y x x lg )lg()lg(lg 221+•••+++--解: 将和式S 中各项反序排列,得n n n n x y x y x y s lg )lg()lg(lg 221+•••+++=--将此和式与原和式两边对应相加,得 2S=n xy )lg(+n xy )lg(+ · · · +n xy )lg( (n+1)项 =n(n+1)lg(xy)∵ lg(xy)=a ∴ S=21n(n+1)a四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和的若干常用方法
数列求和是数列的重要内容之一,也是高考数学的重点考查对象。
除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。
本文就此总结如下,供参考。
一、分组求和法
所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
例1.数列{an}的前n 项和12-=n n a S ,数列{bn}满
)(,311*
+∈+==N n b a b b n n n . (Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n 项和Tn 。
解析:(Ⅰ)由
12,,1211-=∴∈-=++*
n n n n a S N n a S , 两式相减得:
,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同,
,
21
=∴
+n
n a a 同定义知}{n a 是首项为1,公比为2的等比数列.
(Ⅱ)
,22,2111
11-+-+-=-+==n n n n n n n n b b b b a
,221--=-n n n b b 等式左、右两边分别相加得:
=.
12222121-+=+--n n n n
已知等差数列
{}n a 的首项为1,前10项的和为145,求:.
2
42n
a a a +++
解析:首先由
3145291010110=⇒=⨯⨯+
=d d
a S 则:
二、裂项求和法
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)
11
1)1(1+-
=+=n n n n a n (2)
)121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)
]
)2)(1(1
)1(1[21)2)(1(1++-+=+-=
n n n n n n n a n 等。
例3. 在数列{an}中,11211++
⋅⋅⋅++++=n n n n a n ,又
12+⋅=n n n a a b , 求数列{bn}的前n 项的和.
解析: ∵
211211n n n n n a n =++⋅⋅⋅++++=
∴
)
11
1(82122+-=+⋅=
n n n n b n
∴ 数列{bn}的前n 项和
=
)
111(8+-
n = 18+n n
例4.设{an }是正数组成的数列,其前n 项和为Sn ,并且对所有自然数n ,an 与2的等差中项等于Sn 与2的等比中项.
(1)写出数列{an }的前三项;(2)求数列{an }的通项公式(写出推证过程); (3)令bn=2
1
⎪⎪⎭⎫ ⎝⎛+++1n n n 1n a a a a (n ∈N),求:b1+b2+…+bn -n.
解析:(1)略;(2) an=4n-2.; (3)令cn=bn-1, 则cn=2
1
⎪⎪⎭⎫ ⎝⎛-+++2a a a a 1n n
n 1n =21⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝
⎛--+11n 21n 211n 21n 2 =1n 211n 21+-- b1+b2+…+bn -n=c1+c2+…+cn
=1n 2111n 211n 21
5131311+-
=⎪⎭⎫ ⎝⎛+--+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-
评析:一般地,若数列
{}n a 为等差数列,且公差不为0,首项也不为0,则求和:∑=+n
i i i
a
a 1
1
1
首
先考虑=∑=+n
i i i a a 11
1
∑=+-n
i i i
a a d 11)11(1则∑=+n
i i i a a 111=1111)11(1++=-n n a a n a a d 。
下列求和:∑
=++n
i i i a a 1
1
1 也可用裂项求和法。
错位相减法 设数列
{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前项和n S 求解,均可用错位
相减法。
例 5.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令
)
(lg N n a a b n n n ∈⋅=, 求数列
{}n b 的前项和n S 。
解析: ①-②得:
a
na a a a S a n n n lg )()1(12+-+++=-
[]
n
n a
na n a a a S )1(1)1(lg 2
-+--=
∴。
例6.已知数列
{}n a 是等差数列,且.12,23211=++=a a a a
(Ⅰ)略;(Ⅱ)令).(3R x a b n
n n ∈=求数列{}n b 前n 项和的公式. 解析:(Ⅰ)略;(Ⅱ)解:由
,323n
n n n n a b ==得 ,323)22(343212n
n n
n n S ⋅+-+⋅+⋅=- ① .323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②
将①式减去②式,得
.32)13(332)333(221
12++⋅--=⋅-++-=-n n n n n n n S 所以.
32)
31(31+⋅+-=n n n n S
四、组合化归法 例7.求和:)12)(1(532321++++⋅⋅+⋅⋅=n n n S n 。
解析:
)1(3)2)(1(2)342)(1(+-++=-++=n n n n n n n n a n
而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的求和问题了。
评析:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法。
逆序相加法 例8.设数列{}n a 是公差为d ,且首项为d a =0的等差数列,
求和:
n
n
n n n n C a C a C a S +++=+ 11001
解析:因为
n
n
n n n n C a C a C a S +++=+ 11001
评析:此类问题还可变换为探索题形:
已知数列{}n a 的前项和n S 12)1(+-=n n ,是否存在等差数列{}n b 使得 n
n
n n n n C b C b C b a +++= 2211对一切自然数n 都成立。
递推法
例6. 已知数列{}n a 的前项和n S 与n a 满足:
21
,,-
n n n S S a )2(≥n 成等比数列,且11=a ,
求数列
{}n a 的前项和n S 。
解析:由题意:1
2
),21(--=-=n n n n n n S S a S a S
评析:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列
{}n a 的前项
和
n S 的递推公式,是一种最佳解法。