中学数学(高中)学科竞赛集锦 (13)
- 格式:pdf
- 大小:999.89 KB
- 文档页数:9
高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。
以下是一些高中数学竞赛赛题的精选和解答。
1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。
解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。
由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。
2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。
解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。
sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。
3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。
给定P(n)+Q(n)=n,求最小的n。
解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。
当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。
4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。
解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。
5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。
高中奥赛试题汇编及答案一、数学奥赛试题1. 题目:证明对于任意正整数 \( n \),\( 1^2 + 1 + 2^2 + 2 + \ldots + n^2 + n = \frac{n(n + 1)(2n + 1)}{6} \)。
答案:我们可以使用数学归纳法来证明这个等式。
首先验证 \( n = 1 \) 时等式成立。
然后假设对于 \( n = k \) 时等式成立,即:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明对于 \( n = k + 1 \) 时等式也成立:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2 + 6(k + 1)}{6} \]\[ = \frac{(k + 1)[(2k + 1)k + 6(k + 1) + 6]}{6} \]\[ = \frac{(k + 1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k + 1)(k + 3)(2k + 3)}{6} \]这样我们就证明了对于 \( n = k + 1 \) 时等式也成立。
因此,根据数学归纳法,等式对所有正整数 \( n \) 成立。
二、物理奥赛试题1. 题目:一个质量为 \( m \) 的物体从静止开始自由下落,忽略空气阻力。
求物体下落 \( t \) 秒后的速度和位移。
答案:根据自由落体运动的公式,物体下落 \( t \) 秒后的速度\( v \) 为:\[ v = gt \]其中 \( g \) 是重力加速度,通常取 \( 9.8 \, \text{m/s}^2 \)。
高中数学竞赛试题汇总高中数学竞赛模拟试题一一试一、填空题(共8小题,8×7=56分)1、已知点(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,点(x,y)与原点的距离是。
2、设f(n)为正整数n(十进制)的各数位上的数字的平方之和,比如记f1(n)=f(n),fk+1(n)=f(fk(n)),f(123)=12+22+32=14.k=1,2,3.则f2010(2010)=。
3、如图,正方体ABCD-A1B1C1D1的二面角度数是。
4、在1,2.2010中随机选取三个数,能构成递增等差数列的概率是。
5、若正数a,b,c满足abc=-(b+ca+ca+b),则ba+c的最大值是。
6、在平面直角坐标系xoy中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当∠MPN取最大值时,点P的横坐标是。
7、已知数列a,a1,a2.an。
满足关系式(3-an+1)(6+an)=18且a=3,则∑(i=1 to n)ai的值是。
8、函数f(x)=sinx+tanxcosx+tanxcosx+cotxsinx+cotx的最小值为。
二、解答题(共3题,14+15+15=44分)9、设数列{an}满足条件:a1=1,a2=2,且an+2=an+1+an (n=1,2,3.),求证:对于任何正整数n,都有:na(n+1)≥1+(n/2)(an)2,3.10、已知曲线M:x2-y2=m,x>0,m为正常数.直线l与曲线M的实轴不垂直,且依次交直线y=x、曲线M、直线y=-x于A、B、C、D4个点,O为坐标原点。
1)若|AB|=|BC|=|CD|,求证:△AOD的面积为定值;2)若△BOC的面积等于△AOD面积的1/3,求证:|AB|=|BC|=|CD|。
11、已知α、β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=2x-t的定义域为[α,β]。
求证:2α+1<2β+1.Ⅰ)求函数g(t)=max{f(x)}-min{f(x)};Ⅱ)证明:对于u1,u2,u3∈(0,π),若sinu1+sinu2+sinu3=1/2,则1113+g(tanu1)g(tanu2)g(tanu3)<6.二试考试时间:150分钟总分:200分)一、(本题50分)如图,O1和O2与△ABC的三边所在的三条直线都相切,E,F,G,H为切点,并且EG、FH的延长线交于P点。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
2019-12-26群日记
〖供题一:河南洛阳张海涛〗
已知0a >,0b >,21a b +=,则22
4221a b a b +++的最小值为()(注:除了权方没有好方法了?)
浙江宁波简洁:
浙江金华周江波
胡不归
〖供题二:江西九江陶智(群题征解)〗
〖供题三:浙江宁波于楠〗
〖供题四:江西九江陶智〗(昨天的折线距离再补一个解析)
浙江宁波王国勇(换元或平移坐标系)
〖供题五:浙江台州方敏〗
浙江东阳郭扬文:
供题六:浙江温州卢宇
解题人:江苏苏州崔锋
文献提供
供题7:广东东莞彭曦
此题延伸:
供题人自答:
横空出世惊为天人无数人膜拜叹服的解答——浙江温州林熙皓
居然还有后续:
供题8:浙江省杭州市颜米司
解题人1:浙江杭州罗彪
解题人2:浙江义乌李耀华
解题人3:浙江兰溪张昊
供题9:山西运城王丽
解题人:浙江兰溪张昊
供题10:浙江衢州颜志荣
解题人1:浙江绍兴高飞
解题人2:浙江绍兴赵灿
供题11:浙江杭州李磊
解题人:浙江义乌鲁明明
供题12:福建漳州林晓峰
江西九江陶智提问:
与此题计算量差不多解几题还有没有?(浙江考题范围内)
供题13:浙江绍兴李宇轩
折线距离的题型补充:。
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
创新数学大赛高中试题在数学的海洋中,创新是推动知识前行的风帆。
今年的高中创新数学大赛,旨在激发学生们对数学的热爱和探索精神。
以下是一些精心设计的试题,它们不仅考验学生的数学基础,更挑战他们的创新思维和解决问题的能力。
试题一:几何图形的变换在平面直角坐标系中,给定一个由四个点A(1,2), B(3,4), C(5,1), D(2,0)组成的四边形ABCD。
现在需要通过旋转和平移操作,将这个四边形变换到一个新的位置,使得它的对角线相交于坐标系的原点。
请给出具体的旋转角度和平移向量。
试题二:函数的极限探索考虑函数f(x) = (x^2 - 1) / (x - 1)。
当x趋近于1时,求f(x)的极限。
并证明你的结论。
试题三:概率与统计在一个班级中,有50名学生,他们的成绩分布如下:20名学生成绩在60-69分之间,15名学生成绩在70-79分之间,10名学生成绩在80-89分之间,5名学生成绩在90-99分之间。
假设成绩分布是均匀的,计算这个班级的平均成绩和标准差。
试题四:数列与级数给定一个数列:a1 = 2, a2 = 3, a3 = 5, ...,其中an = an-1 + an-2(对于n > 2)。
求这个数列的第20项。
试题五:组合数学问题在一个有100个座位的电影院里,有10个不同的电影可供选择。
如果每个座位可以独立选择播放的电影,不考虑座位是否被占用,计算总共有多少种不同的电影播放组合。
