地源热泵
- 格式:ppt
- 大小:11.50 MB
- 文档页数:22
地(水)源热泵系统一.地源热泵技术综述所谓地源热泵(Ground Source Heat Pump),即GSHP技术,是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。
地源热泵利用地能一年四季温度稳定的特性,冬季把地能作为热泵供暖的热源,夏季把地能作为空调的冷源;即在冬季把高于环境温度的地能中的热能取出来供给室内采暖,夏季把室内的热能取出来释放到低于环境温度的地能中,通过少量的高位电能输入,实现低位能向高位能转移的一种技术。
关于地源热泵的名称问题一直以来都是各个地方叫法不一样的,到目前为止,“地源热泵”的命名尚不统一。
最近几年国内空调设备生产厂家纷纷推出了各式各样的地源热泵产品,冠之以诸如“地能中央空调系统”、“水源中央空调系统”、“地温中央空调系”、“中央液态冷热源”等等的名称,在一定程度上起到了混淆视听的作用,使地源热泵这一非常成熟的技术蒙上了一层神秘的面纱。
一般来讲有两个术语来描述:地热泵(Geothermal Heat Pump)和地源热泵(Ground-source Heat pump)。
前者一般用于人们在市场中以及官方用语;后者用于工程技术中。
国内来讲,一般叫做地(源)热泵,或者土壤源热泵。
目前,国内工程市场上习惯把采用地埋管技术的热泵系统称为“地源热泵”,利用抽灌井技术的热泵系统称为“水源热泵”。
其组成如图所示。
压缩机热泵机组介质循环泵过滤器土壤换热器(地藕换热井)空调循环泵地源热泵系统运行原理图蒸发器冷凝器节流阀空调器空调器空调器过滤器地源热泵技术采用热泵技术,将地层作为冷热源。
它的做功总是从低温热源提取热量,向高温热源放出热量,因此,一个相对稳定的地下热源是决定地源热泵技术工作效率的关键因素。
在供暖过程中,地层是低温热源,不断从地层吸收热量向热泵提供相对恒温的介质;在制冷场合,地上循环系统是热泵的低温热源,不断从室内吸收热量向热泵提供相对恒温的循环介质。
地源热泵的概念地源热泵是一种利用地热能实现供暖、制冷和热水供应的环境友好型设备。
它利用地下地热能源,通过地源热泵系统将地下的热能提取到地面上,然后将低温热能转化为高温热能,为建筑物内的供暖、制冷和热水提供能源。
地源热泵系统由地热换热器、热泵主机、水泵、蓄水池等组成。
地热换热器一般埋设在地下1.5-2米深的地下,换热器外部通过与地下热交换的方式将地下的低温热能传递给热泵主机。
热泵主机中的制冷剂在蒸发器中蒸发,吸收地下的低温热能并将其转化为制冷介质的低温低压气体。
这些低温低压气体通过压缩机被压缩成高温高压气体,然后通过换热器将其释放出去。
高温高压气体在冷凝器中冷凝成高温高压液体,并释放出高温热量。
这热量被传递到建筑物内的供暖系统或热水系统中,并为室内提供热量。
压力调节器将高温高压液体的压力调节到适当的值,并通过膨胀阀降低其温度和压力,以便重新进入蒸发器。
地源热泵系统的使用具有多种优点。
首先,它具有高效节能的特点。
地热能源在地下循环利用,不会消耗和浪费能源。
其次,地源热泵系统的运行成本相对较低。
虽然初始投资较高,但是由于其高效的能源利用率,长期来看,其运行成本是较低的。
再次,地源热泵系统具有环境友好的特点。
它不使用燃料燃烧,不产生废气和废渣,减少了对环境的污染。
此外,地源热泵系统还可以实现冷暖两用,既可以供暖,也可以制冷,满足不同季节的需求。
最后,地源热泵系统使用寿命较长,可达20-30年。
然而,地源热泵系统也存在一些挑战和限制。
首先,地源热泵系统的安装需要占用一定的土地面积。
其次,地下换热器的安装需要进行地下工作,需要考虑到地下管道的布置和地下结构的支撑。
再次,地热反射率和土壤导热性对系统的整体效率有一定的影响,不同地区的地热资源差异也会导致地源热泵系统的效果不同。
此外,地源热泵系统在寒冷地区需要考虑冬季地下热交换器的结冰问题。
地源热泵作为一种环保、高效的能源利用方式,具有广阔的应用前景。
