五年级奥数-第4讲 平均数
- 格式:doc
- 大小:1.83 MB
- 文档页数:4
平均数问题(1)班级姓名专题解析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数【例1】:有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?【练习与思考】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?【例2】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?【练习与思考】1、两组学生进行跳绳比赛,平均每人跳152下。
甲组有6人,平均每人跳140下,乙组平均每人跳160下。
乙组有多少人?2、有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。
这块田是多少亩?3、把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?【课后练习】:1、期中考试后,李林的语文、数学平均分是91分,语文、英语平均分是88分,数学、英语平均分是93分,李林三门功课各得多少分?2、5位同学身高由高到低从左到右排成一行,左起3位同学的平均身高是150厘米,右起3位同学的平均身高是147厘米,5位同学的平均身高是148.5厘米。
小明在中间,小明的身高是多少厘米?3、8个数从小到大排成一列,它们的平均数是32,前5个数的平均数是24,后5个数的和是210,中间两个数的平均数是多少?4、把奶糖和水果糖混在一起,成为什锦糖,平均每千克售价9.13元。
五年级奥数集训专题讲座(一) ----有趣的平均数问题主讲:谭发佳我们研究平均数问题,首先要掌握以下基本数量关系:①总数量÷总份数=平均数②平均数×总份数=总数量③总数量÷平均数=总份数。
在总数量不变情况下‚移多补少‛,得到平均数是解决这类题的重要思想和解题思路,找准总数量与对应的总份数是难点。
1.修路队修两条公路,第一条路长900米,用10天修完,第二条路的长比第一条的2倍多100米,用的时间是第一条的1.8倍,这个修路队,修完这两条公路平均每天修多少米?分析:要想求出结果,就要先求出两条路的总长(总数量),再求出修完这条公路共需要的天数(总份数)和平均数。
解:(900+900×2+100)÷(10+10×1.8)=2800÷28=100(米)答:修完这两条公路平均每天修100米。
例2.一个水果店三种水果的单价平均是1.6元,已知香蕉比苹果贵0.2元,比柚子便宜0.5元,请你算一算每种水果的单价多少元。
分析:这是一道平均数问题逆向思考题,根据已知条件给出平均价钱是1.6元,这样就可以求出三种水果单价和的钱数,即1.6×=4.8(元),在此基础上再根据三种水果单价的数量之间的关系,运用假设思想求出问题的答案,可以用下面的线段图表示上述关系。
解:(1.6×3+0.2-0.5)÷3=4.5÷3=15(元)1.5-0.2=1.3(元)1.5+0.5=2(元)答:香蕉单价是1.5元,苹果单价是1.3元,柚子的单价是2元。
想一想,如果假设和苹果单价一样多,该怎样列式?例3.五名裁判给一名运动员评分,去掉一个最高分和一个最低分,平均得分9.58分;如果只去掉一个最高分,均分为9.46分;如果只去掉一个最低分,均分为9.66分。
求这名运动员的最高得分和最低得分分别是多少?分析:该题实质上是已知部分数的平均数,求个别数.依题意:去掉最高分和最低分后,该运动员的总得分为:9.58×3(分);去掉最高分后,该运动员的总得分为:9.46×4(分);去掉最低分后,该运动员的总得分为:9.66×4(分);因此,该运动员的最高分为:9.66×4-9.58×3=9.1(分)例4.一辆汽车以每小时100千米的速度从甲地开往乙地,到达乙地后,又以每小时60千米的速度从乙地返回甲地,求这辆汽车往返一次的平均速度.分析:往返一次的平均速度=往返一次的总路程÷往返一次的总时间.这一数量关系是正确解答这道题的关键.由于往返一次的总路程题目没有告诉我们,我们不妨假设甲地到乙地的路程为S千米.所以: S×2÷( S÷100+S÷60) (请根据提示试着思考并解答)我也能行1.甲、乙两数的平均数是1.58,再加上丙则平均数是3.52,丙数是多少?2.在爬山活动中,李林同学上山的速度为每小时0.24千米,6小时到达山顶,然后又以每小时0.4千米的速度沿原路下到山底,请算一算他上、下山的平均速度是多少3.甲乙两数和是194,如果再加上丙数,这时平均数比甲乙两数平均数多2,丙数应是多少?4.玲玲和明明的平均年龄是12岁,明明和林林的平均年龄是14岁,玲玲和林林的平均年龄是15岁,三人中年龄最大的是谁?