岩体的变形与破坏资料
- 格式:pdf
- 大小:2.39 MB
- 文档页数:18
矿山岩体力学知识点岩体力学是矿山工程中的一个重要学科,它研究岩石的力学性质和其在地下开采中的变形和破坏规律。
了解岩体力学的知识点对于合理设计和稳定的矿山开采至关重要。
以下是一些岩体力学的主要知识点。
1.岩石的物理力学性质:包括岩石的密度、弹性模量、泊松比、抗拉强度、抗压强度、抗剪强度等。
这些物理力学性质对于岩石的变形和破坏具有重要影响,也是评估岩石力学性质的基本指标。
2.应力与应变:应力是指在力作用下岩石内部的应力状态,包括垂直和平行两个方向的应力。
应变是岩石在受力下发生的变形。
研究岩石的应力与应变关系有助于了解岩石在开采过程中的应力分布规律和力学特性。
3.岩石的变形与破坏规律:岩石在受到外力作用后会发生变形和破坏。
弹性变形是岩石在小应力作用下发生的可恢复变形,塑性变形是岩石在大应力作用下发生的不可恢复变形,破坏是岩石超过其承载能力导致破坏的过程。
了解岩石的变形与破坏规律可以指导矿山开采的安全与高效。
4.岩石力学参数的测定与试验方法:准确获取岩石力学参数是进行合理设计和分析的基础。
常用的试验方法包括岩石强度试验、应力-应变试验、岩石断裂试验等。
这些试验方法可以用于测定岩石的强度、变形特性和破坏特征,为岩石力学参数的确定提供依据。
5.岩体的稳定性分析:岩体的稳定性是矿山开采过程中一个重要的问题。
通过分析岩体力学参数、岩体结构、地应力等因素,预测和评估岩体的稳定性,选择合适的支护方法和措施,以确保矿山的安全运营。
6.岩石动力学:矿山开采中常伴随着岩爆、岩石震动等动力学问题。
了解岩石的动力学特性,包括岩爆的发生机制、岩石振动的传播规律等,对于预防和控制岩爆事故、减轻岩石震动的影响具有重要意义。
7.岩石支护与巷道设计:在矿山开采中,为了稳定岩体结构,需要进行巷道支护和巷道设计。
岩石力学的研究可以指导巷道的合理设计、支护方法的选择和支护结构的设计,提高巷道的稳定性和安全性。
8.岩层间的相互作用与岩爆防控:在矿山开采中,岩层间的相互作用对于岩体稳定性具有重要影响。
岩体变形破坏过程的能量机制岩体变形破坏过程是一个由外力作用引起的能量释放过程。
岩体在受到外力的作用下逐渐累积能量,当这部分能量超过岩体的抗力时,就会引发岩体的变形和破坏。
岩体变形破坏的能量机制主要包括应变能的积累和释放过程、动能转化为应变能的过程以及应变能转化为破坏能的过程。
首先,岩体受到外力作用后,从初态到终态的过程中会产生应变能的积累和释放过程。
外力的作用使岩石产生弹性应变、塑性应变和破裂应变。
弹性应变是可恢复的应变,塑性应变是不可恢复的应变,破裂应变是岩石的断裂。
在岩石受到外力作用时,弹性应变首先发生,然后逐渐转化为塑性应变,当塑性应变达到一定程度时,就会引发破裂。
岩体的弹性势能和塑性变形能都积累在岩体中,这部分能量通过震动、热量等方式释放出来,当释放的应变能超过岩体抗力时,就会引发岩体的破坏。
其次,动能转化为应变能是岩体变形破坏过程的另一个能量机制。
当外力作用于岩石时,岩石受到的应变能不仅来自于外力的作用,也包括岩石内部的动能转化为应变能。
当岩体受到外力时,外力对岩体的作用会使岩体发生变形,变形速度越快,岩石的动能就越大。
岩石动能的转化主要通过岩石内部的位移和变形来实现。
当岩石受到外力时,岩体内部各个部分的位移不同,不同的位移速度导致了动能的差异,这部分动能会转化为应变能。