它可以在住宅、商业建筑、学校、医院等各类建筑物中应用。
地源热泵工作原理及分类地源热泵是一种利用地下热能进行空调供暖的环保节能设备。
它通过地下的热能来提供冷热空气,实现室内温度的调节。
本文将详细介绍地源热泵的工作原理和分类。
一、工作原理地源热泵的工作原理基于地下的稳定温度。
地下温度在不同地区有所差异,但普通在地表以下3米深度处保持相对稳定。
地下温度通常比室外温度更稳定,夏季较凉爽,冬季较温暖。
地源热泵利用地下温度与室内外温度差异来进行热交换,从而实现冷热空气的供应。
地源热泵的工作原理主要包括以下几个步骤:1. 地热吸收:地源热泵通过埋设在地下的地热换热器吸收地下的热能。
地热换热器普通采用地埋水管或者地埋螺旋管,通过导热介质与地下热能进行热交换。
2. 热泵循环:地源热泵通过循环工质(普通为制冷剂)将地下吸收的热能带入室内。
制冷剂在低温状态下吸收地热换热器中的热能,然后通过压缩机进行压缩,提高温度。
3. 热能释放:经过压缩后的制冷剂进入室内机组,释放热能到室内空气中。
室内机组普通由蒸发器、压缩机、冷凝器和膨胀阀等组成,通过这些部件,制冷剂的压力和温度得以改变,从而实现冷热空气的供应。
4. 热能回收:地源热泵在释放热能后,将剩余的制冷剂重新送回地热换热器,进行循环使用。
这样既实现了热能的回收利用,也提高了能源利用效率。
二、分类根据地源热泵的工作方式和应用领域,可以将其分为以下几类:1. 地源热泵供暖系统:这是地源热泵最常见的应用领域之一。
地源热泵供暖系统通过地下的热能来供应室内的暖气,取代传统的锅炉供暖方式。
该系统具有环保、节能、稳定性好等优点,适合于各种建造类型。
2. 地源热泵空调系统:地源热泵空调系统是利用地下的热能来进行空调供冷。
该系统通过地下的稳定温度来降低空调系统的能耗,实现室内空气的舒适调节。
地源热泵空调系统适合于各种商业建造、办公楼和住宅等场所。
3. 地源热泵热水供应系统:地源热泵热水供应系统是利用地下的热能来供应热水。
该系统通过地下热能的吸收和释放,提供热水供应,取代传统的燃气热水器或者电热水器。
地源热泵供暖方案地源热泵(Ground Source Heat Pump, 简称GSHP)是一种利用地下热能进行空调供暖的环保能源技术。
它通过利用地下稳定的热源,将低温热能转化为高温热能,为建筑提供供暖和制冷服务。
本文将介绍地源热泵供暖方案及其优势。
一、地源热泵供暖原理地源热泵供暖采用了地热能资源,其原理可通过以下几个步骤来解释:1. 地下热能吸收:通过地下水循环、地下水循环泵和地下回水管等设备,将地下储存的热能通过吸热剂吸收到地源热泵中。
2. 热泵系统循环:地源热泵将吸热剂中获得的低温热能传给蒸发器,将低温液态制冷剂转化为低温蒸气。
3. 压缩和加热过程:低温蒸汽被压缩成高温蒸汽,蒸汽冷凝释放出高温热能。
4. 供暖系统传热:高温热能通过换热器传导给供暖系统,供暖系统将热能以空气或水的形式传输到室内,实现供暖效果。
二、地源热泵供暖方案的优势1. 高效节能:地源热泵供暖系统利用地下稳定的温度资源,不依赖外界环境温度,能够在较低的运行能力下提供稳定的热能。
相比传统燃煤、电采暖等方式,节能效果显著,能够减少能源消耗和碳排放。
2. 环保低碳:地源热泵供暖过程中,不产生燃烧废气和烟尘,无热量和噪音污染,对周围环境没有负面影响。
地源热泵是一种清洁、环保的供暖方式。
3. 稳定舒适:地源热泵供暖系统能够保持持续稳定的供热温度,并具有自动调控功能,可以根据室内温度和需求进行智能调节,使室内温度始终保持在舒适范围内。
4. 多功能应用:地源热泵系统不仅可以满足供暖需求,还可以提供制冷、热水等多种功能。
它可以通过调节工作模式,将热泵逆向工作从而实现室内空调效果。
三、地源热泵供暖系统的应用地源热泵供暖系统广泛应用于居住区、办公楼、商场、学校等各类建筑。
对于冷气困扰、能源需求高的地区,地源热泵供暖系统具有重要的应用前景。