最小的是谁?5.甲、乙两数的平均数是3.21,丙数是2.64,若再加进丁,则四个数的平均数是3.6,丁是多少?6.五个裁判给一个选手打分,如果去掉最低分,平均分是96.5分,如果去掉最高分,则该选手平均分是91.5分,请你算一算最高分与最低分相差几分?7.小丁上学期数学测验前4次的平均成绩是88分,第五次测验后,平均成绩提高到90分,第五次他考了多少分?8.有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28、36、42、46,那么原来四个数的平均数是多少?四面年级奥数集训专题讲座(二)———盈亏问题主讲:谭发佳盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。
平均数问题1、平均数的意义:用一组数据的和除以这组数据的个数,所得的商就是这组数据的平均数。
2、平均数问题的基本特点就是把几个大小不等的数量,在总量不变的情况下,通过移多补少,使它们成为相等的几份,求其中的一份是多少。
3、平均数问题的基本数量关系:总数量÷总份数=平均数4、求平均数的方法:①总数量÷总份数=平均数;②“移多补少”的方法例1:有五个数的平均数是138,把它们从小到大排列起来,前三个数的平均数是127,后三个数的平均数是148,中间的那个数是多少?练习:1、有6个数按从小到大的顺序排列,他们的平均数是27,已知前4个数的平均数是23,后3个数的平均数是34,求第4个数是多少?例2:小明期末考试语文、英语、科学的平均分是80分,数学成绩公布后,他的平均成绩提高了2分。
小明的数学考了多少分?练习:甲、乙、丙、丁四个数的平均数是10,甲、乙两数的平均数是8,丙丁两数的平均数是多少?例3:每分钟跳绳测试,小红前四次的成绩分别是:180下,175下,180下,185下,第五次比五次跳的平均成绩还多32下。
求五次的平均成绩是多少?练习:在期末模拟考试中,小明前3次的数学成绩分别是:94分,96分,98分,第四次的成绩比四次的平均成绩还多3分,求小明第四次的数学成绩是多少分?例4:四(六)班的女生人数是男生人数的一半,男同学的平均体重是43千克,女同学的平均体重是37千克,全班学生的平均体重是多少千克?练习:小明从甲地到乙地每小时行40千米,返回时从乙地到甲地每小时行60千米,小明往返平均每小时行多少千米?例5:如果5个人的平均年龄是20岁,5个人中没有小于18岁的。
那么五个人中年龄最大的人可能是多少岁?练习:1、如果三个人的平均年龄是22岁,且没有小于18岁的,那么三个人中年龄最大的可能是多少岁?例6:有三个数,甲数和乙数的平均数是82,甲数和丙数的平均数是84,乙数和丙数的平均数是86,丙数是多少?练习:甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵,三个小组各植树多少棵?练习1、5个数的平均数是30,如果把这5个数按从小到大的顺序排列,前3个数的平均数是25,后3个数的平均数是35,求中间一个数是多少?2、小明同学参加体育达标测试,五项的平均成绩是90分,如果跳远成绩不算在内,平均成绩是88分,小明的跳远成绩是多少?3、如果六个人的平均年龄是28岁,且没有大于30岁的。
五年级奥数---平均数问题1、五年级一班的同学进行数学测试,根据前五次检测的平均成绩就是80,她想使成绩再提高一些,那她第六次考多少分才能使这六次的平均成绩达到82分?2、两组数据,第一组16个数据的与就是98,第二组的平均数就是11、两组数的平均数就是8,那么第二组有几个数据?3、一次数学测验,全班平均分就是91、2分,已知女生有21人,平均每人92分,男生平均每人90、5分,求男生有多少人?4、一位同学在期中测试中,除了数学外,其她几门功课的平均成绩就是94分,如果数学算在内,平均每门95分。
已知她数学得了100分,问这位同学一共考了多少门功课?5、把五个数从小到大排列,平均数就是38,前三个数的平均数就是27,后三个数的平均数就是48,中间的一个数就是多少?6、五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分,求五一班男生与女生分别就是多少人?7、东东参加数学测试,她第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分,那么东东第四次测验得了多少分?8、甲乙丙三人的平均年龄就是22岁,其中甲乙的平均年龄就是18岁,乙丙的平均年龄就是25岁,那么乙的年龄就是多少岁?9、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,,两组同学平均每人跳多少下?10、小华的前几次数学测验的平均成绩就是80分,这一次得了100分,正好把这几次的平均分提高到85分。
