第十三章 133 1332 第1课时 等边三角形的性质与判定
- 格式:ppt
- 大小:2.14 MB
- 文档页数:2
新人教八年级上册第十三章13.3.2 等边三角形第1课时等边三角形的性质与判定【知识与技能】1.掌握等边三角形的定义.2.理解等边三角形的性质与判定定理.【过程与方法】经过应用等边三角形的性质与判定的过程培养学生分析问题、解决问题的能力.【情感态度】通过对等边三角形的学习,了解等边三角形的对称美,增强应用数学知识解决实际问题的信心.【教学重点】等边三角形的性质和判定方法.【教学难点】等边三角形性质的应用.一、情境导入,初步认识在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,它叫等边三角形.请大家画图并结合等腰三角形的知识探讨等边三角形具有哪些特征,同学间互相交流.教师归纳总结如下:1.等边三角形是轴对称图形,它有三条对称轴.2.等边三角形的三个内角都相等,并且每一个角都等于60°.3.三角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.其中,前两个是等边三角形性质,后两个是等边三角形的判定.【教学说明】学生的发言会是多方位多角度的,教师应从边、角、对称性等类型归纳.同时强调,作为特殊的等腰三角形,等边三角形首先具备等腰三角形的所有性质.教师讲课前,先让学生完成“名师导学”.二、思考探究,获取新知例1 如图,已知P,Q是△ABC的边BC上两点,且PB=PQ=QC=AP=AQ,求∠BAC的大小.【分析】由已知显然可知△APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.解:∵AP=AQ=PQ,∴△APQ是等边三角形.∴∠PAQ=∠APQ=∠AQP=60°.又∵AP=PB,∴∠PAB=∠PBA.又∵∠APQ=∠PBA+∠PAB,∴∠PAB=30°.同理∠QAC=30°.∴∠BAC=∠PAB+∠PAQ+∠QAC=120°.【教学说明】本例综合应用等边三角形与等腰三角形在角方面的性质,要求解题要规范,表述要有条理,言必有据,可让学生说出过程中每一步的依据.例2 在等边△ABC中,∠ABC和∠ACB的平分线相交于点O,BO,CO的垂直平分线分别交BC于点E和点F.求证:△OEF是等边三角形.【分析】由角平分线得∠OBC=∠OCB=30°,再根据线段垂直平分线的性质可得OE=BE,OF=CF.据此可计算出∠OEF及∠OFE的度数,进而可证得△OEF是等边三角形.【证明】∵E,F分别是BO,CO的垂直平分线上的点,∴OE=BE,OF=CF.∵△ABC是等边三角形,且OB,CO分别平分∠ABC,∠ACB,∴∠OBE=∠BOE=∠OCF=∠COF=30°.∴∠OEF=∠OFE=60°.∴∠EOF=60°.∴△OEF是等边三角形(三个角都相等的三角形是等边三角形).【教学说明】证明一个三角形是等边三角形,要灵活运用判定方法,根据已知提供的条件灵活选择,本题可用多种方法证明.三、运用新知,深化理解1.△ABC中,AB=BC,∠B=∠C,则∠A= .2.下列说法不正确的是( ).A.有两个角为60°的三角形是等边三角形B.有一个外角是120°的等腰三角形是等边三角形C.有两个外角相等的等腰三角形是等边三角形D.三个外角都相等的三角形是等边三角形3.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA 对称,则△P1OP2是( )三角形.A.直角B.钝角C.等腰D.等边4.如图,在等边△ABC中,D为BC上一点,BD=2CD,DE⊥AB于E,CE交AD于P.求∠APE的度数.【教学说明】用多媒体(或小黑板)出示以上问题,学生可在老师指导下完成,巩固所学知识.【答案】1.60° 2.C 3.D4.解:∵△ABC为等边三角形.∴∠B=∠ACB=60°,AC=BC,又∵DE⊥AB,∠B=60°,∴∠BDE=30°.∴BE=21BD ,而BD=2CD ∴BE=CD.在△BCE 和△CAD 中BE CD B ACB BC AC ⎧=∠=∠=⎪⎨⎪⎩∴△BCE ≌△CAD ,∴∠BCE=∠DAC而∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°.∴∠APC=120°,∴∠APE=60°.四、师生互动,课堂小结教师指导学生回忆本节所学知识点,学生间交流,互相查漏补缺.1.布置作业:从教材“习题13.3”中选取.2.完成创优作业中本课时的“课时作业”部分.本课时学习特殊的等腰三角形——等边三角形,可让学生先自主探索再合作交流,小组内、小组间充分交流后概括所得结论,这既巩固等腰三角形的应用知识,又类比探索等腰三角形性质和判定定理的方法,加深了对等腰三角形与等边三角形联系与区别的理解.。