第七章 一一次不等式(§7.6~§7.7)水平测试(含答案)
- 格式:doc
- 大小:301.00 KB
- 文档页数:8
七年级数学下册《一元一次不等式》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.数学表达式:①﹣5<7;②3y ﹣6>0;③a=6;④x ﹣2x ;⑤a ≠2;⑥7y ﹣6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.语句“x 的18与x 的和不超过5”可以表示为( )A.18x+x ≤5B.18x+x ≥5 C.≤5 D.18x+x=53.如果a >b ,则下列不等式中不正确的是( )A.a+2>b+2B.a ﹣2>b ﹣2C.﹣2a >﹣2bD.0.5a>0.5b4.下列各数中,不是不等式2﹣3x >5的解的是( )A.﹣2B.﹣3C.﹣1D.1.355.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.若不等式组无解,则m 的取值范围是( )A.m >2B.m <2C.m ≥2D.m ≤27.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个8.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h9.某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60B.70C.80D.9010.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有( )A.2种B.3种C.4种D.5种二、填空题11.如果a >0,b >0,那么ab 0. 12.写出一个解集为x >1的一元一次不等式:_________.13.不等式3x+1>7的解集为_______.14.不等式14x+5>2-x 的负整数解是 .15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选 对 道题,其得分才能不少于80分.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共 张.三、解答题17.解不等式:2(2x -3)<5(x -1).18.解不等式:13(2x-1)-12(3x+4)≤1.19.解不等式组:20.解不等式组:.21.不等式13(x -m)>3-m 的解为x >1,求m 的值.22.定义新运算:对于任意实数a ,b ,都有a ¤b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2¤5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)¤3的值;(2)若3¤x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.23.解不等式x 3<1-x -36,并求出它的非负整数解.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(2)当x>20时①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?25.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的3 2倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?参考答案1.C2.A3.C4.C5.B6.D7.C8.B9.C10.A.11.答案为:>. 12.答案为:x ﹣1>013.答案为:x >2.14.答案为:-1,-2.15.答案为:16.16.答案为:3117.解:x >-1;18.解:x ≥﹣4.19.解:解①得x <3解②得x >﹣1所以不等式组的解集为﹣1<x <3.20.解:﹣1<x ≤2.21.解:∵13(x -m)>3-m∴x -m >9-3m解得x>9-2m.又∵不等式13(x-m)>3-m的解为x>1∴9-2m=1解得m=4.22.解:(1)11.(2)x>-1数轴表示如图所示:23.解:去分母,得2x<6-(x-3).去括号,得2x<6-x+3移项,得x+2x<6+3.合并同类项,得3x<9.两边都除以3,得x<3.∴非负整数解为0,1,2.24.解:(1)方案一;(2)(40x+3200);(36x+3600).若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.25.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(32m+5)件则240m+180(32m+5)≤21300,解得:m ≤40 经检验,不等式的解符合题意 ∴32m+5≤32×40+5=65答:最多能购进65件B 品牌运动服.。
