2 配方法的六种常见应用
- 格式:ppt
- 大小:12.85 MB
- 文档页数:131
配方法的应用
1.用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.
2.用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.
3.用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.
4.用于证明:
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
要点诠释:
“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具.
第1页共1页。
cc518学习网精品学习资料总目录配方法是将一个式子或一个式子的某一部分化为完全平方式或几个完全平方式的和或差.许多数学题都可以通过配方法进行求解。
本文笔者将会详细剖析初中数学中配方法的五种用法。
类型一.解一元二次方程例1 用适当的方法解一元二次方程:x2-2x-143=0.分析此方程中常数项较大,使用公式法或者因式分解法解比较繁琐易错,由于二次项系数为l,并且一次项的系数是偶数,因此使用配方法比较好.类型二.求代数式的值例2 已知x-y=3,y-z=2,求x2+y2+z2-xy-yz-xz的值.分析代数式有三个未知数,而已知只给出两个方程,所以解不出x、y、z的值,可考虑用配方法及整体思想解题.类型三.分解因式例3 分解因式:x4+x2+1.分析此代数式既不能直接提取公因式,也不符合公式形式,因此无法直接分解因式.仔细观察题目发现中间项系数如果为2时,即符合完全平方公式.由此可考虑使用配方法解决.类型四.判定方程根的情况例4 已知关于x的一元二次方程x2-(2k+1)x+4k-3=0,求证:无论k为何值,此方程总有两个不相等的实数根.分析要判断方程根的情况,需要对一元二次方程根的判别式△的值进行讨论.类型五.求最值例5 :某专卖店在销售过程中发现“兴乐”牌童装平均每天可售出20套,每套盈利40元,为了迎接“六一”儿童节,该店决定采取适当降价措施,扩大销售量增加盈利,减少库存.经市场调查发现,如果每套童装降价1元,那么平均每天可多售出2套,问:每套童装降价多少元时,专卖店平均每天盈利最多?每天盈利最多是多少元?分析实际生活的问题,往往可以通过建立适当的函数解析式,求函数的最值来解决.而求函数的最值是通过配方法来完成的.本题中“平均每天盈利”是“每套童装售价”的函数,故考虑用函数来解决.。
初中数学配方法公式及其应用一、常规配方法公式常规配方法是指将一个数平方根分解成两个数的平方根,即: a2 = b2 + c2其中,a、b、c 分别为不等式两侧的数值。
常规配方法的公式如下:若 a > b > c,则 a2 = b2 + c2 = (b + c)2 - 2bc若 a < b < c,则 a2 = b2 + c2 = (b - c)2 + 2bc若 a = b = c,则 a2 = b2 + c2 = 2bc二、逆配方法公式逆配方法是指将一个数开方分解成两个数的开方,即:x = √c2 + √d2其中,x 为不等式两侧的数值,c、d 分别为不等式两侧的数值。
逆配方法的公式如下:若 c > d,则 x = √(c2 + d2) = √cd + √cd = 2√cd若 c < d,则 x = √(c2 + d2) = √cd - √cd = -2√cd若 c = d,则 x = √(c2 + d2) = √cd = 0三、配方法的应用配方法在初中数学中是非常重要的一部分,可以用于解决求平方根和开方的问题。
以下是一些配方法的应用案例:1. 求解方程√x2 + √y2 = 2。
解:将方程两边同时平方,得到 x2 + y2 = 4。
此时,可以将 x、y 的值代入方程,解出 x、y 的值。
2. 求解方程 (√x + √y)2 = 4x + 4y。
解:将方程两边同时平方,得到 (x + y)2 = 16x + 16y。
此时,可以将 x、y 的值代入方程,解出 x、y 的值。
3. 求解方程 (√x - √y)2 = 4x - 4y。
解:将方程两边同时平方,得到 (x - y)2 = 16x - 16y。