试题六:线性代数与矩阵给定一个3x3的矩阵A:\[ A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{{bmatrix} } \]求矩阵A的特征值和对应的特征向量。
试题七:拓扑学初步考虑一个平面上的简单闭曲线,它将平面划分为内部和外部两个区域。
如果在这个曲线上添加一个点,使得这个点与曲线上的其他点不重合,这个新的图形能否将平面划分为三个区域?请给出你的解释。
高一第一学期学科竞赛数学试题(时间:120分钟, 满分150分)一、选择题(共10小题,每小题5分,共50分)1、集合{0,1,2,2006}的非空真子集的个数是 ( ) A 16 B 15 C 14 D 132.已知0sin 2005α=,则α是第 象限角. ( ) A,一 B,二 C,三 D,四3、设U=Z ,M={2,}x x k k z =∈,N={21,}x x k k z =±∈,P={41,}x x k k z =±∈,则下列结论不正确的是 ( ) A U C M N = B U C P M = C M N =∅ D N P N =4、函数12xy -=的图象是( )5、函数()log [1,2]xa f x a x =+在上的最大值和最小值之差为21a a -+,则的a 值为 ( )A 2或21 B 2或4 C21或4 D 26.当0,4x π⎛⎫∈ ⎪⎝⎭时,下面四个函数中最大的是 ( ) A. sin(cos )x B. sin(sin )x C. cos(sin )x D. cos(cos )x7.已知四边形ABCD 在映射f :),(y x →)2,1(+-y x 作用下的象集为四边形D C B A ''''。
四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于 ( ) A .9B .26C .34D .68、的解的个数为方程xx 22= ( )A.0B.1C.2D.39.若F(11xx-+)=x 则下列等式正确的是 ( ). A F(-2-x)=-1-F(x) B F(-x)=11xx+-C F(x -1)=F(x)D F (F (x ))=-x10.函数2()log (321)a f x ax x a =-++-对于任意(0,1]x ∈恒有意义,则实数a 的取值范围( )A 0a >且1a ≠B 12a ≥且1a ≠ C 12a >且1a ≠ D 1a > 二、填空题(共6小题,每小题5分,共30分)11.已知全集U={}R y R x y x ∈∈,),(,集合M={}2),(=+y x y x ,集合N=⎭⎬⎫⎩⎨⎧-=--111),(x y y x ,则集合)(N M C U ⋂= . 12、已知函数(0)()(0)x x f x x x ≥⎧=⎨-<⎩,奇函数()g x 在0x =处有定义,且0x <时,()(1)g x x x =+,则方程()()1f x g x +=的解是 。
高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。
下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。
一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。
若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。
那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。
同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。
试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。
求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。
解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。
竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。
3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。
5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。
6.已知复数z 满足24510(1)1zz =−=,则z =__________________。
7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。
8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。
9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。
10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。
直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。
则当1OAF ∠最大时,实数r =_____________________。
高中数学趣味知识竞赛题库一、选择题(1 - 10题)1. 设集合A={xx^2-3x + 2=0},B={xax - 2=0},若B⊆ A,则a所有可能的值构成的集合为()- A. {1,2}- B. {1,(2)/(3)}- C. {0,1,2}- D. {0,1,(2)/(3)}- 解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
- 因为B⊆ A,当B=varnothing时,ax-2 = 0无解,此时a = 0;当B≠varnothing时,若x=(2)/(a)=1,则a = 2;若x=(2)/(a)=2,则a = 1。
所以a所有可能的值构成的集合为{0,1,2},答案是C。
2. 函数y=log_a(x + 3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny + 1 = 0上,其中mn>0,则(1)/(m)+(2)/(n)的最小值为()- A. 8- B. 6- C. 4- D. 10- 解析:- 对于函数y=log_a(x + 3)-1,令x+3 = 1,即x=-2,此时y=-1,所以定点A(-2,-1)。
- 因为点A在直线mx + ny+1 = 0上,所以-2m - n+1 = 0,即2m + n = 1。
- 又因为mn>0,所以m>0,n>0。
- 则(1)/(m)+(2)/(n)=(2m +n)((1)/(m)+(2)/(n))=2+(4m)/(n)+(n)/(m)+2=(4m)/(n)+(n)/(m)+4。
- 根据基本不等式(4m)/(n)+(n)/(m)≥slant2√(frac{4m){n}×(n)/(m)} = 4,当且仅当(4m)/(n)=(n)/(m)时等号成立。
- 所以(1)/(m)+(2)/(n)≥slant4 + 4=8,答案是A。
高中数学竞赛题库及答案解析在高中数学的学习中,参加数学竞赛是提高自己数学水平的一个很好的途径。
为了帮助广大高中生更好地备战数学竞赛,我们整理了一套高中数学竞赛题库,并提供了相应的答案解析。
下面是题库的详细内容和解析。
第一部分:选择题1. 题目:已知等差数列$\{a_n\}$的前$n$项和为$S_n=\frac{n}{2}(2a_1+(n-1)d)$,其中$a_1=3$,$d=-2$,求该等差数列的第21项$a_{21}$的值。
解析:根据已知条件,代入公式$S_n=\frac{n}{2}(2a_1+(n-1)d)$,得到$S_{21}=\frac{21}{2}(2\cdot3+(21-1)\cdot(-2))$,计算可得$S_{21}=-105$。
由等差数列的前$n$项和公式可知$S_{21}=a_1+19d$,代入已知$a_1=3$和$d=-2$,解方程可得$a_{21}=-37$。
答案:$a_{21}=-37$。
2. 题目:已知函数$f(x)=x^3-2x^2+3x-4$,求$f(-1)$的值。
解析:将$x$的值代入函数$f(x)$中,得到$f(-1)=(-1)^3-2(-1)^2+3(-1)-4$,计算可得$f(-1)=-5$。
答案:$f(-1)=-5$。
第二部分:填空题1. 题目:已知$\sqrt{x^2+16}+x=4$,求$x$的值。
解析:移项得到$\sqrt{x^2+16}=4-x$,两边平方得到$x^2+16=(4-x)^2$。
展开计算可得$x^2+16=16-8x+x^2$,整理得到$8x=0$,解方程可得$x=0$。
答案:$x=0$。
2. 题目:已知函数$g(x)=\log_{10}(5x-2)$,求$g(3)$的值。
解析:将$x$的值代入函数$g(x)$中,得到$g(3)=\log_{10}(5\cdot3-2)$,计算可得$g(3)=\log_{10}13$。
