PZT铁电陶瓷
- 格式:pdf
- 大小:1.60 MB
- 文档页数:66
(1-x)PST-xPZT铁电陶瓷的介电与热释电性能研究1蓝德均、江一杭、陈异、陈强、肖定全、朱建国*(四川大学材料科学与工程学院 四川成都 610064)E-mail: nic0400@摘要:以普通氧化物混合烧结法制备了高钙钛矿相的(1-x)PST-xPZT铁电弛豫陶瓷。
发现烧结温度和PZT掺入量对样品中的焦绿石相的存在影响很大。
样品的钙钛矿相成分随烧结温度升高而增加。
介电性能测试表明(1-x)PST-xPZT铁电弛豫陶瓷具有弥散型介电响应特征,(1-x)PST-xPZT铁电弛豫陶瓷的居里点T c和压电常数d33随PZT的掺入量的增加而增加。
室温下x=0.1的(1-x)PST-xPZT陶瓷样品的热释电系数可达到约15×10-8C/(cm2.K)。
关键词:PST-PZT陶瓷;弛豫铁电陶瓷;钙钛矿相;一步烧结制备1.引言钽钪酸铅Pb(Sc1/2Ta1/2)O3(PST)是一种热释电性能优良的典型B位复合铅基钙钛矿弛豫铁电陶瓷[1~3]。
由于纯PST的居里点较低(-5℃-25℃),需要在约1500℃的高温下烧结才能获得致密、具有钙钛矿结构且性能良好的材料[4],从而限制了PST陶瓷材料的应用领域。
为了避免会引起陶瓷性能恶化的焦绿石相的形成,通常制备B位复合铅基钙钛矿驰豫铁电陶瓷的方法是先驱体法,即先将B位化合物或一种B位组份与一种A位组份[5]先行在高温下进行焙烧,制备出一种中间材料后再将组成陶瓷的其它组份化合物与前驱体混合后烧结得到所需的陶瓷。
但是有也研究表明[6,7],用传统电子陶瓷制备工艺(以下简称一步法,One-Step-Sintering Method,OSSM),也可以制备出B位复合纯钙钛矿相陶瓷材料。
由于一般二元系的准同型相界(Morphotropic Phase Boundary,MPB)是一个范围很窄的区间,通过MPB成分的调整而达到调整材料综合性能的自由度很小;但对于三元或更多元系来说,其准同型相界一般是曲线甚至是曲面,故而在MPB附近进行组分调控可望进一步优化材料的综合性能[8]。
铁电陶瓷改性方案引言铁电陶瓷是一类具有铁电性质的陶瓷材料,具有优异的电学性能和机械性能,被广泛应用于电子器件、传感器和储能装置等领域。
然而,传统的铁电陶瓷在一些方面存在局限性,比如其电学性能受温度和应力的影响较大、机械性能较差等。
为了克服这些问题,研究人员提出了一系列的铁电陶瓷改性方案,以改善其性能并拓宽其应用范围。
本文将介绍几种常见的铁电陶瓷改性方案,包括添加掺杂物、改变工艺和设计新型结构等。
通过这些改性方案,可以获得具有更好性能的铁电陶瓷材料,为相关领域的应用提供更好的支持。
添加掺杂物添加掺杂物是一种常见的铁电陶瓷改性方案,通过在陶瓷材料中引入其他元素,可以改变材料的结构和性质,提高其性能表现。
以下是几种常见的添加掺杂物的方案:1. 离子掺杂通过引入离子掺杂,可以改变铁电陶瓷的晶格结构和电荷分布,从而改变其电学性能。
例如,在铁酸钡(BaTiO3)中引入掺杂离子,可以减小晶格畸变,提高材料的铁电相变温度和极化强度。
2. 部分取代掺杂部分取代掺杂是指将一部分陶瓷材料的原子取代为其他元素或离子。
这种掺杂方式可以改变材料的组成和结构,从而调节其性能。
以钛酸铋(BiFeO3)为例,通过部分取代铁原子的方式,可以改善其畸变结构,提高其极化强度和压电性能。
3. 氧化物掺杂在铁电陶瓷中添加一定比例的氧化物掺杂物,可以改变材料的晶格缺陷和电子结构,从而影响材料的性能。
例如,在钛酸锆(PZT)陶瓷中添加微量的氧化铁(Fe2O3),可以改善其耐疲劳性能和压电性能。
改变工艺改变工艺是另一种常见的铁电陶瓷改性方案,通过改变陶瓷材料的制备过程和烧结工艺,可以调节其晶体结构和物理性能,从而达到改善材料性能的目的。
以下是几种常见的改变工艺的方案:1. 控制烧结条件烧结是陶瓷制备的关键步骤之一,通过控制烧结条件,可以影响陶瓷材料的致密度、晶体生长和相变行为。
例如,在铁酸钡陶瓷的制备过程中,控制烧结温度和时间,可以得到致密度较高且相变温度较稳定的材料。
pzt压电陶瓷晶体结构
摘要:
1.PZT压电陶瓷简介
2.PZT压电陶瓷的晶体结构
3.PZT压电陶瓷的性能与应用
4.我国在PZT压电陶瓷领域的研究进展
正文:
一、PZT压电陶瓷简介
PZT(lead zirconate titanate,铅锌钛酸盐)压电陶瓷是一种具有优良压电性能的陶瓷材料。