此时,可以将 x、y 的值代入方程,解出 x、y 的值。
配方法是初中数学中非常重要的一个知识点,可以用于解决很多数学问题。
通过本文的介绍,我们可以了解到常规配方法和逆配方法两种公式,以及它们的应用。
配方法及其应用(题目)配方法及其应用一、配方法配方法是恒等变形的重要手段,也是求最大最小值的常用方法,在数学中有广泛的应用。
它是对数学式子进行一种定向变形的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时需要使用配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
二、基本配方配方法使用的最基本的配方依据是二项完全平方公式(a+b)²=a²+2ab+b²。
将这个公式灵活运用,可得到各种基本配方形式,如:a²+b²=(a+b)²-2ab=(a-b)²+2ab;a+ab+b=(a+b)-ab=(a-b)+3ab=(a+3b)/2+(b+3a)/2;a²+b²+c²+ab+bc+ca=[(a+b)²+(b+c)²+(c+a)²]。
三、应用实例1.求字母的值已知a,b满足a+2b-2ab-2b+1=0,求a+2b的值。
分析:可将含a,b的方程化为两个非负数和为0的形式,从而求出两个未知数的值。
解:a+2b-2ab-2b+1=0,整理得到(a-b)+(b-1)=0.因为(a-b)≥0,(b-1)≥0,所以a-b=0,b-1=0.解得a=1,b=1,因此a+2b=3.变式练:1.已知x²y²+x²+4xy+13=6x,求x和y的值。
解:将方程变形为(x²+4x+4)(y²+1)=25,整理得到(x+2)²(y²+1)=25.因为x,y为实数,所以(x+2)²和(y²+1)都是非负数,所以(x+2)²=1或25,(y²+1)=1或25.当(x+2)²=1时,解得x=-3或-1;当(x+2)²=25时,解得x=-7或3.将x的四个解代入原方程,可得y的四个解为-3,-1,1/2,3/2.因此,方程的解为(-3,-3),(-1,-1),(3/2,-1/2),(1/2,3/2)。
二次函数的配方法二次函数也被称为二次方程,是一个常见的函数类型,在数学中有重要的应用。
二次函数的通用形式可以表示为y = ax^2 + bx + c。
其中,a、b和c是实数常数,a不等于零。
配方法是一种用于求解二次方程的工具,它可以将一个二次方程转化成一个可以因式分解的形式。
通过配方法,我们可以找到二次方程的根。
下面将详细介绍二次函数的配方法。
步骤一:确定二次项系数a和常数项c在配方法中,我们需要确定二次项系数a和常数项c的值。
在已知二次函数的形式y = ax^2 + bx + c时,a和c的值可以直接读取出来。
例如,对于二次函数y=2x^2+3x+1,其中a=2,c=1步骤二:计算配方项配方法的关键在于计算配方项,配方项用于将二次项系数a转化成一个完全平方的形式。
配方项可以通过以下公式计算得到:配方项=(一次项系数的一半)^2一次项系数是指二次项系数b的一半。
例如,如果b=3,则一次项系数为1.5例如,在二次函数y=2x^2+3x+1中,一次项系数为1.5,那么配方项为1.5^2=2.25步骤三:将配方项加入二次函数将计算得到的配方项加入二次函数中,形成一个新的表达式。
例如,在二次函数y=2x^2+3x+1中,配方项为2.25、将其加入二次函数得到新的表达式y=2x^2+3x+2.25步骤四:将新的二次函数转化成完全平方形式通过将新的二次函数转化成一个完全平方的形式,即(x+p)^2,其中p是一个实数常数。
为了将新的二次函数转化成完全平方形式,我们可以以配方项为线索。
将配方项开平方,得到一个实数。
例如,在新的二次函数y=2x^2+3x+2.25中,配方项为2.25、将它开平方得到1.5步骤五:完成配方法将新的二次函数转化成完全平方形式后,配方项的系数前面应该是1、所以我们需要将二次函数除以a的值,这将产生一个常数p。
例如,在新的二次函数y=2x^2+3x+2.25中,a的值为2、将二次函数除以2,得到y=(x+1.5)^2于是,我们成功地将二次函数转化成一个完全平方的形式。
配方法的概念摘要:1.配方法的概念介绍2.配方法的应用场景3.配方法的优点与局限性4.配方法与其他方法的对比5.配方法在我国的发展现状与展望正文:配方法,作为一种重要的数学方法,广泛应用于各个领域。