答案:$g(3)=\log_{10}13$。
高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。
A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。
A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。
A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。
A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。
A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。
A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。
A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。
A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。
答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。
答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
【高中数学竞赛专题大全】竞赛专题1 集合 (50题竞赛真题强化训练)一、单选题1.(2018·天津·高三竞赛)如果集合{}1,2,3,,10A =,{}1,2,3,4B =,C 是A 的子集,且C B ≠∅,则这样的子集C 有( )个.A .256B .959C .960D .961【答案】C 【解析】 【详解】满足C B ⋂=∅的子集C 有62个,所以满足C B ⋂≠∅的子集C 有10622960-=个. 故答案为C2.(2020·浙江温州·高一竞赛)已知集合{}{}2|2,230A x x B x x x =>=--<∣,则A B =( ).A .{23}xx <<∣ B .{12}xx -<<∣ C .{21xx -<<-∣或2}x > D .{2∣<-xx 或3}x > 【答案】A 【解析】 【详解】(,2)(2,)A =-∞-+∞,又223(3)(1)0(1,3)x x x x B --=-+<⇒=-, 所以(2,3)A B =. 故选:A.3.(2018·黑龙江·高三竞赛)已知集合(){}2,60A x y x a y =++=,集合()(){},2320B x y a x ay a =-++=.若AB =∅,则a 的值是( ).A .3或-1B .0C .-1D .0或-1【答案】D 【解析】 【详解】A B ⋂=∅,即直线21:60l x a y ++=与()2:2320l a x ay a -++=平行.令()2132a a a ⨯=-,解得0a =或-14.(2019·全国·高三竞赛)已知{}1,2,,216,S A S =⋅⋅⋅⊆.若集合A 中任两个元素的和都不能被6整除,则集合A 中元素的个数最多为( ). A .36 B .52 C .74 D .90【答案】C 【解析】 【详解】记{}()6,0,1,,5k S x S x n k n N k =∈=+∈=⋅⋅⋅,且50k k S S ==⋃.易知()36k card S =.则集合A 中既不能同时有1S 与5S 或2S 与4S 中元素,也不能有6S 中两个元素、3S 中两个元素.要使A 中元素最多,可选1S 与2S 中全部元素,0S 与3S 中各一个元素.故最多共有36361174+++=个元素. 故答案为C5.(2019·吉林·高三竞赛)集合A ={2,0,1,3},集合B ={x |-x ∈A ,2-x 2∉A },则集合B 中所有元素的和为 A .4- B .5- C .6- D .7-【答案】B 【解析】 【详解】由题意可得B ={-2,-3},则集合B 中所有元素的和为-5. 故选:B. 二、填空题6.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集AB 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050k kk kk k k k CC C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.7.(2018·湖南·高三竞赛)设集合2{|},{31021|}01A x x x B x m x m =-≤=+≤≤--,若A B B =,则实数m 的取值范围为__________. 【答案】3m ≤ 【解析】 【详解】由A B B ⋂=知,B A ⊆,而2{|3100}{|25}A x x x x x =--≤=-≤≤.当B =∅时,121m m +>-,即2m <,此时B A ⊆成立. 当B ≠∅时,121m m +≤-,即2m ≥,由B A ⊆,得21,21 5.m m -≤+⎧⎨-≤⎩ 解得33m -≤≤.又2m ≥,故得23m ≤≤. 综上,有3m ≤. 故答案为3m ≤8.(2021·全国·高三竞赛)已知,a b ∈R ,集合{}2{1,,},,M a b N a ab ==,若N M ⊆,则a b+的值为_________. 【答案】1- 【解析】 【分析】 【详解】依题意,1,0,1,a a b b a ≠≠≠≠.若21a =,则1,{1,1,},{1,}a M b N b =-=-=-,所以,0b b b -==. 若2a a =,则0a =或1,矛盾.若2a b =,则{}{}2231,,,,M a a N a a ==,于是31a =或a ,得0a =或±1,舍去.综上所述,1a b +=-. 故答案为:1-.9.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.10.(2018·福建·高三竞赛)将正偶数集合{}2,4,6,从小到大按第n 组有32n -个数进行分组:{}2,{}4,6,8,10,{}12,14,16,18,20,22,24,…,则2018位于第______组. 【答案】27 【解析】 【详解】设2018在第n 组,由2018为第1009个正偶数,根据题意得()()11132100932n ni i i i -==-<≤-∑∑,即()()223113100922n n n n ----<≤.解得正整数27n =.所以2018位于第27组.11.(2021·全国·高三竞赛)在{1,2,,12}的非空真子集中,满足最大元素与最小元素之和为13的集合个数为___________. 【答案】1364 【解析】 【详解】考虑1,12;2,11;3,10;4,9;5,8;6,7这5组数,每一组可作为集合的最大元素和最小元素,故所求集合的个数为()10864221222211364-+++++=,故答案为:136412.(2021·全国·高三竞赛)已知集合{1,2,3,,1995}M =,A 是M 的子集,当x A ∈时,19x A ∉,则集合A 元素个数的最大值为_______. 【答案】1895 【解析】 【详解】解析:先构造抽屉:{6,114},{7,133},,{105,1995},{1,2,3,4,5,106,107,,1994}.使前100个抽屉中恰均只有2个数,且只有1个数属于A ,可从集合M 中去掉前100个抽屉中的数,剩下199510021795-⨯=个数,作为第101个抽屉.现从第1至100个抽屉中取较大的数,和第101个抽屉中的数,组成集合A ,于是{1,2,3,4,5,106,107,,1995}A =,满足A 包含于M ,且当x A ∈时,19x A ∉. 所以card()A 的最大值为199********-=. 故答案为:1895.13.(2021·全国·高三竞赛)设111,,,23100X ⎧⎫=⎨⎬⎩⎭,子集G X ⊆之积数定义为G 中所有元素之乘积(空集的积数为零),求X 中所有偶数个元素之子集的积数的总和是_________. 【答案】4851200##5124200【解析】 【详解】解:设X 中所有偶数个元素之子集的积数的总和是A ,X 中所有奇数个元素之子集的积数之和是B ,则111991*********A B ⎛⎫⎛⎫⎛⎫+=+++-=⎪⎪⎪⎝⎭⎝⎭⎝⎭,11199111123100100A B ⎛⎫⎛⎫⎛⎫-=----=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 解得4851200A =. 故答案为:485120014.(2020·江苏·高三竞赛)设*n N ∈,欧拉函数()n ϕ表示在正整数1,2,3,…,n 中与n 互质的数的个数,例如1,3都与4互质,2,4与4不互质,所以()42ϕ=,则()2020ϕ=__________.