这一次就是她第几次测验?11、两地相距360千米,一艘汽艇顺水行全程需要10小时,已知水流速度为6千米/小时,求往返平均速度。
12、以2为首的连续52个自然数的平均数就是多少?13、有四个数,从第二个起,每个数都比前一个数大3,已知这四个数的平均数就是24、5,其中最大的一个数就是多少?14、把一份书稿平均分给甲乙两人去打,甲每分钟打30个字,乙每分钟打20个字。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第四讲平均数问题阅读与思考在日常生活中,经常需要我们计算“平均产量”、“平均成绩”、“平均速度”、“平均分配所得”等算术平均数问题。
把若干个不相等的数,在总数不变的条件下,通过移多补少使它们成为相等的几份,求其中一份是多少的问题就是平均数问题。
解决平均数问题的关键是要先理清问题中的“总数量”、“总份数”、“平均数”等数量以及它们之间的对应关系,然后灵活运用下面三个基本关系式解题:总数量÷总份数=平均数平均数×总份数=总数量总数量÷平均数=总份数也可以先确定某一个数为基本数,运用“移多补少”的方法求出平均数,有时能使问题很简单地解决。
典型例题|例①|五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16,这个改动的数原来是多少?分析与解根据关系式“总数量=平均数×总份数”可求出原来五个数的和是18×5=90,改动后五个数的和是16×5-80,显然五个灵敏的总和少了90-80=10,不少了的10就是把那个数改为6后减少的。
所以这个改动的数是:6+10=16训练快餐1四个数的平均数是60,若把其中一个数改为60后,这四个数的平均数是66,这个改动的数原来是多少?|例②|学校足球队18人合影留念,照了六英寸的照片。
已知洗3张照片的价格是4.5元;其余的需要加洗,每张0.3元。
如果每人各得一张,平均每人需多少元?分析与解由题意可知18人合影留念,每人各得一张就需要18张照片。
已经有了3张,还需加洗(18-3=15)张,这15张照片的单价是每张0.3元,先计算出18张照片需要的总价,然后用总价除以总人数,就是平均每人需要的多少元。
所以每人需:[4.5+0.3×(18-3)]÷18=0.5(元)训练快餐2六(1)班有42人毕业合影留念,照八英寸的照片,洗两张要13元,另加洗一张0.5元。
小学奥数之平均数知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1.小宏参考了数学竞赛夏令营。
他五次测验的平均成绩是88.5分,每次测验的满分是100分,为了使平均成绩尽快达到92分以上,那么小宏至少要再连续考多少次满分?解:每再考一次满分可以比92分多100-92=8(分),而前5次的成绩总共比预期的平均分92分少(92-88.5)×5=17.5(分),所以,至少要再考17.5÷8=2.1875≈3(次)满分。
答:至少要再考3次满分。
例2.一次考试,某小组10人的平均成绩是87分,前八位的平均成绩是90分,第九位比第十位多2分。
第十位同学得了多少分?解:第九位同学与第十同学成绩的差已经知道,如果再能知道第九位同学与第十位同学成绩的和,就可以用“和差法”求出第十位同学的成绩。
因为十位同学成绩的和是87×10=870(分),而前八位同学成绩的和是90×8=720(分),所以第九位同学与第十位同学成绩的和是870-720=150(分),由此得到第十位同学的成绩是(150-2)÷2=74(分)。
答:第十位同学的成绩是74分。
例3.五年级甲班有52人,乙班有48人。
某次考试,甲班全体学生的平均分为78分,乙班的平均分比甲班的平均分高5分。
问两班的平均分各是多少?解:两班的人数为52+48=100(人),他们的总分是78×100=7800(分)。
如果乙班的平均分下降5分,总共减少5×48=240(分),乙班的平均分就和甲班一样,所以甲班的平均分是(7800-240)÷100=75.6(分),乙班的平均分是75.6+5=80.6(分)。
五年级奥数---平均数问题1、五年级一班的同学进行数学测试,根据前五次检测的平均成绩是80,他想使成绩再提高一些,那他第六次考多少分才能使这六次的平均成绩达到82分?2、两组数据,第一组16个数据的和是98,第二组的平均数是11.两组数的平均数是8,那么第二组有几个数据?3、一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求男生有多少人?4、一位同学在期中测试中,除了数学外,其他几门功课的平均成绩是94分,如果数学算在内,平均每门95分。