本文将从配方法的概念、应用场景、优点与局限性、与其他方法的对比以及在我国的发展现状与展望五个方面进行全面阐述。
一、配方法的概念介绍配方法,又称为配方,是一种将复杂数学问题通过构造适当的代数式进行求解的方法。
它源于古代数学家对代数式的研究,逐渐发展成为一种重要的数学方法。
配方法的基本思想是将待求解的数学问题转化为一个或多个已知数学问题的求解,从而达到简化问题的目的。
二、配方法的应用场景配方法的应用场景非常广泛,包括但不限于以下几个方面:1.解一元二次方程:利用配方法,可以将一元二次方程转化为两个一元一次方程,从而简化求解过程。
2.求函数的极值:通过配方法,可以将函数转化为一个关于某变量的二次函数,进而求出其极值。
3.求解几何问题:在几何问题中,配方法可以帮助我们将问题转化为已知条件的求解,如求解直角三角形、平行四边形等问题。
4.求解物理问题:在物理学中,配方法可以帮助我们将复杂的物理问题转化为易于求解的数学模型,如求解牛顿第二定律、电磁学等问题。
三、配方法的优点与局限性1.优点:(1)简化了问题求解过程,降低了问题的难度。
(2)适用于多种数学、物理、几何等领域的问题。
(3)具有一定的普适性和广泛性。
2.局限性:(1)对于复杂的问题,配方法可能无法直接求解。
(2)配方法的应用范围有限,不是所有问题都适用于配方法。
四、配方法与其他方法的对比配方法作为一种数学方法,其优点在于简化了问题的求解过程,但同时也存在一定的局限性。
与其他方法相比,如代数法、几何法、数值法等,配方法在某些问题上具有优势,但在其他问题上可能不如其他方法高效。
因此,在实际应用中,我们需要根据问题的具体情况选择合适的方法。
五、配方法在我国的发展现状与展望配方法在我国的发展历史悠久,早在古代数学著作中就有相关记载。
第2讲:配方法的六种常见应用--专题一【基础知识】用配方法解一元二次方程的一般步骤是:化二次项系数为1,把方程化为的形式;把常数项移到方程右边即方程两边同时加上,整理得到 ;当时,,当时,原方程 。
类型一:配方法在证明一元二次方程中的应用求证:无论m 取何值,关于x 的方程072)54(22=-++-x x m m 都是一元二次方程。
练1. 已知关于x 的一元二次方程02)2(2=-++-m x m x .(1)求证:无论m 取何值时,方程总有两个不相等的实数根.(2)若方程的两实数根之积等于1192-+m m ,求6+m 的值.类型二:配方法在解方程中的应用阅读下面材料:把方程0342=+-x x 写成034442=+-+-x x 。
则01)2(2=--x 。
因式分解,得0)12)(12(=--+-x x ,即0)3)(1(=--x x发现:-(1+3)= -4 , 1 × 3 = 3结论:方程0)(2=++-pq x q p x 可变形为0)()(=-•-q x p x20x mx n ++=2m 24m n =-204m n -≥(2m x +=204m n -<应用上面的方法,解下列方程:(1)0652=-+x x (2)01072=+-x x(3)0652=--x x (4)0432=-+x x练2. 用配方法解下列方程:(1)982=+x x (2)015122=-+x x(3)2532=-x x (4)04412=--x x类型三:配方法在求二次三项式的待定系数中的应用已知关于x 的二次三项式1)2(2+--x k x 是完全平方式,求k 的值。
练3. 已知关于x 的二次三项式x2+(k+1)x+k2-2k+1是完全平方式,求k 的值.类型四:配方法在求二次三项式的最大(小)值中的应用我们可以利用配方法求一些多项式的最值。
如:2)1(2)12(32222++=+++=++x x x x x ,当x=-1时322++x x 有最小值2; 再如:1)1(1)12(22222---=-+--=-+-x x x x x ,当x = 1时,222-+-x x 有最大值-1。
