高考专题---总结排列组合题型
- 格式:doc
- 大小:218.00 KB
- 文档页数:7
排列组合题型总结
排列组合是数学中的一个基础概念,涉及概率统计、离散数学和组合数学等学科。
在生活和工作中,排列组合也有广泛应用,如抽奖、组队、排班、挑选花样等。
下面是一些常见的排列组合题型:
1. 从n个不同元素中选择r个元素,一共有多少种选择方式?(组合)
2. 从n个不同元素中按照一定顺序选择r个元素,一共有多少
种选择方式?(排列)
3. 有n个球,其中k个红球,其余的都是蓝球。
从这些球中选择r个球,其中至少包含m个红球,一共有多少种选择方式?(条件选择排列组合)
4. 将n个不同的元素分成k个不同的集合,一共有多少种分法?(划分)
5. n个人坐在一张圆桌周围,一共有多少种不同的座位安排方式?(圆排列组合)
6. 在一个4*4的格子里,从左上角开始,向右或向下走,到右下角一共有多少种不同的走法?(组合数)
7. 有A、B、C、D、E、F六个人,排成一排,其中A和B不
能相邻,一共有多少种排法?(条件限制排列)
这些题型在考试、工作和日常生活中都有出现的可能,对于掌握排列组合的基本概念和运算方法有很大的实用价值。
高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。
⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
2023届新高考数学题型全归纳之排列组合专题2排列数组合数类型一、排列数组合数的简单计算【例1】对于满足〃213的正整数〃,)B. A:-【例2】计算A; =.【例3】计算A:0, A:;[例4】计算C”, C;=.【例5】计算C:0, C;:【例6】计算A;, A;。
, C:, C> C;9+C:9.【例7】已知A」I=140A;,求〃的值.【例8】解不等式式<64;2【例9】证明:A;-9A; + 8A; =A:.【例10】解方程A;、= 100A:.【例11】解不等式A;<6A「.【例12】解方程:11C:=24C1【例13]解不等式:C;>3邕.■【例14】设用表示不超过x的最大整数(如0=2, ( =1),对于给定的,定义C:=xe[l,+8),则当xe I,3、时,函数C;的值域是( ), Z■ 1 「、A. —, 28B. —, 5613 」[3 )/ X Z -1 /C. 4, yju [28, 56)D. 4, y U y, 28【例15】组合数C: (〃 > r 2 1, 〃、rw Z)恒等于()B. (/7 + l)(r+l)C- C 〃心;【例16]已知C>:C鬻:C%=3:5:5,求勿、〃的值.类型二、排列数组合数公式的应用【例17】已知求的值.【例18]若C^=C祟,SeN),则曾=【例19]若C;T :C: :C:x =3:4:5,贝ij〃一m=【例20】证明:〃C:=々+ 1尤7+AC: 1 1【例21】证明:y—c y=—yc M,.占j+1 “ 〃 +w+,【例22】求证:A'-1 =A a',1 +to -l)A fl:2 .【例23】证明:£圮:=〃・2"7. *-0【例24】证明:C1 +2C2 +X3 +L +/J C P=-C0+C1 +L +C “). n n n n 2 n n n【例25】求证:C;;+C;;,+C;;+2+L +C;' =C::;X;【例26】计算:器+%,C:+C;+C;+L +C:3【例27】证明:C°C* +Ci(/T +C2C〃-2+L +C*C° =C* .(其中AWm in , n}) to n m n a n a n〃♦k '7【例28】解方程C;»C;:;+C* + ;A>【例29】确定函数A:的单调区间.【例30】规定A: =xG-l)L G-卬+1),其中xeR , m为正整数,且A:=l,这是排列数A:(〃,勿是正整数,且加W〃)的一种推广.⑴求A二的值;⑵排列数的两个性质:①A:=〃A:二,②A:+R A:T=A:M(其中必,〃是正整数).是否都能推广到A:(xcR , m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由.专题2排列数组合数类型一、排列数组合数的简单计算【例1】对于满足〃213的正整数“,(〃-5)仅-6)...仅一12)=()A. A,B. A:_5C. A:D. A;,【解析】C.【例2】计算耳=.【解析】210【例3】计算A;。
排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。
掌握排列组合知识对于解决相关题目至关重要。
本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。
1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。
排列有两种情况:有重复元素的排列和无重复元素的排列。
1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。
【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。
求不同的组队方案数。
解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。
根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。
1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。
【例题2】:有 9 个不同的球队参加一场篮球比赛。
其中第一名和第二名分别获得冠军和亚军。
请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。
根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。
2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。
同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。
2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。
(1)知识梳理1.分类计数原理〔加法原理〕:完成一件事,有几类方法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m3种不同的方法,那么完成这件事共有种不同的方法。
2.分步计数原理〔乘法原理〕:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有种不同的方法。
