第五章 材料的断裂
- 格式:pdf
- 大小:2.80 MB
- 文档页数:45
材料断裂分析
材料的断裂行为是指在外力作用下,材料发生破裂现象的过程。
材料断裂行为
的研究对于材料的设计、制备和工程应用具有重要的意义。
本文将对材料断裂行为进行分析,并探讨其影响因素和研究方法。
首先,材料的断裂行为受到多种因素的影响,包括材料的物理性质、化学成分、微观结构等。
其中,材料的韧性、强度、断裂韧性等是影响断裂行为的重要因素。
在材料设计和选择过程中,需要综合考虑这些因素,以确保材料具有良好的断裂性能。
其次,材料的断裂行为可以通过多种方法进行研究。
常用的方法包括拉伸试验、冲击试验、断口分析等。
通过这些方法,可以获取材料的断裂特征参数,如断裂韧性、断裂模式等,从而为材料的设计和评估提供依据。
另外,材料断裂行为的研究还可以借助于数值模拟和断裂力学理论。
通过建立
适当的数学模型,可以预测材料在不同加载条件下的断裂行为,为工程实践提供指导。
总的来说,材料的断裂行为是一个复杂的物理过程,受到多种因素的影响。
通
过对材料的物理性质、化学成分和微观结构等因素进行分析,可以更好地理解材料的断裂行为。
同时,通过多种方法和手段进行研究,可以为材料的设计和应用提供科学依据。
在工程实践中,需要充分考虑材料的断裂性能,选择合适的材料,并设计合理
的结构,以确保材料在使用过程中具有良好的断裂性能。
同时,需要不断深化对材料断裂行为的研究,提高材料的设计水平和工程应用水平。
§5.8 应力强度因子与断裂韧性5.8.1 应力强度因子的基本概念在上节中,我们将各类裂纹端部各个应力分量归纳为一个统一的表达式:)()(22/1)()(-+=r o f r K J ij JJ ij θπσ (5.61) 它说明对每一种类型的裂纹端部应力场的分布规律(即ij σ随r 及θ的变化规律)是相同的。
其大小则完全取决于参数K J 。
所以K J 是表征裂纹端部应力场的唯一物理量,因而称为应力场强度因子或应力强度因子。
如式(5.61)所示,应力在裂纹端部具有奇异性。
而K J 也正是用以描述这种奇异性的参数。
由式(5.25)可知:rK yy πσθ2|I0== (5.62) 即[]r K yy πσθ2)0(I ⋅==。
此公式仅在r/a << 1时才适用,因而[][][]⎪⎪⎭⎪⎪⎬⎫====→=→=→r K r K r K yz r xy r yy r πσπσπσθθθ2lim 2lim 2lim )0(0III)0(0II )0(0I (5.63)上式即应力强度因子K J 的定义。
应该指出应力强度因子的量纲[应力]×[长度]1/2或[力] ×[长度]-3/2。
在SI 单位制中其单位为2/1mMPa ⋅,在公制中的单位为kg/mm 3/2。
在英制中为lb/in 3/2(磅/英寸3/2),它们之间的换算关系为: 1kg=2.2046lb1in=2.54000cm1kg/mm 3/2=0.31012/1mMPa ⋅ 1lb/in 3/2=1.099×10-32/1mMPa ⋅5.8.2断裂韧性由上面的分析可知,应力强度因子K J 是表征裂纹端应力场的唯一参量。
不同样品中的裂纹,几何参数及受载情况可以完全不同。
但只要其K J 相同,则裂纹端部的应力场是完全相同的。
进一步由式(5.57)可知,其位移场,进而其应变能场也是相同的。
因此K J 完全表征了裂纹端部的物理状态(即端部各种物理场的情况)。