一元一次不等式练习题及答案一元一次不等式练习题及答案一元一次不等式是初中数学中的重要内容,也是我们日常生活中经常遇到的问题。
通过解一元一次不等式,我们可以找到满足不等式条件的数值范围,从而解决实际问题。
在这篇文章中,我将为大家提供一些一元一次不等式的练习题及答案,希望能够帮助大家更好地理解和掌握这一知识点。
练习题一:求解不等式2x + 3 > 7。
解答:首先,我们可以将不等式转化为等价的形式,即2x + 3 - 7 > 0。
化简得到2x - 4 > 0。
接下来,我们需要找到x的取值范围使得不等式成立。
将2x - 4 = 0转化为方程得到x = 2。
因此,我们可以得出结论:当x > 2时,不等式2x+ 3 > 7成立。
练习题二:求解不等式3(x - 2) ≤ 5x + 1。
解答:首先,我们可以将不等式化简为等价形式,即3x - 6 ≤ 5x + 1。
接下来,我们将x的项移到一边,常数项移到另一边,得到3x - 5x ≤ 1 + 6。
化简得到-2x ≤ 7。
接下来,我们需要找到x的取值范围使得不等式成立。
将-2x = 7转化为方程得到x = -7/2。
因此,我们可以得出结论:当x ≤ -7/2时,不等式3(x - 2) ≤ 5x + 1成立。
练习题三:求解不等式4x - 3 < 2(x + 1) - 3x。
解答:首先,我们可以将不等式化简为等价形式,即4x - 3 < 2x + 2 - 3x。
接下来,我们将x的项移到一边,常数项移到另一边,得到4x - 2x + 3x < 2 + 3。
化简得到5x < 5。
接下来,我们需要找到x的取值范围使得不等式成立。
将5x= 5转化为方程得到x = 1。
因此,我们可以得出结论:当x < 1时,不等式4x- 3 < 2(x + 1) - 3x成立。
练习题四:求解不等式2x - 5 > 3x + 1 或 4x - 2 < 2x + 6。
七年级数学下册《一元一次不等式与不等式组》测试题一、填空题:(每题3分,共36分)1、不等式组⎩⎨⎧>+<-023032x x 的整数解是______________。
2、若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则P 的取值范围是_________。
3、若x=23+a ,y=32+a ,且x >2>y ,则a 的取值范围是________。
4、已知三角形的两边为3和4,则第三边a 的取值范围是________。
5、已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是 。
6、已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围 。
7、关于y x ,的方程组⎩⎨⎧-=-+=+131m y x m y x 的解满足x >y ,则m 的最小整数值 。
8、已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是____ __。
9、不等式组⎩⎨⎧+>+<+1159m x x x 的解集是x >2,则m 的取值范围是 。
10、若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______ 。
11、k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1。
12、关于x 的不等式组⎩⎨⎧<->+25332b x a x 的解集为-1<x <1,则ab____________。
二、选择题:(每题4分,共40分)1、关于x 的方程|x|=2x+a 只有一个解而且这个解是非正数,则a 的取值范围( )A 、a <0B 、a >0C 、a≥0D 、a≤02、若不等式组有解,则a 的取值范围是( ) A 、a >﹣1 B 、a≥﹣1 C 、a≤1D 、a <1 3、不等式组的解集为( )A 、2<x <8B 、2≤x≤8C 、x <8D 、x≥2 4、如果不等式组的解集为x >3,那么m 的取值范围为( ) A 、m≥3 B 、m≤3 C 、m=3 D 、m <35、如果不等式组的解集是x >4,则n 的取值范围是( ) A 、n≥4 B 、n≤4 C 、n=4 D 、n <46、若关于x 的不等式组的解集为x >﹣1,则n 的值为( ) A 、3 B 、﹣3 C 、1D 、﹣1 7、若不等式组有实数解,则实数m 的取值范围是( )A 、m≤B 、m <C 、m >D 、m≥8、若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <19、已知关于x 的不等式3)1(>-xa 的解集为a x -<13,则a 的取值范围是( ) (A )0>a (B ) 1>a (C ) 0<a (D ) 1<a10、设a 、b 是不相等的任意正数,又x = , 则x 、y 这两个数一定是( )A 、都不大于2B 、都不小于2C 、至少有一个大于2D 、至少有一个小于2三、解答题(1-5题每题5分,第6题7分,第6题12分,共44分)1、设关于x 的不等式组无解,求m 的取值范围. 