【答案】800 【解析】 【详解】解析:法一:因为2202025101=⨯⨯,故能被2整除的数有1010个,能被5整除的数有404个, 能被101整除的数有20个,既能被2整除又能被5整除的数有202个, 既能被2整除又能被101整除的数有10个, 既能被5整除又能被101整除的数有4个, 既能被2整除又能被5和101整除的数有2个.故与2020不互质的有10104042020210421220++---+=,则()2020800ϕ=. 故答案为:800.法二:()()()()2202025101=800ϕϕϕϕ=⨯⨯.故答案为:800.15.(2021·浙江·高二竞赛)给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______. 【答案】29970 【解析】 【分析】【详解】由(1)(1)1x a b =++-, 则可知所有元素之和为(1319)30031029970+++⨯-⨯=.故答案为:29970.16.(2021·全国·高三竞赛)从自然数中删去所有的完全平方数与立方数,剩下的数从小到大排成一个数列{}n a ,则2020a =_________. 【答案】2074 【解析】 【分析】 【详解】注意到23366452025,121728,132197,3729,44096=====,我们考虑1到2025中n a 出现的次数.这里有45个平方数,12个立方数,3个6次方数, 所以n a 出现的次数为2025451231971--+=, 接下来直至2197前都没有平方数和立方数, 所以20202020197120252074a =-+=.17.(2021·全国·高三竞赛)设正整数m 、n ,集合{1,2,,}A n =,{1,2,,}B m =,{(,),}S u v u A v B ⊆∈∈,满足对任意的(,),(,)a b S x y S ∈∈,均有:()()0a x b y --≤,则max ||S =________.【答案】1n m +- 【解析】 【分析】 【详解】首先对S 中任意两个不同元素(,),(,)a b x y ,必有b a y x -≠-.事实上,若b a y x -=-,则b y ≠(否则a x =,这与(,)(,)a b x y ≠矛盾). 若b y <,则a x <,则()()0a x b y -->,这与题意矛盾, 同理,b y >亦与题意矛盾.这样S 中任意元素(,),a b b a -各不相同, 而{1,2,,0,1,,1}b a m m n -∈----共1n m +-种情形,则||1S n m ≤+-.再令{(,)S x y y m ==且1x n ≤≤,或x n =且1}y m ≤≤,此时||1S n m =+-. 故答案为:1n m +-.18.(2021·全国·高三竞赛)已知A 与B 是集合1,2,3,{},100的两个子集,满足:A 与B 的元素个数相同,且A B 为空集.若当n A ∈时总有22n B +∈,则集合A B 的元素个数最多为_______. 【答案】66 【解析】 【分析】 【详解】先证||66A B ≤,只须证33A ≤, 为此只须证若A 是{}1,2,,49的任一个34元子集,则必存在n A ∈,使得22n A +∈.证明如下: 将{}1,2,,49分成如下33个集合:{}{}{}{}1,4,3,8,5,12,,23,48共12个;{}{}{}{}2,6,10,22,14,30,18,38共4个;{}{}{}{}25,27,29,,49共13个;{}{}{}{}26,34,42,46共4个.由于A 是{}1,2,,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A , 即存在n A ∈,使得22n A +∈. 如取{}1,3,5,,23,2,10,14,18,25,27,29,,49,26,34,42,46A =,22{|}B n n A =+∈,则A 、B 满足题设且||66A B =. 故答案为:66.19.(2021·全国·高三竞赛)设集合{1,2,3,,10},{(,,),,S A x y z x y z S ==∈∣,且()}3339x y z ++∣,则A 有_______个元素.【答案】243 【解析】 【分析】 【详解】将S 中元素按3x 模9余数分类得:123{1,4,7,10},{2,5,8},{3,6,9}S S S ===. 对每个(),,x y z A ∈,有,,x y z 分别属于123,,S S S ,或,,x y z 均属于3S .因此A 中共有()33!4333243⨯⨯⨯+=个元素.故答案为:243.20.(2021·全国·高三竞赛)设S 为集合{}0,1,2,,9的子集,若存在正整数N ,使得对任意整数n N >,总能找到正实数a b 、,满足a b n +=,且a b 、在十进制表示下的所有数字(不包括开头的0)都属于集合S ,则||S 的最小值为___(||S 表示集合S 的元素个数). 【答案】5 【解析】 【分析】 【详解】第一步,证明4S ≥,若4S =,则其中两数(可相同)相加共10个值(4个2i x 加上24C 6=个i j x x +),而n 的个位数由这10个值的个位数产生,因此,这10个值的个位数不能重复; 在0、1、2、…、9中有五个奇数,五个偶数, 若四个元中0或4个奇数,不能加出奇数; 若四个元中有1个奇数,只能产生3个奇数; 若四个元中有2个奇数,只能产生4个奇数; 若四个元中有3个奇数,只能产生3个奇数; 因此||4S >.第二步,构造一个五元组满足条件,稍加实验可得下表上表表明,0、1、2、…、9中的每个数字,都可以由{}0,1,2,3,6中的两个相加得到,则对任意正整数n ,从个位数开始依次向高位遍历,将每位数都按表格中表示分解为两个数,赋值给a b 、对应的位置,遍历完毕后自然得到a b 、. 综上min ||5S =. 故答案为:5.21.(2019·江西·高三竞赛)将集合{1,2,……,19}中每两个互异的数作乘积,所有这种乘积的和为_________ . 【答案】16815 【解析】 【详解】所求的和为()22221(1219)12192⎡⎤+++-+++⎣⎦1(361002470)2=-16815=.故答案为:16815.22.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.23.(2019·广西·高三竞赛)已知yz ≠0,且集合{2x ,3z ,xy }也可以表示为{y ,2x 2,3xz },则x =____________.【答案】1 【解析】 【详解】易知xyz ≠0,由两集合各元素之积得2366,1x yz x yz x ==. 经验证,x =1符合题意. 故答案为:1.24.(2019·山东·高三竞赛)已知(){}23|log 21,(,](,)A x x x B a b =-=-∞⋃+∞其中a <b ,如果A ∪B =R ,那么a -b 的最小值是_______ . 【答案】1- 【解析】 【详解】由已知得[1,0)(2,3]A =-⋃,故b -a ≤1,于是1a b --. 故答案为:1-.25.(2019·重庆·高三竞赛)设A 为三元集合(三个不同实数组成的集合),集合B ={x +y |x ,y ∈A ,x ≠y },若{}222log 6,log 10,log 15B =,则集合A =_______ . 【答案】{}221,log 3,log 5 【解析】 【详解】设{}222log ,log ,log A a b c =,其中0<a <b <c .则ab =6,ac =10,bc =15. 解得a =2,b =3,c =5,从而{}221,log 3,log 5A =. 故答案为:{}221,log 3,log 5.26.(2018·河北·高二竞赛)已知集合{},,A x xy x y =+,{}0,,B x y =且A=B ,那么20182018x y +=_______.【答案】2 【解析】 【详解】由B 中有三个元素知,0x ≠且0y ≠,故A 中0x y +=,即有x y =-,又{}{},,x xy x y =若x x xy y ⎧=⎨=⎩,则11x y =⎧⎨=-⎩.此时{}{}1,1,0,0,1,1A B =-=-. 若x t x xy =⎧⎨=⎩,则00x y =⎧⎨=⎩,或11x y =-⎧⎨=-⎩,或11x y =⎧⎨=⎩,不满足互异性,舍去.故1x =,1y =-,所以201820182x y +=. 27.(2019·全国·高三竞赛)集合{}1,2,,100S =,对于正整数m ,集合S 的任一m 元子集中必有一个数为另外m-1个数乘积的约数.则m 的最小可能值为__________. 【答案】26 【解析】 【详解】所有不大于100的素数共有25个,记其构成的组合为T={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}.注意到,集合T 中每一个元素均不能被T 中其余24个元素之积整除. 故2526m T m >=⇒≥.另一方面,用反证法证明:对于集合S 的任一26元子集,其中必有一个数为另外25个数乘积的约数.为叙述方便,对于素数p 和正整数x ,记()p x α表示x 中缩含p 的幂指数.