高中数学解题基本方法——配方法掌握一种解题的基本方法。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺某y项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab +b,将这个公式灵活运用,可得到各种基本配方形式,如:a+b=(a+b)-2ab=(a-b)+2ab;2222222b22a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b);222222a+b+c+ab+bc+ca=22222221222[(a+b)+(b+c)+(c+a)]22a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=结合其它数学知识和性质,相应有另外的一些配方形式,如:1+in2α=1+2inαcoα=(inα+coα);某+2211212=(某+)-2=(某-)+2;等等。
某2某某Ⅰ、再现性题组:1.在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则a3+a5=_______。
2.方程某+y-4k某-2y+5k=0表示圆的充要条件是_____。
A.<k<1B.k<或k>1C.k∈RD.k=或k=144223.已知inα+coα=1,则inα+coα的值为______。
A.1B.-1C.1或-1D.04.函数y=log1(-2某+5某+3)的单调递增区间是_____。
2A.(-∞,]B.[,+∞)C.(-,]D.[,3)2225.已知方程某+(a-2)某+a-1=0的两根某1、某2,则点P(某1,某2)在圆某+y=4上,则实数a=_____。
【简解】1小题:利用等比数列性质ampamp=am,将已知等式左边后配方(a3+a5)易求。
答案是:5。
22掌握一种解题的基本方法。
2小题:配方成圆的标准方程形式(某-a)+(y-b)=r,解r>0即可,选B。
配方法用的知识点配方法作为数学中的一种重要技巧,广泛应用于代数、解析几何、三角学等多个领域。
它通过将复杂的数学表达式转化为更简单的形式,从而帮助我们更容易地解决问题。
本文将详细介绍配方法所涉及的关键知识点,包括二次多项式的配方、配方法的几何意义、配方法在解一元二次方程中的应用以及配方法在求解最值问题中的应用。
一、二次多项式的配方二次多项式的配方是配方法的基础。
对于形如ax²+bx+c(a≠0)的二次多项式,我们可以通过配方将其转化为(x+m)²+n的形式。
具体步骤如下:1. 将二次项和一次项提取出来,即ax²+bx。
2. 为了使这个表达式成为一个完全平方,我们需要加上和减去(b/2a)²,即a(x²+bx/a+(b/2a)²-(b/2a)²)。
3. 这样,我们就可以将前三项写成完全平方的形式,即a[(x+b/2a)²]-(b ²/4a)。
二、配方法的几何意义配方法不仅具有代数意义,还有几何意义。
在平面直角坐标系中,二次函数y=ax²+bx+c的图像是一个抛物线。
通过配方,我们可以将这个抛物线平移和伸缩,从而更容易地研究它的性质。
例如,当我们将y=ax²+bx+c配方成y=a(x+m)²+n的形式后,可以直接读出抛物线的顶点坐标为(-m,n),这对于研究抛物线的开口方向、对称轴等性质非常有帮助。
三、配方法在解一元二次方程中的应用解一元二次方程是配方法的重要应用之一。
对于形如ax²+bx+c=0(a ≠0)的一元二次方程,我们可以通过配方将其转化为(x+m)²=n的形式,从而更容易地求解。
具体步骤如下:1. 将方程移项,使得等式右边为常数,即ax²+bx=-c。
2. 两边同时除以a,得到x²+bx/a=-c/a。
3. 对左边进行配方,得到(x+b/2a)²=(b²-4ac)/4a²。
配方法及其应用归纳总结资料编号:20190729一、配方法对一个多项式进行恒等变形,使之出现完全平方式,并化成平方的形式,叫做配方,它是完全平方公式的逆用.配方时主要用到下面两个公式:(1)()2222b a b ab a +=++; (2)()2222b a b ab a -=+-. 重要结论:(1)222112⎪⎭⎫ ⎝⎛±=+±x x x x ; (2)()()()[]22222221a c c b b a ca bc ab c b a +++++=+++++; (3)()()()[]22222221a c c b b a ca bc ab c b a -+-+-=---++. 例1.证明结论(2).