特别提醒:分类计数原理与“分类〞有关,要注意“类〞与“类〞之间所具有的独立性和并列性;分步计数原理与“分步〞有关,要注意“步〞与“步〞之间具有的相依性和连续性,应用这两个原理进展正确地分类、分步,做到不重复、不遗漏。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示.5.排列数公式:特别提醒:〔1〕规定0! = 1〔2〕含有可重元素的排列问题.对含有一样元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n =n1+n2+……nk , 那么S的排列个数等于.例如:数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.7.组合数公式:8.两个公式:①②特别提醒:排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排〞,后者是“并成一组〞,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按以下要求站一横排,分别有多少种不同的站法?〔1〕甲不站两端;〔2〕甲、乙必须相邻;〔3〕甲、乙不相邻;〔4〕甲、乙之间间隔两人;〔5〕甲、乙站在两端;〔6〕甲不站左端,乙不站右端.考点二:组合问题例2. 男运发动6名,女运发动4名,其中男女队长各1人.选派5人外出比赛.在以下情形中各有多少种选派方法?〔1〕男运发动3名,女运发动2名;〔2〕至少有1名女运发动;〔3〕队长中至少有1人参加;〔4〕既要有队长,又要有女运发动.考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.〔1〕恰有1个盒不放球,共有几种放法?〔2〕恰有1个盒内有2个球,共有几种放法?〔3〕恰有2个盒不放球,共有几种放法?当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,那么不同的组队方案共有〔〕A.70 种 B.80种 C.100 种 D.140 种9.3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,那么不同排法的种数是〔〕A.360B.288C.216D.96参考答案:例1 解:〔1〕方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有种站法,然后其余5人在另外5个位置上作全排列有种站法,根据分步乘法计数原理,共有站法:方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有种站法,然后中间4人有种站法,根据分步乘法计数原理,共有站法:方法三:假设对甲没有限制条件共有种站法,甲在两端共有种站法,从总数中减去这两种情况的排列数,即共有站法:〔2〕方法一:先把甲、乙作为一个“整体〞,看作一个人,和其余4人进展全排列有种站法,再把甲、乙进展全排列,有种站法,根据分步乘法计数原理,共有方法二:先把甲、乙以外的4个人作全排列,有种站法,再在5个空档中选出一个供甲、乙放入,有种方法,最后让甲、乙全排列,有种方法,共有〔3〕因为甲、乙不相邻,中间有隔档,可用“插空法〞,第一步先让甲、乙以外的4个人站队,有种站法;第二步再将甲、乙排在4人形成的5个空档〔含两端〕中,有种站法,故共有站法为也可用“间接法〞,6个人全排列有种站法,由〔2〕知甲、乙相邻有种站法,所以不相邻的站法有.〔4〕方法一:先将甲、乙以外的4个人作全排列,有种,然后将甲、乙按条件插入站队,有种,故共有站法.方法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有种,然后把甲、乙及中间2人看作一个“大〞元素与余下2人作全排列有种方法,最后对甲、乙进展排列,有种方法,故共有站法.〔5〕方法一:首先考虑特殊元素,甲、乙先站两端,有种,再让其他4人在中间位置作全排列,有种,根据分步乘法计数原理,共有站法.方法二:首先考虑两端两个特殊位置,甲、乙去站有种站法,然后考虑中间4个位置,由剩下的4人去站,有种站法,由分步乘法计数原理共有站法.〔6〕方法一:甲在左端的站法有种,乙在右端的站法有种,且甲在左端而乙在右端的站法有A种,共有站法.方法二:以元素甲分类可分为两类:①甲站右端有种站法,②甲在中间4个位置之一,而乙不在右端有种,故共有站法.例2 解〔1〕第一步:选3名男运发动,有种选法.第二步:选2名女运发动,有种选法.共有种选法.〔2〕方法一至少1名女运发动包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为.方法二“至少1名女运发动〞的反面为“全是男运发动〞可用间接法求解.从10人中任选5人有种选法,其中全是男运发动的选法有种.所以“至少有1名女运发动〞的选法为.〔3〕方法一:可分类求解:“只有男队长〞的选法为;“只有女队长〞的选法为;“男、女队长都入选〞的选法为;所以共有种选法. 9分方法二:间接法:从10人中任选5人有种选法.其中不选队长的方法有种.所以“至少1名队长〞的选法为种. 9分〔4〕当有女队长时,其他人任意选,共有种选法.不选女队长时,必选男队长,共有种,所以不选女队长时的选法共有种选法.所以既有队长又有女运发动的选法共有种.例3 解〔1〕为保证“恰有1个盒不放球〞,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?〞即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有〔2〕“恰有1个盒内有2个球〞,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球〞与“恰有1个盒不放球〞是同一件事,所以共有144种放法.〔3〕确定2个空盒有种方法.4个球放进2个盒子可分成〔3,1〕、〔2,2〕两类,第一类有序不均匀分组有种方法;第二类有序均匀分组有种方法.故共有种.当堂检测答案1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,那么不同的组队方案共有〔〕A.70 种 B.80种 C.100 种 D.140 种解析:分为2男1女,和1男2女两大类,共有=70种,解题策略:合理分类与准确分步的策略。
一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
排列组合的21种经典题型及解法1.单选题:单选题要求考生从给定的选项中选出一个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案。
2.多选题:多选题要求考生从给定的选项中选出多个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案,并判断是否有多个最佳答案。
3.判断题:判断题要求考生根据题目的问题和给定的信息,判断给出的答案是正确还是错误。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,判断出正确答案。
4.填空题:填空题要求考生根据题目的问题和给定的信息,填入正确的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,填入正确的答案。
5.问答题:问答题要求考生根据题目的问题和给定的信息,给出详细的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出详细的答案。
6.排序题:排序题要求考生根据题目的问题和给定的信息,按照要求的顺序进行排列。
解法:根据题目的问题和给定的佶息,仔细分析,排除干扰,按照要求的顺序进行排列。
7.计算题:计算题要求考生根据题目的问题和给定的信息,运用数学计算得出答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,运用数学计算得出答案。
8.简答题:简答题要求考生根据题目的问题和给定的信息,给出简短的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出简短的答案。
9.完形填空:完形填空要求考生根据文章的内容,从文中空缺处填入正确的单词或词组。