2、解不等式:|x-5|-2x+3<13、k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于104、当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.7、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱...的租车方案.。
试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
不等式的试题及答案不等式是数学中一种重要的表示方式,它可以描述数值之间的关系。
在数学学习中,掌握不等式的解法和理解不等式的性质对于解决实际问题和推理证明都有着重要的意义。
本文将为读者提供一些不等式的试题及答案,帮助读者巩固不等式的知识和解题技巧。
试题一:解不等式将不等式3x + 5 ≤ 2x - 4 转化为不等式的解集形式。
答案一:首先,我们将这个不等式进行简化:3x + 5 ≤ 2x - 4然后,将变量移到一侧,常数移到另一侧,得到:3x - 2x ≤ -4 - 5化简得:x ≤ -9所以,不等式3x + 5 ≤ 2x - 4 的解集形式为x ≤ -9。
试题二:解不等式组解不等式组:{2x + 1 > 5, x - 3 ≤ 7}答案二:我们分别解这两个不等式:2x + 1 > 52x > 5 - 12x > 4x > 2x - 3 ≤ 7x ≤ 7 + 3x ≤ 10所以,不等式组 {2x + 1 > 5, x - 3 ≤ 7} 的解为 x > 2 且x ≤ 10。
试题三:证明不等式证明不等式:若 a > b,则 a + c > b + c,其中 a、b、c 为实数。
答案三:首先,假设 a > b 成立,我们需要证明 a + c > b + c。
由 a > b,我们可以得到 a - b > 0。
然后,将 a + c 和 b + c 相减,得到:(a + c) - (b + c) = a - b由于 a - b > 0,所以 (a + c) - (b + c) > 0,即 a + c > b + c。
所以,若 a > b 成立,则 a + c > b + c。
通过以上试题及答案,我们可以看到不等式的解法及性质运用在各种情况下的灵活性。
细致观察和分析不等式的条件和限制,能够帮助我们准确地找出不等式的解集,解决实际问题以及进行推理证明。
华师大版七年级下册数学第7章一次方程组单元测试卷一.选择题(共10小题)1.下列方程中,是二元一次方程的是()A.B.C.3x﹣y2=0D.4xy=32.已知是关于x,y的方程3x﹣ay=5的一个解,则a的值为()A.1B.2C.3D.43.下列方程组中,不是二元一次方程组的是()A.B.C.D.4.用加减法解方程组,下列解法正确的是()A.①×3+②×2,消去y B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×3,消去x5.关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是()A.﹣B.C.D.﹣6.若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.20217.若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”,列成方程是()A.3x y=2B.=2C.3x=2D.+2=3x8.为安置200名因暴风雪受灾的灾民,需要同时搭建可容纳12人和8人的两种帐篷,则搭建方案共有()A.8种B.9种C.16种D.17种9.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A.B.C.D.10.有甲、乙、丙三种货物,若购甲3件,乙7件丙1件,共需64元,若购甲4件,乙10件,丙1件,共需79元.现购甲、乙、丙各一件,共需()元.A.32B.33C.34D.35二.填空题(共8小题)11.若5x m﹣1+5y n﹣3=﹣1是关于x、y的二元一次方程,则m+n=.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为.13.若二元一次方程组的解为,则m+n=14.已知二元一次方程=1,用含x的代数式表示y为y=;用含y的代数式表示x为x=.15.已知x与代数式ax2+bx+c的部分对应值如表:x…23456…ax2+bx+c…50﹣3﹣4﹣3…则的值是.16.已知x,y满足方程,则x-y的值为.17.