1. 居住区:地源热泵供暖系统可以满足大规模居住区的供暖需求。
它的高效节能和环保特点使其成为未来城市发展的首选供热方式。
地源热泵设计1. 引言地源热泵(Ground Source Heat Pump,GSHP)是一种利用地热能源的环保供热、供冷系统。
与传统的取暖设备相比,地源热泵系统能够有效地提供高效能的制热和制冷,同时降低能源消耗和环境污染。
本文将讨论地源热泵系统的设计原理、主要组成部分和关键参数。
2. 设计原理地源热泵系统利用地下的恒定温度来实现供热和供冷。
它通过地下的地热能源,将热能转移到室内供暖或室外排热。
地源热泵系统包括地源换热器、热泵机组和室内盘管。
2.1 地源换热器地源换热器是地源热泵系统的关键组成部分之一。
它通常是埋在地下的一系列管道,用于吸收地下的热能或向地下释放热能。
地源换热器可以采用水平回填式或垂直回填式布置,具体选用哪种形式取决于地下空间的限制和地质条件。
2.2 热泵机组热泵机组是地源热泵系统的核心部分。
它由压缩机、膨胀阀、换热器和控制系统等组成。
其工作原理是通过压缩机将地下的低温热能提升到适宜的温度,然后通过换热器将热能传递给室内的盘管,使室内得到制热或制冷。
2.3 室内盘管室内盘管是地源热泵系统的末端设备。
它负责将热泵机组传递过来的热能释放到室内空气中,实现供热或供冷效果。
室内盘管可以是风管式或地暖式,具体选用哪种形式取决于室内空间的布局和需要。
3. 设计参数设计地源热泵系统时,需要考虑一系列的参数,以确保系统的正常运行和高效能输出。
3.1 地源温度地源温度是地源热泵系统设计的首要参数。
地下的温度随季节变化比较缓慢,通常在8℃至15℃之间。
设计时应根据实际地下温度数据进行分析和计算,以确定最佳的设计参数。
3.2 热泵机组容量热泵机组的容量需要根据室内需求进行合理计算。
一般来说,热泵机组的制热和制冷容量应根据室内的热负荷计算得出,以确保系统能够满足室内的舒适需求。
3.3 地源换热器的长度和管径地源换热器的长度和管径直接影响系统的换热效果。
根据地下的地质条件和热泵机组的容量,可以通过热传导计算确定地源换热器的最佳长度和管径。
地源热泵系统的组成和工作原理1. 什么是地源热泵系统?嘿,朋友们,今天我们聊聊地源热泵系统。
听起来有点高大上,其实呢,它就是利用地下的温度来给我们家里提供暖意或者凉爽。
想想看,夏天到了,外面热得像蒸笼,进屋却能享受到一阵凉风,这种感觉简直不要太爽!而在冬天,地面下的土壤依然保持着一个相对稳定的温度,这可比我们在外面冻得发抖要强多了。
地源热泵就像个聪明的“小助手”,利用大自然的能量,让我们的生活更加舒适。
2. 地源热泵的组成部分2.1 地埋管首先,地源热泵系统里最重要的部分就是地埋管。
想象一下,这就像埋在地底下的“暖气管道”,其实它们是用来吸收土壤中热量的。
通常,安装这些管道的时候,会把它们埋在地下,甚至可以是水平或垂直的。
这些管道里流动的液体可以吸收地面温度,听上去是不是有点神奇?2.2 热泵主机接下来,就是热泵主机。
它是整个系统的“大脑”,负责将从地埋管中获取的热量进行处理。
主机里有个压缩机,就像你平时喝的汽水,里面的气泡被压缩后变得更凉快,热泵也是这个道理。
它把低温的气体压缩成高温气体,再把热量输送到你家里。
无论你是想要暖和的冬天,还是清凉的夏天,这个“大脑”都能给你想要的温度。
2.3 储热水箱再来说说储热水箱,它就像是一个“温暖的宝藏”,能把热水储存起来,随时为你提供热水。
想象一下,冬天早上起来,洗个热水澡,简直是生活的享受!这个储热水箱可以存储多余的热量,以便在需要的时候使用,真是居家必备的好帮手。
3. 地源热泵的工作原理3.1 热量转移那么,这个地源热泵到底是怎么工作的呢?其实,原理很简单。
就像你在沙滩上用沙子做个沙堡,热量也在不断转移。
冬天,地埋管里流动的液体吸收地下的热量,然后这股热量通过热泵主机进行压缩,最终传递到室内。
简单来说,就是“外面冷,里面热”的魔法。