解法:根据文章的内容,仔细分析,排除干扰,从文中空缺处填入正确的单词或词组。
10.阅读理解:阅读理解要求考生根据文章的内容,回答问题或做出判断。
解法:根据文章的内容,仔细分析,排除干扰,回答问题或做出判断。
11.词汇题:词汇题要求考生根据题目的问题和给定的单词,找出正确的答案。
解法:根据题目的问题和给定的单词,仔细分析,排除干扰,找出正确的答案。
12.语法题:语法题要求考生根据题目的问题和给定的句子,选择正确的语法形式。
历年高考试题荟萃之――――排列组合(一)一、选择题1、从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种2、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的安排方案共有….()(A)(B)3 种(C)(D)种3、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有()(A)280种B)240种C)180种D)96种4、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.假如将这两个新节目插入原节目单中,且两个新节目不相邻,则不同插法的种数为.()A.6B.12C.15D.305、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.假如将这两个节目插入原节目单中,则不同插法的种数为()A.42B.30C.20D.126、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必需种值.不同的种植方法共有()A.24种B.18种C.12种D.6种7、从5位男老师和4位女老师中选出3位老师,派到3个班担当班主任(每班1位班主任),要求这3位班主任中男、女老师都要有,则不同的选派方案共有.()A.210种B.420种C.630种 D.840种8、在由数字1,2,3,4,5组成的全部没有重复数字的5位数中,大于23145且小于43521的数共有.()A.56个B.57个C.58个 D.60个9、直角坐标平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有 ( )A.25个B.36个C.100个D.225个10、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为()A.56B.52C.48D.4012、某校高二年级共有六个班级,现从外地转入4名学生,要支配到该年级的两个班级且每班支配2名,则不同的支配方案种数为…()(A)A C (B) A C (C)A A (D)2A13、将4名老师安排到3所中学任教,每所中学至少1名老师,则不同的安排方案共有.()A.12种B.24种C.36种D.48种14、在由数字1,2,3,4,5组成的全部没有重复数字的5位数中,大于23145且小于43521的数共有.()A.56个B.57个C.58个D.60个15、将标号1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,恰好有3个球的标号与其所在盒子的标号不一样的放入方法种数为. ( )(A)120 (B)240 (C)360 (D)72016、有两排座位,前排11个座位,后排12个座位.现支配2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,则不同排法的种数是A.234B.346C.350D.36318、在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是.()C C -C -P19、从5位男老师和4位女老师中选出3位老师,派到3个班担当班主任(每班1位班主任),要求这3位班主任中男、女老师都要有,则不同的选派方案共有..……()A.210种B.420种C.630种 D.840种20、从4名男生和3名女生中选出4人参与某个座谈会,若这4人中必需既有男生又有女生,则不同的选法共有. ( )A.140种B.120种C.35种D.34种21、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市巡游,要求每个城市有一人巡游,每人只巡游一个城市,且这6人中甲、乙两人不去巴黎巡游,则不同的选择方案共有A.300种B.240种 C.144种D.96种22、把一同排6张座位编号为1,2,3,4,5,6的电影票全每人至少分1张,至多分2张,且这两张票具有连续的编号,则不同的分法种数是()A.168B.96C.72D.14423、(5分)将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()A.70B.140C.280D.84024、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A)种(B)种(C)种(D)种26、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市巡游,要求每个城市有一人巡游,每人只巡游一个城市,且这6人中甲、乙两人不去巴黎巡游,则不同的选择方案共有()A.300种B.240种C.144种D.96种27、北京《财宝》全球论坛期间,某高校有14名志愿者参与接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)(B)(C)(D)28、4位同学参与某种形式的竞赛,竞赛规则规定:每位同学必需从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分。
总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=2402.特殊位置法(2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252二.间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。
故共可组成不同的三位数-=432(个)三.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。
四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排法,又乘法原理满足条件的排法有:×=576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种()2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列)五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。
分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种练习1.(a+b+c+d)15有多少项?当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。