某班有学生50人,其中男生比女生的2倍少7人,如果设该班男生有x人,女生有y人,那么可列方程组为.18.北京世界园艺博览会(简称“世园会”)园区4月29日正式开园,门票价格如下:票种票价(元/人)指定日普通票160优惠票100平日普通票120优惠票80注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上在线上购买世园会门票,票价可打九折,但仅限于普通票.某大家庭计划在6月1日集体入园参观游览,通过计算发现:若提前两天线上购票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.三.解答题(共8小题)19.解方程组(1)(2)20.在等式y=ax2+bx+c中,当x=1时,y=﹣2;当x=﹣1时,y=20;当x=2时,y=﹣10;求当x=﹣2时,y的值.21.已知关于x,y的二元一次方程组的解互为相反数,求k的值.22.若方程组与方程组有相同的解,求a、b的值.23.学校订做校服,要求在规定期限内完成.若按服装厂原来生产能力,每天可生产这种校服150套,则在期限内只能完成校服数量的;现服装厂改进设备,每天可生产这种校服200套,则可提前1天完成,且多生产25套,求原规定期限多少天?订做校服数量多少套?24.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?25.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.26.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?参考答案与试题解析一.选择题(共10小题)1.解:A、﹣y=6是二元一次方程,符合题意;B、+=1不是整式方程,不符合题意;C、3x﹣y2=0是二元二次方程,不符合题意;D、4xy=3是二元二次方程,不符合题意,故选:A.2.解:∵是关于x,y的方程3x﹣ay=5的一个解∴3a﹣a×(﹣2)=5∴3a+2a=5∴5a=5∴a=1故选:A.3.解:A、是分式方程组,符合题意;B、是二元一次方程组,不符合题意;C、是二元一次方程,不符合题意;D、是二元一次方程组,不符合题意;故选:A.4.解:用加减法解方程组,①×(﹣3)+②×2,消去x,故选:C.5.解:解方程组得:,∵关关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,∴代入得:14k﹣6k=6,解得:k=,故选:B.6.解:,①+②得,5x+5y=5k﹣5,即:x+y=k﹣1,∵x+y=2019,∴k﹣1=2019∴k=2020,故选:C.7.解:若甲数为x,乙数为y,可列方程为y﹣3x=2.故选:B.8.解:设12人的帐篷有x顶,8人的帐篷有y顶,依题意,有:12x+8y=200,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有8种搭建方案.故选:A.9.解:设生产甲种玩具零件x天,生产乙种玩具零件y天,依题意,得:.故选:C.10.解:设购甲每件x元,购乙每件y元,购丙每件z元.列方程组得:,①×3﹣②×2得:x+y+z=34.故选:C.二.填空题(共8小题)11.解:∵5x m﹣1+5y n﹣3=﹣1是关于x、y的二元一次方程,∴m﹣1=1,n﹣3=1,解得:m=2,n=4,∴m+n=6.12.解:(解法一)设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).(解法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,依题意,得:x+(16﹣3x)﹣2x=8,解得:x=2,∴16﹣3x=10,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).故答案为:72cm2.13.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.14.解:方程=1,解得:y=;x=4﹣2y,故答案为:;4﹣2y15.解:把点(2,5),(3,0),(4,﹣3)代入,得,解得,则==11,故答案为11.16.解:,(1)-(2)得:x-y=1,17.解:设该班男生有x人,女生有y人,可得:,故答案为:.18.解:设该家庭中可以购买优惠票的有x人,购买普通票的有y人,由题意得:②﹣①得:12y=84∴y=7 ③将③代入②得:80x+120×7=1080解得:x=3故答案为:3.三.解答题(共8小题)19.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.20.解:∵在等式y=ax2+bx+c中,当x=1时,y=﹣2;当x=﹣1时,y=20;当x=2时,y=﹣10;∴,解得,,∴y=x2﹣11x+8,当x=﹣2时,y=(﹣2)2﹣11×(﹣2)+8=34,即x=﹣2时,y的值是34.21.