若存在集合S 的某个26元子集A ,对每个x A ∈,x 均不整除集合A 中其余25个数乘积,则对每个x A ∈,存在x 的素因子p ,使得(){}\p p x A x x z αα∈⎛⎫> ⎪ ⎪⎝⎭∏,称这样的素数p 为x 的特异素因子,这种特异素因子不是唯一的.由于26A =,且所有特异素因子均属于集合S ,而集合S 中只有25个素数,故必有集合A 的两个不同元素x 、y 具有同一个特异素因子p. 由特异性及{}\y A x ∈,知(){}{}\p p p z A x x z y ααα∈⎛⎫>≥ ⎪⎪⎝⎭∏.类似地,(){}()\p p p z A y y z x ααα∈⎛⎫>≥⎪ ⎪⎝⎭∏,矛盾. 综上,m 的最小可能值为26.28.(2018·全国·高三竞赛)若实数集合{}2,3A x y =与{}6,B xy =恰有一个公共元素,则A B 中的所有元素之积为__________. 【答案】0 【解析】 【详解】将集合A 、B 的唯一公共元素记为a . 若0a ≠,则集合A 、B 的另一个元素均为6xya,矛盾. 进而,A B ⋃中的所有元素之积为0.29.(2021·全国·高三竞赛)已知非空集合{1,2,,2019,2020}X M ⊆=,用()f X 表示集合X中最大数和最小数的和,则所有这样的()f X 的和为_____. 【答案】()2020202121⋅-【解析】 【分析】 【详解】将M 中的非空子集两两进行配对,对每个非空子集X M ⊆,令{2021}X xx X '=-∈∣, 对M 的任意两个子集1X 和2X ,若12X X ≠时,12X X ''≠.则所有非空集合X 可以分成X X '≠和X X '=两类. 当X X '=时,必有()2021f X =,当X X '≠时,必有()()202124042f X f X +'=⨯=.又M 的非空子集共有202021-个,故所有这样的()f X 的和为()2020202121⋅-.故答案为:()2020202121⋅-.30.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________.【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=. 故答案为:39200.31.(2019·浙江·高三竞赛)已知集合A ={k +1,k +2,…,k +n },k 、n 为正整数,若集合A 中所有元素之和为2019,则当n 取最大值时,集合A =________. 【答案】{334,335,336,337,338,339} 【解析】 【详解】由已知2136732k n n ++⨯=⨯. 当n =2m 时,得到(221)36733,6,333k m m m n k ++=⨯⇒===; 当n =2m +1时,得到(1)(21)36731,3k m m m n +++=⨯⇒==. 所以n 的最大值为6,此时集合{334,335,336,337,338,339}A =. 故答案为:{334,335,336,337,338,339} .32.(2021·全国·高三竞赛)设集合{1,2,3,4,5,6,7,8,9,10}A =,满足下列性质的集合称为“翔集合”:集合至少含有两个元素,且集合内任意两个元素之差的绝对值大于2.则A 的子集中有___________个“翔集合”. 【答案】49 【解析】 【分析】 设出集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出2340,1a a a ===,在4n >时,要分情况把n a 的递推公式写出来,进而得到10a ,即答案. 【详解】 设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,则2340,1a a a ===.当4n >时,可将满足题设性质的子集分为如下两类:一类是含有n 的子集,去掉n 后剩下小于2n -的单元子集或者是{1,2,3,,3}n -满足题设性质的子集,前者有3n -个,后者有3n a -个;另一类是不含有n 的子集,此时恰好是{1,2,3,,1}n -满足题设性质的子集,有1n a -个.于是,31(3)n n n a n a a --=-++.又2340,1a a a ===,所以56789103,6,11,19,31,49a a a a a a ======.故答案为:49 【点睛】本题的难点是用数列的思想来考虑,设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出n a 的递推公式,再代入求值即可. 三、解答题33.(2021·全国·高三竞赛)已知非空正实数有限集合A ,定义集合{},,,x B x y A C xy x y A y ⎧⎫=∈=∈⎨⎬⎩⎭,证明:2A B C ⋅≤.【答案】证明见解析 【解析】 【详解】以集合B 作为突破口,取b B ∈,并设有()n b 个数对(),(1,2,,())i i x y i n b =满足:,,ii i ix b x y A y =∈. 由条件知,()i i ax ay C a A ∈∈,考虑集合(){}(),,1,2,,()i i X b ax ay a A i n b =∈=⋅⋅⋅,有()()(),(),X b A X b X b b B b b ''=∅∈'≥≠.于是,2||C ≥U ()b BX b ∈=b B∈∑|()|X b ≥||||B A ⋅得证. 34.(2021·浙江·高二竞赛)设数集{}12,,,m P a a a =,它的平均数12mp a a a C m+++=.现将{1,2,,}S n =分成两个非空且不相交子集A ,B ,求A B C C -的最大值,并讨论取到最大值时不同的有序数对(),A B 的数目. 【答案】最大值2n,数目为22n -.【解析】 【分析】不妨设A B C C >,记{}12,,,p A a a a =,12p T a a a =+++,可以得到A B C C -=12n T n n p p ⎛⎫+- ⎪-⎝⎭,考虑T 最大的情况是取最大的p 个数,此时可以发现A B C C -的结果正好是与p 无关的定值,从而也就得到了A B C C -的最大值,然后考察p 的可能的值,得到A B C C >时(),A B 的组数,并利用对称性得到A B C C <时(),A B 具有与之相等的组数,从而得到所有可能的(),A B 的组数. 【详解】 不妨设A B C C >, 记{}12,,,p A a a a =,12p T a a a =+++,所以(1)2A B A Bn n TT C C C C p n p+--=-=-- 11(1)12()2n n n T n T p n p n p n p p ⎛⎫⎛⎫++=+-=- ⎪ ⎪---⎝⎭⎝⎭,又有(21)(1)(2)2p n p T n p n p n -+≤-++-+++=,所以211222A B n n p n nC C n p -++⎛⎫-≤-= ⎪-⎝⎭当且仅当(21)2p n p T -+=时,取到等号,所以A B C C -的最大值2n.此时{1,,}A n p n =-+,由,A B 非空,可知1p =,2,…,1n -,有1n -种情况, 利用对称性得到A B C C <时(),A B 具有与之相等的组数, 由于A B C C -的最大值2n不可能有A B C C =的情况,所以有序数对(),A B 的数目为22n -. 35.(2020·全国·高三竞赛)设集合{1,2,,19}A =.是否存在集合A 的非空子集12,S S ,满足(1)1212,S S S S A ⋂=∅⋃=; (2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积?证明你的结论. 【答案】证明见解析. 【解析】 【分析】不妨设21,2,,,219S x y x y =<<≤,由条件可得2187xy x y ++=,即(21)(21)3751525x y ++==⨯,根据219x y <<≤,,x y N ∈,可得出其一组解,可证明.【详解】解:答案是肯定的.不妨设21,2,,,219S x y x y =<<≤,,x y N ∈ 则1219122x y xy +++----=,所以2187xy x y ++=,故(21)(21)3751525x y ++==⨯, 所以7,12x y ==是一组解故取13,4,5,6,7,8,10,11,13,14,15,16,17,18,19S =,21,2,7,12S =,则这样的12,S S 满足条件 36.(2021·全国·高三竞赛)设n 是正整数,我们说集合{1,2,,2}n 的一个排列()122,,,n x x x 具有性质P ,是指在{1,2,,21}n -当中至少有一个i ,使得1i i x x n +-=.求证:对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多. 