已知他数学得了100分,问这位同学一共考了多少门功课?5、把五个数从小到大排列,平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间的一个数是多少?6、五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分,求五一班男生和女生分别是多少人?7、东东参加数学测试,他第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分,那么东东第四次测验得了多少分?8、甲乙丙三人的平均年龄是22岁,其中甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?9、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,,两组同学平均每人跳多少下?10、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。
这一次是他第几次测验?11、两地相距360千米,一艘汽艇顺水行全程需要10小时,已知水流速度为6千米/小时,求往返平均速度。
12、以2为首的连续52个自然数的平均数是多少?13、有四个数,从第二个起,每个数都比前一个数大3,已知这四个数的平均数是24.5,其中最大的一个数是多少?14、把一份书稿平均分给甲乙两人去打,甲每分钟打30个字,乙每分钟打20个字。
第四讲计算综合一看完前面的故事,同学们可能有些疑问,真的需要那么多麦子吗?同学们可以试着算一算:从第一个棋盘开始,需要的麦子数分别为:1粒、2粒、4粒、8粒、16粒、32粒、64粒、128粒、256粒、512粒、1024粒、2048粒、……写到这里,同学们可以看出,开始的时候麦粒数量并不大,但越到后面数量越多,最终会达到全世界都无法承受的程度.我们的直觉往往是正确的,但有的时候我们也会被直觉所欺骗.麦粒数量形成的这串数列,就叫做等比数列.等比数列就是按照相同的倍数增加(或减少)的数列,例如“麦粒数列”就是按照2倍的速度增加的,这个相同的倍数就是公比,“麦粒数列”的公比就是2.同等差数列一样,等比数列同样有首项,末项及项数,同学们可以想一想如何通过首项和公比将等比数列的每一项都表示出来.等差数列求和是利用“倒序相加”或“配对求和”的方法,那么等比数列如何求和呢?我们来看一个例题.例题1.计算:(1)1248163264128256++++++++;(2)2618541624861458++++++.分析:这是一个等比数列求和的问题.如果一个一个的计算会有点复杂,那么该如何简便地算出数列的和呢?练习1.(1)3456789++++++;2222222(2)2373333++++.(836561=)有关等比数列的知识,同学们到中学以后还会继续学习,在这里只需掌握简单的等比数列求和即可.下面我们看一些技巧性比较强的分数计算的题目,首先我们先来看一个整体约分的题目.例题2.计算:123246481271421 13526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.分析:注意到246⨯⨯是123⨯⨯的32倍,4812⨯⨯是123⨯⨯的34倍,71421⨯⨯是123⨯⨯的37倍,那么可以把123⨯⨯都提出来.分母也可以同样处理.练习2.计算:234468691281216 345681091215121620⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.除了整体约分,有时候我们也可以对计算中的某些数进行适当的拆分,从而避免很多冗繁的计算.使得计算过程呈现出“四两拨千斤”的效果.例题3.计算:113114115 151617 131414151516⨯+⨯+⨯.分析:把算式里的某些数适当拆分,可以简化计算的过程.练习3.计算:115116117 333537 151616171718⨯+⨯+⨯.例题4.计算:201111 20112011227201262013÷+÷+.分析:利用前面两道题目用过的技巧,就可以解决这道题目了.练习4.计算:19811 19819864919917200÷+÷+.例题5.定义新运算a bΩ为a与b之间(包含a,b)所有与a奇偶性相同的自然数的平均数,例如:()714791113410Ω=+++÷=,()18101816141210514Ω=++++÷=.(1)计算:1019Ω;(2)在算式()199980ΩΩ=的方框中填入恰当的自然数后可使等式成立,请问:所填的数是什么?