在自然界中,PZT矿物稀少,因此,科学家们通过研究和合成,成功制备出了具有高精度、高性能的PZT压电陶瓷。
二、PZT压电陶瓷的晶体结构
PZT压电陶瓷的晶体结构属于四方对称结构,其化学式为PbZrO3-PbTiO3。
在这种结构中,钛酸铅(PbTiO3)和锆酸铅(PbZrO3)以固溶体的形式存在,共同赋予了PZT压电陶瓷优异的性能。
三、PZT压电陶瓷的性能与应用
1.压电性能:PZT压电陶瓷具有较高的压电常数、较低的介电常数和良好的疲劳稳定性,使其在声学、振动和能量转换等领域具有广泛的应用。
2.铁电性能:PZT压电陶瓷具有较高的铁电储能密度,使其在电磁屏蔽、存储器和传感器等领域具有重要应用。
3.机电转换性能:PZT压电陶瓷具有良好的机电转换效率,广泛应用于超
声波换能器、马达、致动器和机器人等领域。
4.我国在PZT压电陶瓷领域的研究进展:近年来,我国在PZT压电陶瓷材料的研究取得了显著成果,包括制备工艺的优化、性能的提高和新材料的研发。
这些成果为我国在压电陶瓷领域的创新发展奠定了基础。
综上所述,PZT压电陶瓷作为一种高性能的陶瓷材料,在多个领域具有广泛的应用。
PZT基铁电陶瓷材料疲劳特性研究的开题报告1.选题背景铁电陶瓷材料是一类重要的功能材料,在传感器、电子元器件、翻转器、换能器等领域有着广泛的应用。
其中,Pb(Zr,Ti)O3(PZT)作为铁电陶瓷材料的代表,因具有良好的铁电、压电、弯曲电效应、压电耦合等性能,因此广泛应用于传感器、换能器等领域。
然而,随着应用领域的不断拓展,PZT陶瓷材料的使用寿命和可靠性问题日益引起人们的关注,尤其是在高温、高压、高电场等恶劣环境下,PZT陶瓷材料易出现疲劳现象。
2.研究意义针对PZT陶瓷材料的疲劳问题,进行深入的研究,不仅有利于揭示材料的疲劳机制和物理本质,而且对于材料的改进和优化具有重要意义。
因此,研究PZT基铁电陶瓷材料的疲劳特性,对于推动铁电陶瓷材料的发展和提高其工程应用的可靠性具有重要的学术和实用意义。
3.研究内容本论文拟从以下几个方面进行探究:(1)PZT陶瓷材料的基本性质及铁电特性。
(2)PZT陶瓷材料的疲劳机制及影响因素的分析。
(3)采用拉伸、压缩、弯曲等不同加载方式,对PZT铁电陶瓷的疲劳行为进行研究。
(4)疲劳断口形貌、微观组织和晶体结构的分析。
(5)通过模拟、数值计算等手段,对PZT陶瓷材料的疲劳寿命进行预测和评估。
4.研究方法(1)实验方法:采用拉伸、压缩、弯曲等不同加载方式对PZT铁电陶瓷进行交变载荷下的疲劳试验。
(2)显微结构分析:采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)等手段对疲劳断口、微观组织和晶体结构进行分析。
(3)数值模拟:利用有限元分析软件对PZT陶瓷材料的疲劳寿命进行预测和评估。
5.预期成果通过对PZT铁电陶瓷材料的疲劳特性研究,预计可以得到以下成果:(1)揭示PZT陶瓷材料的疲劳机制和物理本质。
(2)建立PZT陶瓷材料的疲劳行为模型。
(3)探究PZT陶瓷材料的疲劳寿命与不同参数的关系。
(4)对PZT陶瓷材料的改进和优化提供一定的参考和指导。
6.研究进度安排本论文的研究进度安排如下:(1) 5月份:完成文献资料收集和研究背景的撰写。
pzt和pt陶瓷的热释电效应与晶格参数的关系
热释电效应是指在温度变化下,物体表面电荷分布的改变,从而产生电势差的现象。
铁电陶瓷材料在热释电效应方面具有很好的应用前景,可以用于传感器、电源和设备控制等领域。
PZT和PT陶瓷是铁电陶瓷中应用广泛的两种材料。
它们的铁电性质与晶格参数密切相关。
本文将介绍PZT和PT陶瓷的热释电效应与晶格参数的关系。
PZT陶瓷的晶格参数是指晶体的晶格常数,通常用来描述物质的结构和性质。
PZT陶瓷是一种四方相铁电陶瓷,其晶格参数与热释电效应密切相关。
在PZT陶瓷中,热释电系数与电介质常数、铁电极化强度和温度有关。
晶格参数对这些参数的影响是很深远的。
与PZT陶瓷相比,PT陶瓷的晶格结构更为简单,其晶格参数也更易于确定。
PT陶瓷是一种钙钛矿型铁电陶瓷,其晶格参数与热释电效应的关系也已经得到了广泛的研究。
研究表明,PT陶瓷的热释电系数随着晶格常数a、b、c的增大而增大,与PZT陶瓷的情况类似。
但与PZT陶瓷不同的是,PT陶瓷的铁电极化强度随着晶格常数的增大呈现先增大后降低的趋势,也就是存在一个临界晶格常数,超过这个值以后铁电极化强度会逐渐降低。