【答案】证明见解析 【解析】 【详解】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然||||(2)!A B n +=.为了证明||||A B <,只要得到1||(2)!2B n >就够了.设()122,,,n x x x 中,k 与k n +相邻的排列的集合为,1,2,,k A k n =.则22(21)!,2(22)!,1k k j A n A A n k j n =⋅-=⋅-≤<≤,由容斥原理得121||||2(21)!4(22)||!k k kj n n k j nB A A A n nC n =≤<≤≥-=⋅⋅--⋅⋅-∑∑(2)!2(1)(22)!n n n n =--⋅- 2(22)!n n n =⋅⋅-212(22)!2n n n ->⋅⋅- 1(2)!2n = 37.(2021·全国·高三竞赛)平面上有一个(3)n n ≥阶完全图,对其边进行三染色,且每种颜色至少染一条边.现假设在完全图中至多选出k 条边,且把这k 条边的颜色全部变为给定三色中的某种颜色后,此图同时也可以被该种颜色的边连通.若无论初始如何染色,都可以达到目的,求k 的最小值. 【答案】3n ⎡⎤⎢⎥⎣⎦【解析】 【详解】先证明:3n k ⎡⎤≥⎢⎥⎣⎦.(这里3n ⎡⎤⎢⎥⎣⎦表示不超过3n 的最大的整数).假设三种颜色为1、2、3,n 阶完全图的n 个点分成三个点集A 、B 、C , 且||||3n A B ⎡⎤==⎢⎥⎣⎦.做如下染色:集合A 中的点之间连的边染1,集合B 中的点之间连的边染2,集合C 中的点之间连的边染3,集合A 与B 间的点连的边染2,集合B 与C 间的点连的边染3,集合C 与A 间的点连的边染1.从而,若变色后最终得到染1的颜色的边形成的连通图,由于集合B 中的点出发的边均染的是2或3,于是,变色边数不小于||3n B ⎡⎤=⎢⎥⎣⎦.类似地,若变色后最终得到染2或3的颜色的边形成的连通图,则变色边数不小于||A (或C )3n ⎡⎤≥⎢⎥⎣⎦.故3n k ⎡⎤≥⎢⎥⎣⎦.再证明:3n k ⎡⎤≤⎢⎥⎣⎦.对n 用数学归纳法. 当3n =时,结论成立.假设1(4)n n -≥时,结论成立.则n 个点时: (1)若完全图中由某点出发的边有三种不同颜色,由归纳假设,可通过改变其中13n -⎡⎤⎢⎥⎣⎦条边的颜色得到同色连通图.(2)若完全图中由所有点出发的边均最多两种不同颜色, 记A 为所有出发的边均染1或2的点组成的集合, 记B 为所有出发的边均染2或3的点组成的集合, 记C 为所有出发的边均染3或1的点组成的集合. 如果某些点连出的边都染颜色1,则把它归入集合A ; 如果某些点连出的边都染颜色2,则把它归入集合B ; 如果某些点连出的边都染颜色3,则把它归入集合C .不失一般性,不妨设||||A B C≤≤∣.则||3n A ⎡⎤≤⎢⎥⎣⎦.若B ≠∅,则C ≠∅,集合B 中的点连向集合C 中的点的边均染3.故B C ⋃由颜色3可以连通. 此时,任选集合B 中一点,集合A 中每个点与该点的连线的边颜色均变成3, 由||3n A ⎡⎤≤⎢⎥⎣⎦知成立.若B =∅,则A =∅,于是,完全图的边均染的是1或3. 这与条件“每种颜色至少染一条边”不符. 所以由归纳法知原结论成立.38.(2022·全国·高三专题练习)班级里共有()3n n ≥名学生,其中有A ,B ,C .已知A ,B ,C 中任意两人均为朋友,且三人中每人均与班级里中超过一半的学生为朋友.若对于某三个人,他们当中任意两人均为朋友,则称他们组成一个“朋友圈”. (1)求班级里朋友圈个数的最大值()F n . (2)求班级里朋友圈个数的最小值()G n .【答案】(1)()()126n n n --;(2)()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数 【解析】 【分析】(1)利用组合数可求()F n ; (2)利用容斥原理可求()G n . 【详解】(1)当班级中的任意3人中,任意两个人都是朋友时,班级里朋友圈个数的最大,此时()()()3126n n n n F n C --==.(2)当3n =时,()31G =,当4n =时,A ,B ,C 中的每个人都至少与班级的3个同学是好朋友,故4人彼此是好朋友,故()44G =,当5n ≥时,记a P 为班级中除去,,A B C 且与A 是朋友的同学的集合,b P 为班级中除去,,A B C 且与B 是朋友的同学的集合,Pc 为班级中除去,,A B C 且与C 是朋友的同学的集合,若2(3)n k k =≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:452,,,k Y Y Y ,集合M 中元素的个数记为M ,因为余下人数为23k -,由容斥原理可得23a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2333a b a c b c abc k k P P P P P P P P P -≥----+,即ab ac b c abc P P P P P P P P P k ++-≥,故此时()1G n k ≥+, 考虑一种特殊情况:{}{}4+2+22,,,,,a k c b k k P Y Y P P Y Y ===, 此时朋友圈个数为1111k k -++=+,故()112nG n k =+=+. 若21(2)n k k =+≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:4521,,,k Y Y Y +,集合M 中元素的个数记为M ,因为余下人数为22k -,由容斥原理可得22a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2233a b a c b c abc k k P P P P P P P P P -≥----+,即1ab ac b c abc P P P P P P P P P k ++-≥-,故此时()G n k ≥,考虑一种特殊情况:{}{}{}4+2+22+321,,,,,,,,a k b k k c k k P Y Y P Y Y P Y Y +===, 此时朋友圈个数为112k k ++-=,故()12n G n k -==. 综上,()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数.39.(2021·浙江·高三竞赛)某班有10名同学计划在暑假举行若干次聚会,要求每名同学至多参加三次聚会,并且任意两名同学至少在一次聚会中相遇.求最大的正整数m ,使得无论如何安排符合上述要求的聚会,都一定存在某次聚会有至少m 名同学参加. 【答案】最大正整数m 是5 【解析】 【分析】 【详解】解:设有n 次聚会,聚会人数分别为1x ,2x ,…,n x (均为正整数).我们有: 1210330n x x x +++≤⨯=1210452222n x x x ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭记11n S x x =+⋅⋅⋅+,2221n S x x =+⋅⋅⋅+,则2190S S -≥可知214S S ≥,即{}22111max ,,4nn nx x x x x x +⋅⋅⋅+⋅⋅⋅≥≥+⋅⋅⋅+若上式等号成立,则必须14n x x =⋅⋅⋅==,并且1130n S x x =+⋅⋅⋅+=,这样可得7.5n =导致矛盾.所以我们有{}1max ,,5n x x ⋅⋅⋅≥,即一定存在某次聚会有至少5名同学参加,即5m =满足题意.另一方面,我们给出10名同学参加聚会的一种安排方式:共A ,B ,C ,D ,E ,F 六次聚会,每次聚会恰好有5名同学参加,下面的10个三元子集分别表示10名同学各参加哪三次聚会:{}ABC ,{}CDE ,{}AEF ,{}BDF ,{}ABD ,{}ADE ,{}BCE ,{}BEF ,{}CDF ,{}ACF .易知在所有6203⎛⎫= ⎪⎝⎭个三元子集中,互补的两个三元子集在上式中恰好出现一个.这保证了上面的10个三元子集中每两个都相交,即任意两名同学至少在一次聚会中相遇.此外,A ,B ,C ,D ,E ,F 中的每一个在上式的10个三元子集中恰好出现五次,即每次聚会都恰好有5名同学参加,这意味着6m ≥不符合题意. 因此所求的最大正整数m 是5.另一种构造:{}ABC ,{}ABC ,{}BEF ,{}BEF ,{}CDF ,{}CDF ,{}ABD ,{}AEF ,{}ADE ,{}CDE .40.(2021·全国·高三竞赛)设2n ≥为正数,122,,,n A A A 为1,2,{},n 的所有子集的任一个排列.求2111nii ii i A A A A ++=⋅∑的最大值,其中121n A A +=.【答案】()2222n n n -+-【解析】 【分析】 【详解】 先证两个引理. 引理1 设122,,,n A A A 是集合1,2,{},n 的所有子集,则存在122,,,n A A A 的一个排列122,,,n B B B ,使得对任意的1,2,,2n i =均满足i B 、1i B +中的一个是另一个的子集,且元素个数差1,其中约定121n B B +=. 