解:①﹣②得:x+y=k+1,∵关于x,y的二元一次方程组的解互为相反数,∴x+y=0,即k+1=0,解得:k=﹣1.22.解:,解得该方程组的解为,由题意该方程组的解也是方程组的解,代入ax+by=3可得a+b=3③,代入2ax+by=4可得2a+b=4④,④﹣③可得a=1,代入③可得b=2,∴a=1,b=2.23.解:设原规定期限为x天,订做校服数量为y套,依题意,得:,解得:.答:原规定期限为18天,订做校服数量为3375套.24.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.25.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.26.解:(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,依题意,得:7x+2(x+2)=76,解得:x=8,∴x+2=10.答:甲种道具的每件进价是8元,乙种道具的每件进价是10元.(2)设购进甲种道具m件,购进乙种道具n件,依题意,得:,解得:.设乙道具的售价为y元,依题意,得:(10﹣8)×30+(y﹣10)×20=440×20%,解得:y=11.4.答:乙道具的每件售价为11.4元.。
不等式练习题及答案不等式练习题及答案不等式是数学中常见的概念,它描述了数值之间的大小关系。
在解决实际问题时,不等式也经常被用来建立数学模型。
本文将为大家提供一些不等式练习题及其答案,帮助读者提升对不等式的理解和应用能力。
1. 练习题一:解不等式求解不等式2x - 5 < 3x + 2。
解答:首先,我们可以将不等式转化为等式,即2x - 5 = 3x + 2。
然后,将x项移到一边,常数项移到另一边,得到2x - 3x = 2 + 5。
化简得到-x = 7,再乘以-1,得到x = -7。
所以,不等式2x - 5 < 3x + 2的解集为x < -7。
2. 练习题二:求不等式的解集求解不等式x^2 - 4x > 3。
解答:首先,我们可以将不等式转化为等式,即x^2 - 4x = 3。
然后,将所有项移到一边,得到x^2 - 4x - 3 > 0。
接下来,我们可以使用因式分解或配方法来求解这个二次不等式。
通过因式分解,我们可以得到(x - 3)(x + 1) > 0。
根据零点的性质,我们可以得到x - 3 > 0或x + 1 > 0。
解得x > 3或x > -1。
所以,不等式x^2 - 4x > 3的解集为x > 3。
3. 练习题三:证明不等式证明对于任意正实数a、b和c,有(a + b + c)^2 ≥ 3(ab + bc + ca)。
解答:我们可以使用数学归纳法来证明这个不等式。
首先,当n = 2时,不等式成立,即(a + b)^2 ≥ 3ab。
假设当n = k时,不等式成立,即(a1 + a2 + ... + ak)^2 ≥ 3(a1a2 + a2a3 + ... + ak-1ak)。
我们需要证明当n = k + 1时,不等式也成立。
考虑(a1 + a2 + ... + ak + ak+1)^2,展开后可以得到:(a1 + a2 + ... + ak)^2 + 2(a1 + a2 + ... + ak)(ak+1) + ak+1^2。
苏教版八年级下册数学目录第七章一元一次不等式
生活中的不等式
7.1生活中的不等式
不等式的解集
7.2不等式的解集
不等式的性质
7.3不等式的性质
解一元一次不等式
7.4解一元一次不等式
用一元一次不等式解决问题
7.5用一元一次不等式解决问题
一元一次不等式组
7.6一元一次不等式组
一元一次不等式与一元一次方程、一次函数 7.7一元一次不等式与一元一次方程、一次函数第八章分式
分式
8.1分式
分式的基本性质
8.2分式的基本性质
分式的加减
8.3分式的加减
分式的乘除
8.4分式的乘除
分式方程
8.5分式方程
第九章反比例函数
反比例函数
9.1反比例函数
反比例函数的图象与性质
9.2反比例函数的图象与性质
反比例函数的应用
9.3反比例函数的应用
第十章图形的相似
图上距离与实际距离
10.1图上距离与实际距离
黄金分割
10.2黄金分割
10.3相似图形相似图形
10.4探索三角形相似的条件探索三角形相似的条件 10.5相似三角形的性质相似三角形的性质 10.6图形的位似图形的位似
10.7相似三角形的应用相似三角形的应用
第十一章 图形与证明(一) 11.1你的判断对吗你的判断对吗
11.2说理说理
11.3证明证明
11.4 11.4 互逆命题互逆命题互逆命题
第十二章 认识概率 12.1等可能性等可能性
12.2等可能条件下的概率(一)等可能条件下的概率(一) 12.3等可能条件下的概率(二)等可能条件下的概率(二)。
