太阳能电池温度特性图文说明
- 格式:docx
- 大小:433.33 KB
- 文档页数:1
第一章太阳电池的工作原理和基本特性1.1 半导体物理基础1.1.1 半导体的性质世界上的物体如果以导电的性能来区分,有的容易导电,有的不容易导电。
容易导电的称为导体,如金、银、铜、铝、铅、锡等各种金属;不容易导电的物体称为绝缘体,常见的有玻璃、橡胶、塑料、石英等等;导电性能介于这两者之间的物体称为半导体,主要有锗、硅、砷化镓、硫化镉等等。
众所周知,原子是由原子核及其周围的电子构成的,一些电子脱离原子核的束缚,能够自由运动时,称为自由电子。
金属之所以容易导电,是因为在金属体内有大量能够自由运动的电子,在电场的作用下,这些电子有规则地沿着电场的相反方向流动,形成了电流。
自由电子的数量越多,或者它们在电场的作用下有规则流动的平均速度越高,电流就越大。
电子流动运载的是电量,我们把这种运载电量的粒子,称为载流子。
在常温下,绝缘体内仅有极少量的自由电子,因此对外不呈现导电性。
半导体内有少量的自由电子,在一些特定条件下才能导电。
半导体可以是元素,如硅(Si)和锗(Ge),也可以是化合物,如硫化镉(OCLS)和砷化镓(GaAs),还可以是合金,如GaxAL1-xAs,其中x为0-1之间的任意数。
许多有机化合物,如蒽也是半导体。
半导体的电阻率较大(约10-5ρ107m),而金属的电阻率则很小(约10-810-6m),绝缘体的电阻率则很大(约ρ108m)。
半导体的电阻率对温度的反应灵敏,例如锗的温度从200C升高到300C,电阻率就要降低一半左右。
金属的电阻率随温度的变化则较小,例如铜的温度每升高1000C,ρ增加40%左右。
电阻率受杂质的影响显著。
金属中含有少量杂质时,看不出电阻率有多大的变化,但在半导体里掺入微量的杂质时,却可以引起电阻率很大的变化,例如在纯硅中掺入百万分之一的硼,硅的电阻率就从2.14103m减小到0.004m左右。
金属的电阻率不受光照影响,但是半导体的电阻率在适当的光线照射下可以发生显著的变化。
2太阳能电池原理及结构2.1太阳能电池基本原理如图2.1所示为典型太阳能电池的简单示意图。
该电池受光面为高浓度掺杂的狭窄N区。
耗尽层(宽度W)一直延伸到P区,并在耗尽层形成一内建电场E。
0把连接N区的电极做成栅形或指形以提高光的吸收率和减小电池的表面电阻,在电池表面镀一层减反射膜以提高太阳光的利用率。
当光照射在电池上时,由于N区(宽度L)比较狭窄,能量大于禁带宽度Eng的大部分光子在耗尽层和P区(宽度L)被吸收,产生光生电子一空穴对 (EHP)。
ps在耗尽层的光生EHP立即被内建电场所分离,电子漂移到达N区形成负极性区s 域,同时空穴漂移到达P区形成正极性区域,于是通过接线在PN结两端形成了开路电压V。
如果连接了负载,那么N区的大量电子经过外电路工作,然后oc 到达P区与大量空穴复合。
其中,内建电场对分离光生EHP,在N区积累大量s[6]-[10]电子,在P区积累大量空穴起了关键作用。
因为没有电场的缘故,在P区被吸收的长波长光子激发的EHPs只能扩散到一定的区域。
则电子的平均扩散长度L可由( 2.1)表示,其中D为电子在P区的ee 扩散系数。
L,2D, eee(2.1)离耗尽层的距离在L范围内的那些电子能扩散到内建电场,并在内建电场e 的作用下漂移到N区,因此在P区产生的光生EHPs中,只有那些离耗尽层距离在L范围内的的少数 e图2.1 太阳能电池工作原理载流子(电子)才对光伏效应起作用。
一旦电子被扩散到耗尽区域,它将被E扫到oN区,增加该区的负电荷,空穴留在P区增加该区的正电荷。
而那些离耗尽层的长度大于L的光生EHPs都被复合损失掉了。
正因为此,少数载流子的扩散长度eL要尽可能的长,又由于在半导体硅中电子的扩散长度要比空穴长,所以这里选e择了以P区产生的电子为少数载流子的硅PN结。
同样,在N区由短波长光子激发产生的EHPS中只有那些离耗尽层距离小于扩散长度L的少数载流子(空穴)h 能到达耗尽层并被内建电场分离到P区。
太阳能电池的基本特性1、太阳能电池的基本特性太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。
具体解释如下1、太阳能电池的极性硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。
太阳能电池的电性能与制造电池所用半导体材料的特性有关。
2、太阳电池的性能参数太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。
这些参数是衡量太阳能电池性能好坏的标志。
3 太阳能电池的伏安特性P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。
当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。
能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。
因此,在太阳能电池的设计和制造过程中, 必须考虑这部分热量对电池稳定性、寿命等的影响。
2、有关太阳电池的性能参数1、开路电压开路电压UOC即将太阳能电池置于100 mW/cm勺光源照射下,在两端开路时,太阳能电池的输出电压值。
2、短路电流短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。
3、最大输出功率太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。