分析:根据题意,可知a bΩ是公差为2的等差数列的平均数.想一下,等差数列的平均数有什么简便算法吗?最后我们来看一下数列数表的问题,数列数表的问题一般难度比较大,需要我们仔细观察,寻找规律.例题6.观察数列11212312341223334444,,,,,,,,,,的规律,求:(1)150是数列中第几项?(2)数列中第100个分数是多少?分析:观察数列,你找到什么规律了吗?又如何来利用这些规律呢?心算能力超强的数学家“欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样.”(数学家阿拉戈语)欧拉是历史上最多产的数学家,写下了浩如烟海的书籍和论文.他心算能力极强,如果你问他前一百个质数中任何一个数的六次方,他都可以瞬间告诉你结果.有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案.莱昂哈德·欧拉(Leonhard Euler)约翰·冯·诺依曼(John Von Neumann)(1707年4月15日~1783年9月18日)(1903年12月28日~1957年2月8日)约翰·冯·诺依曼,被誉为“现代电子计算机之父”,也是公认的数学天才.据说:六岁时他能心算八位数乘除法,八岁时掌握微积分,十二岁就读懂领会了波莱尔的大作《函数论》要义.有一次,美国物理学家塞格雷(诺贝尔奖获得者)和同事(也是个诺贝尔奖牛人)为一个积分问题奋斗了一个下午,却毫无进展.这时他们从开着的门缝中看到冯·诺依曼正沿着走廊朝他们的办公室走来,于是他们问冯·诺依曼:“您能帮我们解决这个积分问题吗?”困扰他们的积分问题就写在移动黑板上,冯·诺依曼走到门口,看了一眼黑板,立即给出了答案(大概花了3秒钟).1. 计算:212222++2. 计算:361224384+++++.3. 计算:111112252711121213⨯+⨯. 4. 计算:12324651015125241051025⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 5. 数列23、25、45、27、47、67、29、…中,第100项是多少?100105是数列的第几项?第四讲 计算综合一例题1. 答案:(1)511;(2)2186详解:(1)设1248163264128256S =++++++++,2248163264128256512S =++++++++,二式相减得5121511S =-=.(2)设261458S =+++,36184374S =+++,两式相减得2437424372S =-=,2186S =.例题2. 答案:25 详解:整体约分,原式333333123123212341237135135212341237⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯ 33333312312471351247⨯⨯⨯+++=⨯⨯⨯+++()()25=.例题3. 答案:45 详解:11311411514+115+116+1131414151516=⨯+⨯+⨯原式()()()131413141514151615=14++15++16+141314151415161516⨯⨯⨯⨯⨯⨯=13+1+14+1+15+1=45例题4. 答案:146详解:171=11+(21+)7+201262013÷÷原式201217=++217+7201320136÷÷1=46.例题5. 答案:(1)14;(2)101或100详解:(1)10191018214Ω=+÷=();(2)199********Ω=+÷=();方框里有两种填法,80259101⨯-=或者80260=100⨯-.例题6. 答案:(1)1226;(2)914详解:(1)150是()1494921=1226+⨯÷+项.(2)因为()11313291+⨯÷=,114是第92个数.那么第100个数就是从114开始数的第9个,是914.练习1. 答案:(1)1016;(2)3279简答:(1)原式932221016=⨯-=;(2)原式83332792-==.练习2. 答案:25简答:原式23423455⨯⨯==⨯⨯.练习3. 答案:99 简答:原式115116117321341361151616171718⎛⎫⎛⎫⎛⎫=+⨯++⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 30132134199=+++++=.练习4. 答案:2817简答:原式11119921211631978199172002001720017⎛⎫=÷++÷+=+++= ⎪⎝⎭.作业1. 答案:8190 简答:原式.作业2. 答案:765简答:原式38423765=⨯-=.作业3. 答案:48 简答:原式1111122412612212414811121213⎛⎫⎛⎫=+⨯++⨯=+++= ⎪ ⎪⎝⎭⎝⎭. 作业4. 答案:35 简答:原式12331255⨯⨯==⨯⨯. 作业5. 答案:1829,第1376项 简答:把数列改写成一个三角形的数表,然后再做就可以了.122228190=⨯-=。