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛春阳第五章材料的形变和再结晶本章主要内容1.弹性和黏弹性2.晶体的塑性变形3.回复和再结晶4.热变形和动态回复、动态再结晶5.陶瓷形变的特点本章要求1.了解弹性和黏弹性的基本概念2.熟悉单晶体的塑性变形过程3.熟悉多晶体的塑性变形过程4.掌握塑性变形对材料组织和性能的影响5.掌握回复和再结晶的概念和过程6.熟悉动态回复和动态再结晶的概念和过程7.了解陶瓷变形的特点和一些基本概念应变应力b σsσe σbk s e ob εk ε变形的五个阶段:1.弹性变形2.不均匀的屈服变形3.均匀的塑性变形4.不均匀的塑性变形5.断裂阶段抗拉强度屈服强度弹性极限知识点1 弹性的不完整性定义:我们在考虑弹性变形的时候,通常只是考虑应力和应变的关系,而没有考虑时间的影响,即把物体看作是理想弹性体来处理。
但是,多数工程上应用的材料为多晶体甚至为非晶体,或者是两者皆有的物质,其内部存在着各种类型的缺陷,在弹性变形是,可能出现加载线与卸载线不重合、应变跟不上应力的变化等有别于理想弹性变形的特点的现象,我们称之为弹性的不完整性。
弹性不完整的现象主要包括包申格效应、弹性后效、弹性滞后、循环韧性等1.包申格效应材料预先加载才生少量的塑性变形(4%),而后同向加载则 升高,反向加载则 下降。
此现象称之为包申格效应。
它是多晶体金属材料的普遍现象。
2.弹性后效一些实际晶体中,在加载后者卸载时,应变不是瞬时达到其平衡值,而是通过一种弛豫过程来完成其变化的。
这种在弹性极限 范围内,应变滞后于外加应力,并和时间有关的现象,称之为弹性后效或者滞弹性。
3.弹性滞后由于应变落后与应力,在应力应变曲线上,使加载与卸载线不重合而是形成一段闭合回路,我们称之为弹性滞后。
弹性滞后表明,加载时消耗于材料的变形功大于卸载时材料恢复所释放的变形功,多余的部分被材料内部所消耗,称之为内耗,其大小用弹性滞后环的面积度量。
材料断裂模式分析材料的断裂模式是指在外力作用下材料内部出现破坏时,所呈现的特定形态和规律。
不同的材料在受到外力作用下,其断裂模式也会有所不同,这与材料的性质、结构以及应力状态等因素密切相关。
本文将从金属、塑料和陶瓷等不同类型材料的断裂模式展开分析,以便更深入地了解不同材料的破坏机制。
1. 金属材料的断裂模式分析金属材料在受到外力作用时,其断裂模式主要包括拉伸断裂、剪切断裂和扭转断裂等。
拉伸断裂是最常见的金属破坏形式,通常表现为材料的拉伸断裂韧性较好,会出现明显的颈缩现象。
剪切断裂则是金属在受到横向力作用时发生的一种断裂形式,其破坏表面呈现剪切痕迹。
而扭转断裂则是一种在材料受到扭转力矩作用下发生的破坏形式,通常发生在孔洞、螺纹等局部位置。
2. 塑料材料的断裂模式分析塑料材料的断裂模式主要包括拉伸断裂、冲击断裂和切割断裂等。
塑料材料的拉伸断裂表现为材料的延展性较好,在外力作用下会形成颈缩,随后破裂。
冲击断裂则是塑料在受到冲击载荷时破裂的一种形式,通常表现为材料的脆性破裂。
切割断裂则是在材料受到切割作用下形成的一种断裂形式,破裂面呈现出切割痕迹。
3. 陶瓷材料的断裂模式分析陶瓷材料的断裂模式主要包括脆性断裂、疲劳断裂和热疲劳断裂等。
陶瓷材料属于脆性材料,其在受到外力作用时容易发生脆性断裂,破裂表面呈现出光滑平整的特点。
疲劳断裂是陶瓷材料长期受到循环载荷作用时发生的一种断裂形式,通常表现为疲劳纹和疲劳破裂。
热疲劳断裂则是在高温下陶瓷材料受到热应力影响时发生的一种破坏形式。
通过对金属、塑料和陶瓷等不同类型材料的断裂模式进行分析,可以更加深入地了解不同材料的破坏机制和破裂规律。
这有助于我们在设计和选用材料时更加准确地评估材料的性能和可靠性,从而提高材料在工程实践中的应用效果和安全性。
希望本文能为读者提供有益的参考和启发。