一元一次不等式与一元一次方程、一次函数班级 姓名 成绩 1、在一次函数35-=x y 中,已知0=x 则=y ; 若已知2=y 则=x ;2、已知点P (a ,4)在函数3+=x y 的图象上,则a= 。
3、当自变量x 时,函数45+=x y 的值大于0;当x 时,函数45+=x y 的值小于0。
4、已知函数82+-=x y ,当x 时,4>y ; 当x 时,2-≤y 。
5、如图,直线l 是一次函数b kx y +=的图象,观察图象,可知: (1)=b ;=k 。
(2)当2>y 时,x 。
6、已知函数y 1 = 2 x – 4与y 2 = - 2 x + 8的图象,观察图象并回答问题:(1) x 取何值时,2x-4>0? (2) x 取何值时,-2x+8>0?(3) x 取何值时,2x-4>0与-2x+8>0同时成立? (4) 你能求出函数y 1 = 2 x – 4与y 2 = - 2 x + 8 的图象与X 轴所围成的三角形的面积吗?7、 如图所示,是某学校一电热淋浴器水箱的水量y (升)与供水时间x(分)的函数关系。
(1)求y与x的函数解析式。
(2)在 (1)的条件下,求经过多少分钟水箱有水70升?8、下图中l反映了某公司产品的销售收入与销售量的关系,1 Array l反映了该公司产品的销售成本与销售量的关系,根据图2中信息请你求出:(1)直线l对应的函数表达式是;1直线l对应的函数表达式是。
2(2)若该公司要赢利(收入大于成本),则x;若公司亏损(收入小于成本),则x。
9、某自行车保管站在某个星期日接受保管的自行车共有3500辆.其中变速车保管费是每辆一次0.5元,一般车保管费是0.3元.(1)若设一般车停放的辆数为x,总保管费的收入为y元,试写出y与x的关系式;(2)若估计前来停放的3500辆自行车中,变速车的辆数不少于25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.。
9.3 一元一次不等式组同步习题一、填空题1、不等式组21xx>-⎧⎨>⎩的解集是2、不等式组12xx<⎧⎨>-⎩的解集是3、不等式组12xx<⎧⎨<-⎩的解集是4、不等式组21xx<-⎧⎨>⎩的解集是5、将下列数轴上的x的范围用不等式表示出来⑴⑵⑶⑷6、不等式组235324xx+<⎧⎨->⎩的解集为7、34125x+-<≤的整数解为8、不等式组()122431223x xxx⎧--≥⎪⎪⎨-⎪>+⎪⎩的解集为9、三角形三边长分别为4,1-2a,7,则a的取值范围是10、若m<n,则不等式组12x mx n>-⎧⎨<+⎩的解集是二、选择题1、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤2、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2A m B m C m D m ><=≤4、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<5、关于不等式组x mx m ≥⎧⎨≤⎩的解集是( )A.任意的有理数B.无解C.x=mD.x= -m 6、一元一次不等式组x ax b>⎧⎨>⎩的解集是x>a,则a 与b 的关系为( )...0.0A a bB a bC a bD a b ≥≤≥>≤<7、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )A.-4<a<5B.a>5C.a<-4D.无解8、已知关于x 的不等式组()324213x x a x x --≤⎧⎪⎨+>-⎪⎩的解集是13x ≤<,则a=( )A.1B.2C.0D.-19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是( )A. a>4B. a>2C. a=2D.a≥2 10、若方程组2123x y mx y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ).4.4.4.4A mB mC mD m>-≥-<-≤-三、解答题1、解下列不等式组,并在数轴上表示解集。
第7章 一元一次不等式(7.6~7.7)水平测试班级 学号 姓名 分数跟踪反馈 挑战自我(100分)一、作出你的选择(每小题3分,共24分)1.一个不等式组的解集为-1<x ≤2,那么在数轴上表示正确的是【 】.2.函数y =x -5+x1中自变量x 的取值范围是【 】.(A )x ≤5 (B )x ≠0 (C )0<x ≤5 (D )x ≤5且x ≠0 3.结合正比例函数y=4x 的图像回答,当x >1时,y 的取值范围是【 】. (A )y <1 (B )1≤y <4 (C )y=4 (D )y >44. 已知一次函数1y =-5+x ,2y =-3x +7,当1y ≤2y 时,x 的取值范围是【 】. (A )x ≥3 (B )x ≤3 (C )x ≥-3 (D )x ≤-3 5.