3.2 节能环保最重要的是,地源热泵系统不仅省钱,还环保!它比传统的取暖或制冷方式要节能很多,算得上是“绿色能源”的代表。
地源热泵工作原理及分类地源热泵是一种利用地下热能进行空调供暖的环保节能设备。
它通过地下的地热能源,将低温热能转化为高温热能,从而实现室内空调供暖。
地源热泵的工作原理主要包括地源热能的采集、传输、转换和利用四个过程。
1. 地源热泵的工作原理地源热泵的工作原理是基于热力学的热交换原理。
它利用地下的稳定温度来进行热能的转换和传递。
具体而言,地源热泵通过地下的水源、土壤或岩石等介质,采集地下的低温热能,然后通过热泵系统进行热能的提取和转换,最终将低温热能转化为高温热能,供给室内的空调系统。
2. 地源热泵的分类根据地源热泵系统的不同工作方式和热能的采集方式,地源热泵可以分为垂直地源热泵和水平地源热泵两种主要类型。
2.1 垂直地源热泵垂直地源热泵是通过在地下钻探井中安装热交换器来采集地下热能的一种方式。
热交换器一般采用U形或S形的地源热泵井管,通过井管与地下的岩石或土壤进行热交换,将地下的低温热能传递给热泵系统。
垂直地源热泵适用于土地面积较小或无法进行水平敷设的场所,如城市居民区、商业建筑等。
2.2 水平地源热泵水平地源热泵是通过在地下水平敷设热交换器来采集地下热能的一种方式。
热交换器一般采用水平敷设的地源热泵管,通过与地下的土壤或岩石进行热交换,实现地下热能的采集。
水平地源热泵适用于土地面积较大的场所,如乡村、工业园区等。
3. 地源热泵的优势和应用地源热泵作为一种环保节能的供暖设备,具有以下优势:3.1 高效节能:地源热泵利用地下热能进行热能转换,相比传统的供暖方式,能够节约大量能源,提高能源利用效率。
3.2 环保减排:地源热泵不需要燃烧燃料,减少了对大气的污染和温室气体的排放,对环境友好。
3.3 稳定可靠:地下的地热能源稳定可靠,不受外界气候影响,能够提供稳定的供暖效果。
地源热泵广泛应用于住宅、商业建筑、工业园区等场所。
在北方寒冷地区,地源热泵可以提供暖气供暖;在南方炎热地区,地源热泵可以提供空调制冷。
地源热泵方案设计一、地源热泵系统概述地源热泵是一种利用地下土壤、地下水或地表水等作为冷热源,通过热泵机组进行能量交换,为建筑物提供制冷、供暖和生活热水的系统。
与传统的空调和供暖系统相比,地源热泵系统具有以下显著优势:1、高效节能:地源热泵系统的能效比(COP)通常较高,可大大降低能源消耗和运行成本。
2、环保无污染:不使用化石燃料,减少了温室气体排放和对环境的污染。
3、稳定可靠:地下温度相对稳定,使得系统运行更加稳定可靠,不受外界气候条件的影响。
4、使用寿命长:热泵机组和地下换热器的使用寿命较长,维护成本相对较低。
二、工程场地条件评估在进行地源热泵方案设计之前,首先需要对工程场地的条件进行详细评估。
这包括地质结构、土壤类型、地下水位、水文地质条件等。
不同的场地条件会影响地下换热器的设计和安装方式。
1、地质结构:了解地层的分布、厚度和岩石类型,以确定钻孔的可行性和难度。
2、土壤类型:土壤的热导率和比热容会影响热量传递效率,常见的土壤类型如砂土、黏土和壤土等,其热性能有所差异。
3、地下水位:地下水位的高低会影响换热器的安装深度和防水措施。
4、水文地质条件:包括地下水的流动速度、水质等,这对于选择合适的换热器类型和防止地下水污染至关重要。
三、建筑物负荷计算准确计算建筑物的冷热负荷是地源热泵方案设计的基础。
负荷计算需要考虑建筑物的用途、面积、朝向、围护结构的保温性能、室内人员和设备的发热量等因素。
通过专业的负荷计算软件,可以得到建筑物在不同季节和不同时段的制冷和供暖负荷需求。
1、制冷负荷:主要由室内外温差、太阳辐射、人员散热和设备散热等因素引起。
2、供暖负荷:与室外温度、建筑物的保温性能、通风换气次数等有关。
根据负荷计算结果,可以确定热泵机组的容量和地下换热器的规模,以保证系统能够满足建筑物的冷热需求。
四、地源热泵系统类型选择地源热泵系统主要有三种类型:地下水地源热泵系统、地埋管地源热泵系统和地表水地源热泵系统。