证明:[]ca bc ab c b a ca bc ab c b a 22222221222222+++++=+++++ ()()()[]22222222221a ca c c bc b b ab a ++++++++= ()()()[]22221a c c b b a +++++=. 二、配方法的应用配方法是一种很重要的数学方法,有着广泛的应用.常用于:(1)求字母的值;(2)证明字母相等;(3)解一元二次方程;(4)证明代数式的值非负;(5)比较大小;(6)求函数的最值.三、配方法用于求字母的值例2. 已知052422=+-++b a b a ,则=a _________,=b _________.解:∵052422=+-++b a b a∴()()0124422=+-+++b b a a∴()()01222=-++b a ∵()22+a ≥0,()21-b ≥0 ∴01,02=-=+b a∴1,2=-=b a .说明:配方法常和非负数的性质结合用于求字母的值,注意过程书写的规范.例3. 已知b a ab b a ++=++122,求b a 43-的值.解:∵b a ab b a ++=++122∴0122=---++b a ab b a∴022222222=---++b a ab b a∴()()()0121222222=+-++-++-b b a a b ab a∴()()()011222=-+-+-b a b a ∵()2b a -≥0,()21-a ≥0,()21-b ≥0 ∴01,01,0=-=-=-b a b a∴1==b a∴14343-=-=-b a .习题1. 已知x xy x y x 6134222=+++,则=x _________,=y _________.习题2. 已知014642222=+-+-++z y x z y x ,则=++z y x _________.习题3. 已知c b a 、、满足176,12,72222-=--=-=+a c c b b a ,求c b a ++的值.四、配方法用于证明字母相等例4. 已知c b a 、、是△ABC 的三边,且满足0222=---++ca bc ab c b a ,判断这个三角形的形状,并说明理由.解:△ABC 是等边三角形.理由如下:∵0222=---++ca bc ab c b a∴022*******=---++ca bc ab c b a∴()()()022*******=+-++-++-a ca c c bc b b ab a∴()()()0222=-+-+-a c c b b a ∵()2b a -≥0,()2c b -≥0,()2a c -≥0 ∴0,0,0=-=-=-a c cb b a∴c b a ==∵c b a 、、是△ABC 的三边∴△ABC 是等边三角形.习题4. 已知()()22223c b a c b a ++=++,求证:c b a ==.五、配方法用于解一元二次方程用配方法解一元二次方程02=++c bx ax ()0≠a 共分六步:一移、二化、三配、四开、五转、六解.(1)一移 把常数项移到方程的右边,注意变号;c bx ax -=+2(2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为1;ac x a b x -=+2 (3)三配 即配方,把方程的左边配成完全平方的形式,需要在方程的左右两边同时加上一次项系数一半的平方;22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ (4)四开 直接开平方; aac b a b x 2422-±=+ (注意:当ac b 42-=∆≥0时方程有实数根) (5)五转 把第(4)步得到的结果转化为两个一元一次方程;a acb a b x 2422-=+或aac b a b x 2422--=+ (6)解 解这两个一元一次方程,得到一元二次方程的两个解.aac b b x a ac b b x 24,242221---=-+-=. 说明:由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式:一元二次方程02=++c bx ax ()0≠a 有实数根的条件是ac b 42-=∆≥0,求根公式为:aac b b x 242-±-=. 例5. 用配方法解方程:01422=++x x .