把不等式组⎨⎧≤+-+32,112x x φ的解集表示在数轴上,下列选项正确的是【】.(A )(B )(C ) (D )6.如果一元一次不等式组⎩⎨⎧-a x x ππ,1的解集为x <-1,则a 的取值范围是【 】.(A )a >-1 (B )a ≥-1 (C )a ≤-1 (D )a <-17.如图1,直线(0)y kx b k =+<与x 轴交于点(3,0),关于x 的不等式0kx b +>的解集是【 】.(A )3x < (B )3x > (C )0x > (D )0x <(A )(B )(C )(D )c1k x +b1 01- 1 0 1- 1 0 1- 11-8.直线1l :y =1k x +b 与直线2l :y =2k x +c 在同一平面直角坐标系中的图象如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为【 】.(A )x >1 (B )x <1 (C )x >-2 (D )x <-2二、填得圆圆满满(每小题3分,共24分)1.使不等式x +2<0和x <0同时成立的x 的取值范围是 . 2.不等式组⎩⎨⎧--+13,132πφx x 的解集是 .3.已知不等式组⎩⎨⎧-.3,1πφx x 若图3中椭圆A 表示x >―1的解集,椭圆B表示x <3的解集,则椭圆A 与椭圆B 的公共部分C 表示 .4.已知一次函数y=-3x -5,当x 时,y <0. 5那么方程a x +b=0的解是 ;不等式ax +b >0的解集是 .6.如果不等式组⎪⎩⎪⎨⎧-≥+32,22πb x a x的解集是0≤x <1,那么a b +的值为 .7.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解集为 . 三、用心解答(共32分)1.(5分)解下列不等式组⎪⎩⎪⎨⎧-+---≤+.413213,3223x x x x x φ,并把解集在数轴上表示出来:b + AC B图 32.(5分)解不等式组⎪⎩⎪⎨⎧-+-+≤+,11352),2(34x x x x φ并写出它的整数解.3.(7分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解满足x >0,y >0,求m 的取值范围.4.(7分)一次函数y=k x +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3),求不等式k x +b ≥3x +6的解集. 5.(8分)在保护地球爱护家园活动中,校团委把一批树苗分给八(7)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设八(7)班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示). (2)八(7)班至少有多少名同学?最多有多少名同学?四、拓广探索(共20分)1.(8分)明明同学准备利用暑假卖报纸赚取140~200元钱,捐献给希望工程.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:明明同学要达到目的,卖出报纸的份数必须超过1000份.(2)明明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.2.(12分)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x人,工厂付给甲、乙两种工种的工人工资共y元,写出y(元)与x(人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?提升能力超越自我(下列各题供各地根据实际情况选用)某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买2套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.参考答案跟踪反馈 挑战自我一、1.A 2.C 3.D 4.B 5.B 6.C 7.A 8.B 二、1.x <-2 2.x >2 3.-1<x <3 4.>-35 5.x=1;x <1 6.1 7.-1<x <2 8.x >-1 三、1. x ≤-5.图略.2. -1≤x <1;―1,0.3.解已知方程组,得⎩⎨⎧+-=+=.5,23m y m x 依题意,得⎩⎨⎧+-+.05,023φφm m解这个不等式组,得―32<m <5,即 m 的取值范围是―32<m <5. 4.依题意,得⎩⎨⎧=-+=.3,20b b k 解得⎪⎩⎪⎨⎧-==.3,23b k求不等式k x +b ≥3x +6的解集,即求不等式x 23-3≥3x +6的解集,解得x ≤-6. 5.(1)这批树苗有(242x +)棵.(2)根据题意,得⎩⎨⎧≥--+--+.1)1(3422,5)1(3422x x x x π解得40<x ≤44.