当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即当项中有3个字母时指数15分给3个字母分三组即可当项种4个字母都在时四者都相加即可.练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?()3.不定方程X1+X2+X3+…+X50=100中不同的整数解有()六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法?分析:分出三堆书(a1,a2),(a3,a4),(a5,a6)由顺序不同可以有=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有=15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法?2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。
七.合并单元格解决染色问题例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。
分析:颜色相同的区域可能是2、3、4、5.下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素①③⑤的全排列数(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有种方法.由加法原理知:不同着色方法共有2=48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答)(72)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120)图3 图43.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么1 2 3 4 5不同的着色方法是种(84)图5 图65.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共种(420)八.递推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?分析:设上n级楼梯的走法为an 种,易知a1=1,a2=2,当n≥2时,上n级楼梯的走法可分两类:第一类:是最后一步跨一级,有an-1种走法,第二类是最后一步跨两级,有an-2种走法,由加法原理知:a n =an-1+ an-2,据此,a3=a1+a2=3,a4=a#+a2=5,a5=a4+a3=8,a6=13,a7=21,a8=34,a9=55,a10=89.故走上10级楼梯共有89种不同的方法。
九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种(3+3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面?(-4+4-3+3-6C+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥?三棱锥 C104-4C64-6C44-3C44=141 四棱锥 6×4×4=96 3×6=18 共有114十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有()A.1260种B.2025种C.2520种D.5054种分析:先从10人中选出2人十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.解把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.=20种例11.个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.解把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.=126种例12 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法.解把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。
例13 某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.解无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.=35(种)例14 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.=924(种).例15 求(a+b+c)10的展开式的项数.解展开使的项为aαbβcγ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.=66(种)例16 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?解设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为=252(种)十二.转化命题法例17圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有=1365(个)十三.概率法例18一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为,故本例所求的排法种数就是所有排法的,即A=360种十四.除序法例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个?解(1)(2)十五.错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有种(9)公式 1) n=4时a4=3(a3+a2)=9种即三个人有两种错排,两个人有一种错排.2)=n!(1-+-+…+练习有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)排列与组合的区别排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志.下面通过实例来体会排列与组合的区别.【例题】判断下列问题是排列问题还是组合问题?并计算出种数.(1)高二年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二数学课外活动小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2、3、5、7、11、13、17、19八个质数:①从中任取两个数求它们的商,可以有多少个不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?【思考与分析】(1)①由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;②由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.解:(1)①是排列问题,共通了=110(封);②是组合问题,共需握手==55(次)(2)①是排列问题,共有=10×9=90(种)不同的选法;②是组合问题,共=45(种)不同的选法;(3)①是排列问题,共有=8×7=56(个)不同的商;②是组合问题,共有=28(个)不同的积;(4)①是排列问题,共有=56(种)不同的选法;②是组合问题,共有=28(种)不同的选法.(【反思】区分排列与组合的关键是“有序”与“无序”。