引理1的证明:对n 用归纳法.当2n =时,集合{1,2}的4个子集排列为∅、{1}、{1,2}、{2}便满足要求. 假设当n k =时存在排列122,,,k B B B 满足要求,则当1n k =+时,考虑下面的排列:12211222,,,,{1},{1},,{1},{1}k kk B B B B k B k B k B k -⋅⋅⋅++⋅⋅⋅++,这显然是集合{1,2,,1}k ⋅⋅⋅+的所有子集满足要求的一个排列.引理1证毕. 引理2 设A 、B 是任意两个不同的有限集,则2221A B A B A B ⋅≤+-,(1) 当A 、B 中一个为另一个的子集,且元素个数差1时等号成立. 引理2的证明:设\,\,A B x B A y A B z ===.因为A B ≠,故x 、y 不能同时为0,于是x 、y 中至少有一个大于等于1. (1)22222()()()11x y z z x z y z x y ⇔++≤+++-⇔+≥,(2) 显然成立.又当A 、B 中一个为另一个的子集且元素个数差1时,x 、y 中有一个为0,一个为1.(2)中取等号,从而(1)也取等号.引理2证毕.回到原题.由引理2可得()22222211111111122nnnn ii i i i i i i i i AA A A A AB -+++===≤+-=-∑∑∑ ()212211C 222n k n n n n k k n n ---==-=+-∑ ()2222n n n -=+-.又如果将{1,2,,}n ⋅⋅⋅的所有子集按照引理1中的排法便知上式等号成立.故所求的最大值为()2222n n n -+-.41.(2021·全国·高三竞赛)设{}()1,2,3,,2,m M n m n +=⋅∈N 是连续2m n ⋅个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在1m +个数121,,,m a a a +满足1(1,2,,)i i a a i m +=.【答案】21m n n ⋅-+. 【解析】 【分析】 【详解】 记{1,2,3,,}A n =,任何一个以i 为首项,2为公比的等比数列与A 的交集设为i A .一方面,由于M 中2m n n ⋅-个元的子集{}1,2,,2m n n n ++⋅中不存在题设的1m +个数,否则12112mm n a a a n ++≤<<<≤⋅,而1212m m nn a n ⋅+≤≤=,矛盾.故21m k n n ≥⋅-+.另一方面,21m k n n =⋅-+时,题设满足.若非如此,考虑以1212n i i -⎛⎫+≤ ⎪⎝⎭为首项,以2为公比的等比数列.其与M 的交集的元素个数为21i A m ++个.设M 任何k 元子集为T ,则上述等比数列与M 的交集中至少有21i A +个元素不在T 中,而i j ≠时,2121i j A A ++=∅.注意到21112||,i n iA A +-=所以21112|\|||ii n M T A A n +-≥==,可得2m T M n n n ≤⋅=⋅-与21mT k n n ==⋅-+矛盾.综上,所求k 为21m n n ⋅-+.42.(2021·全国·高三竞赛)对两个不全等的矩形A 、B ,称A B >,若A 的长不小于B 的长,且A 的宽也不小于B 的宽.现在若对任意的n 个两两不全等的,长和宽均为不超过2020的正整数的矩形,都必存在其中3个矩形A 、B 、C ,使得A B C >>,求n 的最小值. 【答案】2021 【解析】 【分析】 【详解】一方面,当2021n =时,若不存在满足要求的3个矩形,我们把所有的矩形如下分类: 对一个矩形A ,若在剩下2020个矩形中,存在一个矩形B ,使得A B >,则称A 为“父矩形”,否则称A 为“子矩形”.由抽屉原理,其中必有一类至少含有1011个矩形,设它们的宽为121011x x x ≤≤⋯≤. 但易知所有的“父矩形”之间两两不能比较大小,所有的“子矩形”之间也两两不能比较大小,于是必有121011x x x <<<且相应的它们的长121011y y y >>>,合在一起即121011*********x x x y y y <<<≤<<<,与它们均为不超过2020的正整数矛盾.另一方面,当2020n ≤时,考虑所有长宽满足要求的,周长为4040的矩形,共1010个,及周长为4042的矩形,也共1010个.由于周长相等的两个矩形无法比大小,因此这2020个矩形中不存在满足要求的3个矩形. 综上,n 的最小值为2021.43.(2021·全国·高三竞赛)已知X 是一个有限集.110110,X A A X B B =⋃⋃=⋃⋃是满足如下性质的两个分划:若,110i j A B i j ⋂=∅≤≤≤,则10i j A B ⋃≥.求X 的最小值. 【答案】50 【解析】 【分析】 【详解】X 的最小值为50.我们先证明||50X ≥. 考虑集合110110,,,,,A A B B 中元素个数最少的集合,不妨设为1A .记1A a =,则1A 至多与110,,B B 中a 个集合相交.不妨设1,1,,i A B i k ⋂≠∅=且1,1,,10i A B i k ⋂=∅=+,其中k a ≤.故110,1,,10i A B i k ⋃≥=+.从而对1i k ∀≥+有11010Bi A a ≥-=-. 由1A 的最小性知1,,k B B 的元素个数均不小于a .从而1101110||k k X B B B B B B +=⋃⋃=++++(10)(10)502(5)(5)k a k a k a ≥⋅+--=+--.(1)若5a ≤,则5k ≤,此时由上式知||50X ≥; (2)若5a >,由1A 是110,,A A 中元素个数最少的集合知||1050X a ≥>.故||50X ≥.另一方面,||X 能取到50,例如, 取11221010{1,2,3,4,5},{6,7,8,9,10},,{46,47,48,49,50}A B A B A B ======.显然它们满足条件,这时{}1,2,,50X =⋯.44.(2021·全国·高三竞赛)设集合S 是由平面上任意三点不共线的4039个点构成的集合,且其中2019个点为红色,2020个点为蓝色;在平面上画出一组直线,可以将平面分成若干区域,若一组直线对于点集S 满足下述两个条件,称这是一个“好直线组”: (1)这些直线不经过该点集S 中的任何一个点; (2)每个区域中均不会同时出现两种颜色的点.求k 的最小值,使得对于任意的点集S ,均存在由k 条直线构成的“好直线组”. 【答案】2019. 【解析】 【分析】 【详解】 先证明2019k ≥:在一个圆周上顺次交替标记2019个红点和2019个蓝点,在平面上另外任取一点染为蓝色,这个圆周就被分成了4038段弧,则每一段的两个端点均染了不同的颜色; 若要满足题目的要求,则每一段弧均与某条画出的直线相交; 因为每条直线和圆周至多有两个交点,所以,至少要有403820192=条直线. 再证明:用2019条直线可以满足要求.对于任意两个同色点AB 、,均可用两条直线将它们与其他的点分离. 作法:在直线AB 的两侧作两条与AB 平行的直线,只要它们足够接近AB ,它们之间的带状区域里就会只有A 和B 这两个染色点. 设P 是所有染色点的凸包,有以下两种情形:(1)假设P 有一个红色顶点,不妨记为A .则可作一条直线,将点A 和所有其他的染色点分离,这样,余下的2018个红点可以组成1009对,每对可以用两条平行直线将它们与所有其他的染色点分离.所以,总共用2019条直线可以达到要求.(2)假设P 的所有顶点均为蓝色.考虑P 上的两个相邻顶点,不妨记为AB 、.则用一条直线就可以将这两个点与所有其他染色点分离.这样,余下的2018个蓝点可以组成1009对,每对可以用两条直线将它们与所有其他染色点分离. 所以,总共也用了2019条直线可以达到要求. 综上:k 的最小值为2019.45.(2021·全国·高三竞赛)设函数:f ++→Z Z 满足对于每个n +∈Z ,均存在一个k +∈Z ,使得2()k f n n k =+,其中,m f 是f 复合m 次.设n k 是满足上述条件的k 中的最小值,证明:数列12,,k k 无界.【答案】证明见解析. 【解析】 【分析】 【详解】设{}21,(1),(1),S f f =,对于每个正整数n S ∈,存在正整数k ,使得2()kfn n k S =+∈.因此,集合S 是无界的,且函数f 将S 映射到S .此外,函数f 在集合S 上是单射. 事实上,若(1)(1)()i j f f i j =≠,则m f (1)从某个值开始周期性地进行重复.于是,集合S 是有界的,矛盾.定义:g S S →为2()()n kn g n f n n k ==+.首先证明:g 也是单射.假设()()()g a g b a b =<,则22()()a b k ka b a k f a f b b k +===+,于是,>a b k k .因为函数f 在集合S 上是单射,所以()()2()a b k k a b fa b a k k -==+-.