答:八(7)班至少有41名同学,最多有44名同学. 四、1.(1)如果明明同学卖出1000份报纸,则可获得:10000.1100⨯=元,没有超过140元,从而不能达到目的.(2)设明明同学暑假期间卖出报纸x 份,由(1)可知x >1000,依题意,得⎩⎨⎧≤-+⨯≥-+⨯.200)1000(2.01.01000,140)1000(2.01.01000x x 解得1200≤x ≤1500. 答:明明同学暑假期间卖出报纸的份数在1200~1500份之间. 2.(1)y=600x +1000(150-x),即y=-400x +150000.(2)依题意,得150-x ≥2x .解得x ≤50.因为-400<0,由一次函数的性质知,当x =50时,y 有最小值.所以150-50=100.答:甲工种招聘50人,乙工种招聘100人时可使得每月所付的工资最少. 提升能力 超越自我(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意,得 47500≤(2800-2200)x +(3000-2600)×(100-x )≤48000.解得37.5≤x ≤40.x Q 是正整数,∴x 取38,39或40.(2∵-400<0,∴y 随x 的增大而减小.∴当x=40时,y 有最小值,即生产A 型冰箱40台,B 型冰箱60台,该厂投入成本最少.此时,政府需补贴给农民(2800×40+3000×60)×13%=37960(元).(3)实验设备的买法共有7种.提示:获得的全部利润为(2800-2200)×40+(3000-2600)×60=48000(元). 设买试验设备x 套,办公用品y 套,当买1套体育器材时, 根据3000x +1800y=42000,有4种买法:(1,11,5)、(1,8,10)、(1,5,15)、(1,2,20);同理,当买2套体育器材时,根据3000x +1800y=36000,有3种买法:(2,9,5)、(2,6,10)、(2,3,15).备用题(计3+3+3道题,答案附各题的后面) 一、选择题1.不等式组1021x x +>⎧⎨-<⎩,的解集是【 】.C(A )1x >- (B )3x <(C )13x -<< (D )31x -<<2.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是【 】.A(A )1a >- (B )1a -≥ (C )1a ≤ (D )1a <3.如图1,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为【 】.B(A )2x <- (B )21x -<<- (C )20x -<< (D )10x -<<二、填空题1.已知三角形的三条边长分别为8、1-2a 、3,则字母a 的取值范围是 .-5<a <-2 2.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .-3<a ≤-23.“五·四”青年节,市团委组织部分中学的团员去市人民公园植树.某校八年级(8)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有 棵.121提示:设八年级(8)班团支部有x 名团员参加植树,则1≤(4x +37)-5(x-1)<3. 解得20<x ≤21.所以x=21.故这批树苗共有4×21+37=121(棵). 三、解答题1.解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.解不等式(1)得x <1;解不等式(2)得x ≥-2.所以不等式组的解集为-2≤x <1. 2.解不等式组27163(1)5x x x x +-⎧⎨-->⎩≥, ①,②并求出所有整数解的和.解不等式①,得2x ≥,解不等式②,得32x <. ∴原不等式组的解集是322x -<≤.则原不等式组的整数解是2101--,,,. 故所有整数解的和是2(1)012-+-++=-.3.某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: (1)设生产甲种产品x 件,根据题意列出不等式组,求出x 的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.3.(1)依题意,得⎩⎨⎧≤-+≤-+)2.(290)50(103)1(,360)50(49x x x x由不等式①,得x ≤32;由不等式②,得x ≥30.x ∴的取值范围为30≤x ≤32. (2)y=70x +90(50-x ),即y=-20x +4500,∵-20<0,∴y 随x 的增大而减小.而30≤x ≤32,∴当x=32,50-x=18时,最小值y =-20×32+4500=3860(元).答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元.1 x。