运筹学第11讲:整数规划(二)
- 格式:ppt
- 大小:297.50 KB
- 文档页数:6
运筹学中整数规划问题的近似算法运筹学是一门研究如何在有限资源下做最优决策的学科,其中整数规划是其中一种重要的决策方法。
整数规划问题是指在线性规划问题的基础上,对决策变量的取值加以限定,限定为整数值。
整数规划问题在实际应用中非常常见,例如优化生产计划、物流配送、资源分配等。
然而,整数规划问题的解空间通常是离散的,由于整数规划问题的NP难解性质,寻找准确解的效率很低,因此近似算法成为解决整数规划问题的重要手段。
一、近似算法的概念近似算法是指在可接受的误差范围内,通过有效的计算方法得到问题的近似最优解。
在整数规划问题中,近似算法主要通过松弛约束条件、局部搜索等方法寻找问题的近似解。
二、近似算法的分类近似算法可以根据问题的特性和解决方法的不同进行分类,下面介绍几种常见的近似算法。
1. 线性松弛算法(Linear Relaxation)线性松弛算法是整数规划问题中常用的近似算法之一。
该算法的基本思想是将整数规划问题的整数约束放宽为实数约束,得到一个线性规划问题。
然后通过求解线性规划问题的松弛解,并将松弛解的整数部分作为整数规划问题的一个近似解。
2. 近似局部搜索算法(Approximate Local Search)近似局部搜索算法通过在整数规划问题的解空间中进行局部搜索,通过一系列的改进和优化策略来逐步提高解的质量。
该算法在每一步都根据某种准则选择当前最优解,并通过局部搜索来寻找局部最优解。
然后,通过重复进行局部搜索和改进操作,逐渐向全局最优解靠近。
3. 启发式算法(Heuristic Algorithm)启发式算法是一种基于经验和直觉的算法,通过在可行解空间中搜索一组近似解,并根据某种评价准则选择最优解。
在解决整数规划问题时,启发式算法通过寻找有效的近似解,来替代寻找准确解,从而节省计算资源和时间。
三、近似算法的应用案例近似算法在实际问题中有广泛的应用,下面以物流配送问题为例,介绍近似算法的应用。
假设某物流公司需要将一批货物从仓库分配到多个客户,其中仓库和客户的位置已知,货物的需求和供应量也已知。
实验报告课程名称:___ 运筹学 ____ 项目名称:整数规划问题_ 姓名:__专业:、班级:1班学号:同组成员:_ __1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。
2、若是单人单组实验,同组成员填无。
例4.5设某部队为了完成某项特殊任务,需要昼夜24小时不间断值班,但每天不同时段所需要的人数不同,具体情况如表4-4所示。
假设值班人员分别在各时间段开时上班,并连续工作8h。
现在的问题是该部队要完成这项任务至少需要配备多少名班人员?解:根据题意,假设用i x(i=1,2,3,4,5,6)分别表示第i个班次开始上班的人数,每个人都要连续值班8h,于是根据问题的要求可归结为如下的整数规划模型:目标函数:iixz61min=∑=约束条件:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥)且为整数(6...1,0x30>=x6+x520>=x5+x450>=x4+x360>=x3+x270>=x2+x160>=x6+x1iimodel:sets:num/1,2,3,4,5,6/:b,x;endsetsdata:b=60,70,60,50,20,30;enddata[obj]min=@sum(num(i):x(i));x(1)+x(6)>=60;x(1)+x(2)>=70;x(2)+x(3)>=60;x(3)+x(4)>=50;2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。
解:目标函数:y3*2000-y2*2000-y1*5000-x3*200)-(300+x2*30)-(40+x1*280)-(400=z max约束条件:⎪⎪⎩⎪⎪⎨⎧y3*300<=x3*2y2*300<=x2*0.5y1*300<=x1*32000<=x3*4+x2+x1*5 model :sets :num/1,2,3/:x,y;endsets[obj]max =(400-280)*x(1)+(40-30)*x(2)+(300-200)*x(3)-5000*y(1)-2000*y(2)-2000*y(3);5*x(1)+x(2)+4*x(3)<=2000;3*x(1)<=300*y(1);0.5*x(2)<=300*y(2);2*x(3)<=300*y(3);@for (num(i):x(i)>=0;@bin (y(i)););end实验报告成绩(百分制)__________ 实验指导教师签字:__________。
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
运筹学整数规划课后答案吉林大学一、单项选择题1、以下说法正确的选项是()。
A.分枝定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分枝迭代求出最优解B.用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解C.用分枝定界法求解一个极大化的整数规划时,当得到多于一个可行解时,通常可任取其中一个作为下界,再进行比拟剪枝D.整数规划问题最优值优于其相应的线性规划问题的最优值正确答案:A2、整数规划的最优解中,决策变量满足()。
A.决策变量不是整数B.没有要求C.决策变量至少有一个是整数D.决策变量必须都是整数正确答案:D3、以下()可以求解指派问题。
A.梯度法B.牛顿法C.单纯形法D.匈牙利法正确答案:D4、整数规划中,通过增加线性约束条件将原规划可行域进行切割,切割后的可行域的整数解正好是原规划的最优解的方法是()。
A.隐枚举法B.0-1规划法C.分支定界法D.割平面法正确答案:D5、标准指派问题(m人,m件事)的规划模型中,有()个决策变量。
A渚B不对m*mB.mD.2m正确答案:B二、判断题1、匈牙利法可以直接求解极大化的指派问题。
()正确答案:x2、整数规划的可行解集合是离散型集合。
()正确答案:V3、用分支定界法求一个极大化的整数规划时,任何一个可行解的目标函数值是该问题的目标函数值的下界。
()正确答案:V4、用分支定界法求一个极大化的整数规划时,当得到多于一个可行解时,通常可以任取一个作为下界值,在进行比拟和剪枝。
()正确答案:X5、用割平面求纯整数规划时,要求包括松弛变量在内的全部变量都取整数。
()正确答案:V。