平均数
姓名:成绩:
例1:在图4-1所示的八个点处各写一个数字,其中每个点处所写的数字
等于和这个点有线段相连的三个点处的数字的平均数。
如果a=3,b=14,
c=23,d=11,那么e+f+g+h=。
例2:如图4-2,把1.2,3.7,6.5,2.9,4.6分别填在5个○中,再在
每个□中填上和它相连的三个○中的数的平均数,再把三个□中的数
的平均数填在△中,找出一种填法使△中的数尽可能小,那么△中填
的数是。
例3:跳水比赛中,由10位评委评分,规定:最后得分是去掉1个最高分和1个最低分后的平均数。
10位评委给甲、乙两位选手打出的平均数是9.75和9.76,其中最高分和最低分的平均数分别是9.83和9.84,那么最后得分_____高。
(填“甲”、“乙”或“一样”)
例4:一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个人都与其他9人各赛一盘,每盘棋的胜者得1分,负者得0分,平局各得0.5分。
结果甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分,那么,甲、乙、丙三个队参加比赛的选手的人数依次是,,。
例5:求17个自然数的平均数,使结果保留三位小数。
小明算出的答案是9.415,这个结果的最后一位数字不对,那么正确答案应该是。
例6:歌唱比赛中有5名评委为选手打分,小强的得分情况是:如果去掉一个最高分和一个最低分,平均分是9.56分;如果只去掉一个最高分,平均分是9.45分;如果只去掉一个最低分,平均分是9.62分;如果保留最高分和最低分,而去掉其他评委的打分,小强的平均分是。
例7:小明在一个学期的几次数学测验中,如果最后一次考81分,则平均成绩是87分;如果最后一次考89分,则可将平均成绩提高2分;若他想在整个学期中的数学测验的平均成绩达到90分,则他最后一次至少要考多少分?
例8:光明小学篮球队有6人,足球队有15人。
现将足球队中最高的3个人调到篮球队后,篮球队员的平均身高升高了1厘米,足球队员的平均身高降低了1厘米。
则原来篮球队员的平均身高和足球队员的平均身高相差厘米。
例9:有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28,36,42,46,那么原来四个数的平均数是。
例10:空间站上的5位宇航员轮流值班和休息,值班岗位有2人。
在60小时里,平均每位宇航员休息了小时。
综合练习
1.小永的三门课的成绩,如果不算语文,平均分是98分,如果不算数学,平均分是93分;如果不算英语,平均分是91分,小永三门功课的平均成绩是分。
2.小华在计算出2003个数的平均数后,把所求得平均数也混在了原先的2003个数中。
小华求得混在一起的数的平均数为2002,则原来的2003个数的平均数是。
3.某校有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女学生平均70分,男学生比女学生多。
4.在某次测试中,小明、小方和小华三人的平均成绩为85分,已知小明和小方的平均成绩为88分,小明和小华的平均成绩为86分。
求:(1)小方和小华的平均成绩:(2)他们三人中的最高成绩。
5.做一个竹梯子,横梁有9级,相邻两级之间等距,最上端一级为30厘米,最底段一级长为50厘米,则做这架梯子的横梁共需要竹子厘米。
(不计接合处)
6.体育比赛中,有10位裁判给每位参赛的运动员打分,计算运动员的成绩时,要去掉一个最高分和一个最低分,将余下的8个得分的平均数作为这个运动员的最终得分。
如果裁判给出的10个分数的平均数是9.75分,要去掉的最高分和最低分的平均数是9.83分,那么运动员的最终得分是。
7.在一次向“希望工程”捐款的活动中,已知小刚的捐款数比他所在学习小组中13人捐款的平均数多2元,则小刚在小组中捐款。
(填上一个你认为正确的结论)
8.小马虎计算1到2006这2006个连续整数的平均数。
在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1。
小马虎求和时漏掉的数是。
9.在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为________分。