解:1422-=+x x()22121112112212222±=+=++-=++-=+x x x x x x ∴221=+x 或221-=+x ∴221,22121--=+-=x x .习题5. 用配方法解下列方程:(1)011242=--x x ; (2)03232=-+x x .六、配方法用于证明代数式的值例6. 已知代数式752+-x x ,用配方法说明,不论x 取何值,这个代数式的值总是正数.证明:43257425425575222+⎪⎭⎫ ⎝⎛-=+-+-=+-x x x x x ∵225⎪⎭⎫ ⎝⎛-x ≥0 ∴043252>+⎪⎭⎫ ⎝⎛-x ,即0752>+-x x ∴不论x 取何值,这个代数式的值总是正数.例7. 求证:代数式4281022++-+y x y x 的值总是正数.证明:()()()()1451168251042810222222+++-=+++++-=++-+y x y y x x y x y x ∵()25-x ≥0,()24+y ≥0 ∴()()014522>+++-y x ,即04281022>++-+y x y x ∴不论y x ,取何值,代数式4281022++-+y x y x 的值总是正数.习题6. 用配方法证明:不论x 取任何实数,代数式2942+-x x 的值总是正数.习题7. 求证:不论y x ,取何值,代数式25222++-+-y x y xy x 的值总是非负数. 提示:()524222212522222++-+-=++-+-y x y xy x y x y xy x .七、配方法用于比较大小 例8. 若代数式871022+-+=a b a M ,1522+++=a b a N ,则N M -的值 【 】(A )一定是负数 (B )一定是正数(C )一定不是负数 (D )一定不是正数思路:作差比较大小法:作差N M -,然后用配方法说明差的符号,从而也可以说明N M ,的大小关系.解:∵871022+-+=a b a M ,1522+++=a b a N∴1587102222----+-+=-a b a a b a N M()323341297129222+-=++-=+-=a a a a a∵()223-a ≥0 ∴()03232>+-a ,即N M N M >>-,0 ∴N M -的值一定是正数,选择【 B 】.习题8. 用配方法说明代数式1422--x x 的值总大于422--x x 的值.八、配方法用于求函数的最值对于二次函数c bx ax y ++=2()0≠a ,通过配方法可将其化为顶点式()k h x a y +-=2,然后结合a 的符号得到函数的最大值或最小值.在顶点式中,ab ac k a b h 44,22-=-=. (1)当0>a ,且ab x 2-=时,函数有最小值,最小值为a b ac y 442min -=; (2)当0<a ,且ab x 2-=时,函数有最大值,最大值为a b ac y 442max -=. 例9. 求函数x x y 92+-=的最大值.解:481294814819481481992222+⎪⎭⎫ ⎝⎛--=+⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛-+--=+-=x x x x x x x y ∵01<-=a∴函数x x y 92+-=有最大值,最大值为481max =y . 例10. 分别在下列范围内求函数322--=x x y 的最大值与最小值.(1)20<<x ; (2)2≤x ≤3.解:()()4141232222--=-+-=--=x x x x x y (1)∵20<<x∴当1=x 时,函数322--=x x y 有最小值,最小值为4min -=y ,无最大值;(2)∵()412--=x y ∴当x ≥1时,y 随x 的增大而增大∵2≤x ≤3∴当2=x 时,y 有最小值,最小值为()34122min -=--=y ; 当3=x 时,y 有最大值,最大值为()04132max =--=y . 习题9. 函数x x y 23212-=的最小值为_________. 习题10. 函数x x y 322--=的最大值为_________.。
二次函数的配方法和公式法引言二次函数是数学中常见的一种函数类型,它具有形如y=ax2+bx+c的表达式,其中a、b和c是给定的常数。
解析二次函数可以通过配方法和公式法实现。