又0a b a k k k <-<,与a k 的最小性矛盾.设T 是集合S 中非形如()()g n n S ∈的元素构成的集合.由于对每个n S ∈,均有()g n n >,则1T ∈.于是,T 是非空集合.对每个t T ∈,记{}2,(),(),t C t g t g t =,且称tC 为从t 开始的“链”.因为g 是单射,所以,不同的链不交.对每个n S T ∈,均有()n g n =',其中,n n '<,n S '∈.重复上述过程,知存在t T ∈,使得t n C ∈,从而,集合S 是链t C 的并.若(1)n f 是从(1)i nt f =开始的链t C 中的元素,则122t j n n a a =+++,其中,()()()()112221(1)(1)(1)(1)jj i t ta a a n n n n j j f g f ff f f fa a -===+++.故(1)(1)22t n nt tn n n n f f t --=+=+. ① 其次证明:集合T 是无限的.假设集合T 中只有有限个元素则只有有限个链()1212,,,t t t t t C C C t t t <<<.固定N .若(1)(1)n f n N ≤≤是链t C 中的元素,则由式①知:(1)22nt r n n Nf t t -=+≤+. 由于1N +个不同的正整数1,(1),,(1)N f f 均不超过2r N t +,则12r NN t +≤+. 当N 足够大时,这是不可能的.因此,集合,T 是无限的.选取任意正整数k ,考虑从集合T 中前1k +个数开始的1k +个链.设t 是这1k +个数中最大的一个.则每个链中均包含一个元素不超过t ,且至少有一个链中不含1,2,,t t t k +++中的任何一个数.于是,在这个链中存在一个元素n ,使得()g n n k ->,即n k k >.。
数学竞赛典型题目(一)1.(美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1.令S 是一个整数集,具有性质:(1)),,2,1(n i S a i =∈(2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同(3)对于S y x ∈,,若S y x ∈+,则S y x ∈-证明:S 为全体整数的集合。
2.(美国数学竞赛)c b a ,,是正实数,证明:3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+-3.(加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。
其中S 中没有两个元素,一个是另一个的倍数。
4.(英国数学竞赛)证明:存在一个整数n 满足下列条件:(1)n 的二进制表达式中恰好有2004个1和2004个0;(2)2004能整除n .5.(英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。
6.(亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+),( 7.(亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。
证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。
8.(亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈⎥⎦⎤⎢⎣⎡+-是 偶数。
9.(亚太地区数学竞赛)z y x ,,是正实数,证明:)(9)2)(2)(2(222zx yz xy z y x ++≥+++10.(越南数学竞赛)函数f 满足)0(2sin 2cos )(cot π<<+=x x x x f ,令 )11)(1()()(≤≤--=x x f x f x g ,求)(x g 在区间]1,1[-的上最值。
高中数学竞赛试题高中数学竞赛是让学生充分发挥数学思维和解题能力的重要途径之一。
竞赛试题通常既有难度较大的例题,也有难度适中的应用题。
在这里,我将对高中数学竞赛试题进行深入探讨,着重从几何、代数、概率统计三个方面进行解析,并给出一些解题技巧和建议。
一、几何题几何题在高中数学竞赛中占据了重要的地位。
常见的几何题形式包括三角形、圆、平行线、相似三角形等。
试题难度较大,需要考生具备一定的几何基础和解题思路。
(1)三角形题三角形题是几何题中常见的一种类型。
其中,求三角形的面积和周长是考察重点之一。
在解这类题时,可以考虑应用海伦公式、正弦定理和余弦定理。
例如,已知三角形的边长和一个角度,可以利用正弦定理求解其他角度。
此外,还可以运用面积公式,如海伦公式,计算三角形的面积。
(2)圆题圆题也是高中数学竞赛中常见的一种类型。
常见的圆题有求圆的面积和周长、求圆内接四边形的面积等。
在解这类题时,可以考虑应用圆的相关性质,如周长公式和面积公式。
另外,还可以利用勾股定理和相似三角形性质,在给定的条件下推导出所求解。
二、代数题代数题是高中数学竞赛中常见的题型之一。
主要考察代数运算、方程与不等式、函数和数列等。
解代数题需要灵活运用代数运算的性质和方法。
(1)方程与不等式题在解方程与不等式题时,可以采用因式分解、配方法、完全平方公式等方法。
同时需要注意方程和不等式的根的情况,如有无解、有一组或多组解等。
在解这类题时,要注意确定变量的范围,并根据题目要求给出答案的形式。
(2)函数题函数题是代数题中的一种重要类型,主要考察函数的性质和变化规律。
在解函数题时,需要掌握函数图像的绘制、函数性质的判断以及函数的复合、反函数等操作。
此外,还需要熟练运用函数的相关性质,如奇偶性、单调性和周期性等。
三、概率统计题概率统计题是高中数学竞赛中的一类常见题型。
主要考察概率与统计的基本概念和计算方法。
(1)概率题概率题主要考察试验的次数、事件的概率和条件概率等。
高中数学几何题竞赛试题一、选择题(每题3分,共15分)1. 在直角三角形ABC中,∠C=90°,若AB=5,AC=3,则BC的长度是:A. 4B. 3C. 2D. 无法确定2. 已知圆的半径为r,圆心O到直线l的距离为d,若圆与直线l相切,则d与r的关系是:A. d = rB. d > rC. d < rD. d ≠ r3. 在正六边形ABCDEF中,若AB=2,则对角线AC的长度是:A. 2B. 2√3C. 4D. 4√34. 若一个正方体的表面积为S,棱长为a,则a与S的关系是:A. a = √SB. a = SC. a = S/6D. a = √(S/6)5. 已知椭圆的长轴为2a,短轴为2b,焦点到中心的距离为c,若a=5,b=3,则c的值是:A. 4B. 2C. √7D. √(25-9)二、填空题(每题4分,共20分)6. 在三角形ABC中,若∠A=60°,AB=AC=6,则BC的长度是______。
7. 已知圆柱的底面半径为r,高为h,若圆柱的体积为V,则V与r和h的关系是V=______。
8. 若一个圆锥的底面半径为r,高为h,且圆锥的体积为V,则圆锥的底面积是______。
9. 已知一个球的体积为V,半径为R,则R与V的关系是R=______。
10. 若一个正多边形的边数为n,且其内角为x,则x与n的关系是x=______。
三、解答题(每题10分,共30分)11. 已知三角形ABC的三个顶点坐标分别为A(2,3),B(5,6),C(1,1),求三角形ABC的面积。
12. 已知圆的方程为(x-3)²+(y-4)²=25,求圆心到直线3x+4y-20=0的距离。
13. 已知一个正四面体的棱长为a,求其外接球的半径。
四、证明题(每题10分,共25分)14. 证明:在直角三角形中,斜边的中线等于斜边的一半。
15. 证明:对于任意一个三角形,其内角和为180°。
【一级】四川内江唐宁
【解题高手】浙江温州洪逸风
1、导数中极值点偏移问题
2020年1月8日星空日记
2020年1月8日15:51
2
、已知复杂函数零点个数求参数范围问题
【一级】黑龙江大庆王启民
【解题高手】浙江温州洪逸风
【一级】黑龙江大庆王启民
【河北琪神】河北石家庄王子琪分成两个函数
xlne/x
前面二次函数
对称轴都是1
【高级】浙江温州雷升升
【解题高手】浙江温州洪逸风3、代数
+几何法处理平面向量
解题大神】河南郑州万方
4、求平面几何中三角形面积最值问题------可借助阿圆来完成
5、二项式定理在不等式中的应用
【解题高手】浙江温州洪逸风
【解题高手】浙江温州洪逸风【无敌帅琪】帅琪6
、点差法在椭圆中的应用
7、求锥体外接球体积问题
【解题高手】浙江温州洪逸风
【二级】浙江杭州金侃
8、求绝对值函数最大值问题-----借助切比雪夫函数最佳逼近直线、平口单
【解题大神】浙江余姚沈才立
9、圆锥离心率问题
【正高】浙江温州熊嘉麒
【特级】浙江台州金伟军
10、什么时候可以用平口单峰问题?
【复旦才子】浙江温州金浩丞
得有ax+b才能移啊
11、通项公式的求法
【解题大神】浙江温州林熙皓
解题高手】浙江温州洪逸风。