如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。
此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im 表示。
4、填充因子FF太阳能电池的另一个重要参数是填充因子FF,他是最大输出功率与开路电压和短路电流乘积之比。
FF是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。
太阳能电池的基本特性与性能参数太阳能电池是一对光有响应并能将光能转换成电力的器件。
能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。
它们的发电原理基本相同,现以晶体为例描述光发电过程。
P型晶体硅经过掺杂磷可得N型硅,形成P-N结。
当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。
这个过程的实质是:光子能量转换成电能的过程。
太阳能电池的基本特性太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。
具体解释如下1、太阳能电池的极性硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。
太阳能电池的电性能与制造电池所用半导体材料的特性有关。
2、太阳电池的性能参数太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。
这些参数是衡量太阳能电池性能好坏的标志。
3 太阳能电池的伏安特性P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。
当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。
能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。
因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。
有关太阳电池的性能参数1、开路电压开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。
2、短路电流短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。
二、太阳能电池在20-55℃不同温度条件的伏安特性1.实验目的(1)了解环境温度对光伏电池特性影响(2)了解光照强度对光伏电池特性影响2.实验设备光伏太阳能电池特性实验箱3.实验原理(1)温度对光伏电池特性的影响随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。
总的来说,温度每升高1摄氏度,则功率减少0.35%。
这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。
(2)光照强度对光伏电池特性的影响光照强度与光伏电池的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000瓦每平米范围内变化,光伏电池的开路电压基本保持不变。
所以,光伏电池的功率与光强也基本保持成正比。
4.实验内容与步骤(1)温度对光伏电池特性影响测试用实验导线连结如图所示电路。
连接图如下:如图一所示,选取组件2的端口103,连接电流表的正极105,电流表负极106和电阻箱上红色接线柱连接,电阻箱负极的黑色接线柱和组件2的端口104连接,电压表正极107和组件2端子103连接,电压表负极108和组件2端子104连接,这样即连接完成。
光源的发光方向对着太阳能电池组件,打开白色电源,等光源发光亮度稳定后开始测量。
设定一个温度,然后将太阳能光伏组件,电压表,电流表,负载电阻按照连接成回路,改变电阻阻值,使阻值由小到大变化。
测量流经电阻的电流I和电阻上的电压V并记录数据。
测量过程中辐射光源与光伏组件的距离要保持不变,辐照面积与角度不变化,以保证整个测量过程是在相同条件下进行的。
根据伏安特性数据绘制当前太阳能电池板的功率曲线,找出当前太阳能电池板的最大输出功率。
太阳能电池温度特性图文说明
除了太阳能电池的光谱特性外,温度特性也是太阳能电池的一个重要特征。
对于大部分太阳能电池,随着温度的上升,短路电流上升,开路电压减少,转换效率降低。
下图3-6为非晶硅太阳能电池片输出伏安特性随温度变化的一个例子。
0°C
25°C 50°C 75°C
I(A)P(V)
0°C
25°C 50°C 75°C I-V 特性曲线
P-V 特性曲线
图
3-6不同温度时非晶硅太阳能电池片的输出特性
下表2给出了单晶硅、多晶硅、非晶硅太阳能电池输出特性的温度系数(温度变化1℃对应参数的变化率,单位为:%/℃)测定的一次实验结果。
可以看出,随着温度变化开路电压变小,短路电流略微增大,导致转换效率的变低。
单晶硅与多晶硅转换效率的温度系数几乎相同,而非晶硅因为它的间隙大而导致它的温度系数较低。
表3-3 单晶硅与非晶硅电池特性
(表中的数值表示温度变化1℃的变化率(%/℃))
在太阳能电池板实际应用时必须考虑它的输出特性受温度的影响,特别是室外的太阳能电池,由于阳光的作用,太阳能电池在使用过程中温度可能变化比较大,因此温度系数是室外使用太阳能电池板时需要考虑的一个重要参数。