本文将分别介绍二次函数的配方法和公式法,并通过具体的例子说明其应用。
1. 二次函数的配方法1.1. 什么是配方法?配方法是一种将二次函数转化为一个可以容易解决的形式的技巧。
通过配方法,我们可以将二次函数转化为完全平方的形式。
1.2. 如何应用配方法?配方法的基本思想是通过构造一个完全平方的三项,将二次函数转化为完全平方的形式。
具体来说,我们可以通过以下步骤应用配方法:1.观察二次项的系数a是否等于1,如果不等于1,则可以通过提取a的公因子化简。
2.把二次项、线性项和常数项写成一个平方的形式。
3.利用完全平方公式将平方形式的三项化简。
4.化简后的表达式就是完全平方形式的二次函数,我们可以进一步进行求解。
1.3. 一个例子考虑二次函数y=x2+6x+9,我们将使用配方法将其化简为完全平方形式。
1.首先,观察二次项的系数a=1,已经满足了要求。
2.我们将线性项6x拆分成两个相同的部分,得到6x=3x+3x。
3.注意到3x+3x可以写成(2x+3)2。
4.所以,原二次函数可以转化为y=(2x+3)2的形式。
通过配方法,我们将原始二次函数化简为了完全平方的形式。
这使我们能够更容易地理解和求解。
2. 二次函数的公式法2.1. 什么是公式法?公式法是一种使用二次函数的一般解析公式来求解的方法。
对于给定的二次函数,我们可以使用公式法获得其真实的解。
2.2. 公式法的原理公式法是基于二次函数的根的性质。
对于二次函数y=ax2+bx+c,其根可以通过以下公式计算:$$ x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a} $$其中,b2−4ac称为判别式,可以用来确定二次函数的根的性质。
2.3. 公式法的步骤应用公式法求解二次函数的一般步骤如下:1.根据给定的二次函数y=ax2+bx+c,确定a、b和c的值。
二次型配方法技巧二次型配方法是线性代数中的重要方法之一,用于将一个给定的二次型转化为标准型或规范型。
在解决问题时,常常需要对二次型进行变换使问题更易于处理,而二次型配方法就能帮助我们达到这个目的。
下面我将介绍一些二次型配方法的技巧。
1. 使用正交变换:正交变换是指使坐标轴与相应特征值方向相互垂直的变换。
通过正交变换可以将一个对称矩阵对角化,从而将二次型转化为标准型。
常用的正交变换方法有正交相似对角化、Gauss 雅克比消元法等。
这些方法通过逐步进行标准正交变换,最终将二次型转化为标准型。
2. 利用配方法定理:对于一个对称矩阵,利用配方法定理可以将二次型转化为特征值的线性组合。
利用配方法定理的关键在于求出特征值和特征向量,然后利用特征值的线性组合表示二次型。
3. 利用合同变换:合同变换是指通过左右乘以相同的非奇异矩阵来变换二次型。
通过合同变换可以将二次型转化为规范型。
合同变换可以通过左右乘以适当的矩阵,将二次型化为规范型。
规范型表示二次型在合同变换下具有某种特殊的形式。
4. 引入特殊线性组合:有时候,通过引入特殊的线性组合可以将二次型转化为简化形式。
例如,可以通过将二次型中的平方项分解为两个线性项的乘积,引入新的变量,从而将二次型转化为规范型。
这种方法在一些特殊的问题中很常见,可以极大地简化计算。
5. 利用配方法的性质:二次型配方法有一些重要的性质,如可逆性、范围、同伦、分析性等。
可以利用这些性质来确定二次型的配方法,并结合具体问题选择适当的方法。
二次型配方法是解决线性代数中二次型问题的重要工具,运用得当可以将问题简化,提高解题效率。
在实际问题中,如力学、物理、经济等领域,二次型配方法也得到广泛应用。
总之,二次型配方法是一种重要的线性代数工具,通过利用变换可以将二次型转化为标准型或规范型。
在解决问题时,我们可以根据具体情况选择合适的配方法,并利用相应的技巧进行计算。
通过二次型配方法,我们能够更加方便地处理和分析问题,为解决实际问题提供了有力的工具。
新媒体对公共关系管理的革新与挑战随着互联网的快速发展,新媒体已经成为人们获取信息、交流和互动的重要渠道。
对于公共关系管理来说,新媒体的出现既带来了革新,也带来了挑战。
本文将探讨新媒体对公共关系管理的革新和挑战,并提出相应的应对策略。
一、新媒体的革新1.1 信息传播的快速性新媒体的出现使得信息传播的速度大大加快。
通过微博、微信等社交媒体平台,公共关系管理者可以迅速发布信息,与受众进行实时互动。
这种快速性使得公共关系管理者能够更加及时地回应事件,传递正面信息,有效控制舆论。
1.2 互动性的增强新媒体的互动性使得公共关系管理者能够更好地与受众进行互动。
通过社交媒体平台,公共关系管理者可以与受众进行直接的对话,了解受众的需求和意见。
这种互动性有助于建立良好的双向沟通,增强公共关系管理的效果。
1.3 多样化的传播形式新媒体提供了多样化的传播形式,如文字、图片、视频等。
公共关系管理者可以根据不同的情况选择合适的传播形式,以更好地传递信息。
例如,通过发布图片或视频,可以更直观地展示产品或活动的特点,吸引受众的注意力。
二、新媒体的挑战2.1 舆论监管的困难新媒体的快速传播和广泛影响使得舆论监管变得更加困难。
虚假信息、谣言等不实言论很容易在新媒体上迅速传播,给公共关系管理带来了挑战。
公共关系管理者需要及时发现并回应这些不实言论,以保护企业或组织的声誉。
2.2 受众需求的多样化新媒体的出现使得受众的需求变得更加多样化。
不同的受众有不同的喜好和习惯,对信息的接受和反馈也有所不同。
公共关系管理者需要根据受众的需求,制定相应的传播策略,以更好地满足受众的需求。
2.3 竞争激烈的传播环境新媒体的普及使得传播环境变得更加竞争激烈。
公共关系管理者需要与其他竞争对手争夺受众的注意力和关注度。
在这个竞争激烈的环境中,公共关系管理者需要不断创新,提供有吸引力的内容,以吸引受众的关注。
三、应对策略3.1 加强舆情监测和管理公共关系管理者需要加强对舆情的监测和管理,及时发现并回应不实言论和谣言。
配方法在解题中的应用配方是数学中的一个重要方法,在解题中有广泛的应用.本文通过例题谈谈它的一些应用.一、应用于因式分解例1 分解因式x4+4.解配方,得原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).例2 分解因式a2-4ab+3b2-2bc-c2.解原式=(a2-4ab+4b2)-(b2+2bc+c2)=(a-2b)2-(b+c)2=(a-b+c)(a-3b-c).二、应用于解方程例3 解方程3x2+4y2-12x-8y+16=0.解分别对x、y配方,得3(x2-4x+4)+4(y2-2y+1)=0,3(x-2)2+4(y-1)2=0.由非负数的性质,得例4 解方程(x2+2)(y2+4)(z2+8)=64xyz(x、y、z均是正实数).解原方程变形,得x2y2z2+4x2z2+2y2z2+8z2+8x2y2+32x2+16y2+64-64xyz=0各自配方,得(xyz-8)2+2(4x-yz)2+4(2y-xz)2+8(z-xy)2=0由非负数的性质,得解得运用配方法可为应用非负数的性质创造条件,解题中应注意掌握.三、应用于求二次函数的最值例5 已知x是实数,求y=x2-4x+5的最小值解由配方,得y=x2-4x+4-4+5=(x-2)2+1∵ x是实数,∴(x-2)2≥0,当x-2=0,即x=2时,y最小,y最小=1.例6 已知二次函数y=x2-6x+c的图象的顶点与坐标原点的距离等于5,求c的值.解因为y=x2-6x+c=x2-6x+9-9+c=(x-3)2+c-9,所以这个二次函数的顶点坐标为(3,c-9),它与坐标原点的距离是.由此解得c=5或c=13四、应用于求代数式的值例7 已知求的值.解因为所以即x++1=,∴x+=-1,∵,∴故本题联合应用了倒数法和配方法使问题得解.倒数法是一种解题技巧,解题时注意应用.例8 如果求的值.解由已知条件,分别对a、b配方,得(a2-4a+4)+(b2-2b+1)=0,(a-2)2+(b-1)2=0.由非负数的性质,得a-2=0,b-1=0.∴a=2,b=1.∴=五、判定几何图形的形状例9 已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0,判定△ABC是正三角形.证明由已知等式两边乘以2,得2a2+2b2+2c2-2ab-2bc-2ca=0,拆项、配方,得(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0,(a-b)2+(b-c)2+(c-a)2=0.由实数的性质,得a-b=0,b-c=0,c-a=0,∴a=b,b=c,c=a,a=b=c.故△ABC是等边三角形.。