最后,应变能转化为破坏能是岩体变形破坏的关键能量机制。
岩石的变形和破坏主要是由于岩石内部的应变能积累到一定程度时超过了岩石的抗力,从而导致岩体的破坏。
在岩体变形过程中,应变能主要以形变和塑性变形的形式存在,当应变能积累到一定程度时,塑性变形和应力集中会导致裂隙的发展和联合,从而进一步加剧岩体的破坏。
这部分应变能的释放主要通过断裂面的形成和扩展,将岩体内部的应变能释放出来,并以破碎、破裂等形式表现出来。
总之,岩体变形破坏过程的能量机制包括应变能的积累和释放过程、动能转化为应变能的过程以及应变能转化为破坏能的过程。
这些过程都是岩体变形破坏的重要能量机制,对于理解和预测岩体变形破坏具有重要意义。
岩体变形破坏过程的能量机制
岩体变形破坏是岩石受外力作用下发生的物理现象,其能量机制主要包括应变能、势能和动能三种形式。
首先,应变能是指由于外力作用使岩体内部产生应变而存储的能量。
当岩体承受的应力超过其强度极限时,应变能将会被释放,导致岩体发生变形和破坏。
其次,势能是指岩体在重力作用下所具有的能量。
岩体在垂直方向上的质量分布不均匀,因此会产生不同高度处的势能差异。
当岩体承受外力扰动时,岩体的势能分布状态将发生变化,进而影响岩体的稳定性和破坏形态。
最后,动能是指岩体在受到外力作用下所具有的能量。
当岩体受到冲击或震动等外界扰动时,其将产生动能,进而促进岩体的变形和破坏。
综上所述,岩体变形破坏过程的能量机制十分复杂,应变能、势能和动能三种形式的相互作用和转化,决定了岩体的稳定性和破坏形态。
对于岩体工程设计和安全评估来说,深入了解岩体变形破坏过程的能量机制,具有重要的理论和实际意义。
- 1 -。
岩体:是位于一定地质环境中,在各种宏观地质界面分割下形成的有一定结构的地质体。
结构体:被结构面切割成的岩石块体。
结构面:是指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。
岩体复杂性表现:一.不连续性,二.非均质性,三.各向异性,四.岩体中存在着不同于自重应力场的天然应力场,五.岩体赋存于一定地质环境中,对岩体影响较大。
岩石的变形性状:1.塑性。
2.弹性。
3.粘性。
弹性:指材料在外力作用下产生变形,而撤去外力后立即恢复到它原有的形状和尺寸的性质。
弹性变形:外力撤去后能够恢复的变形。
如应力—应变关系呈直线关系,称线弹性,不呈直线关系称非线弹性。
塑性:指材料受力后,在应力超过屈服应力时仍能继续变形而不即行断裂,撤去外力后变形又不能完全恢复的性质。
不能恢复的变形,称塑性变形。
应变硬化:在屈服点之后,应力—应变关系呈上升曲线,说明晶粒滑到新位置后,导致粒间相嵌、挤紧和晶粒增大,如使之继续滑动,要相应增大应力的现象。
粘性:指材料受力后变形不能在瞬间完成,且应变的速率随应力的大小而改变的性质。
流动变形:应变速率随应力而变化的变形。
峰值前变形机理:1.以裂纹行为为主导的变形。
2.以弹性变形为主的变形。
3.以塑性变形为主的变形。
轴向应力—应变曲线:直线型(弹),下凹型(弹—塑),上凹形(塑—弹),S型(塑—弹—塑)。
扩容:随着裂纹的继续发生和扩展,岩石体积应变增量由压缩专为膨胀的力学过程。
弹性模量:E是指单轴压缩条件下轴向压应力与轴向应变之比。
有效弹性模量:包含裂纹的弹性模量。
固有弹性模量:E未受裂纹的存在所影响的岩石弹性模量。
刚性压力机:用岩石试件的变形作为控制变量,并用着一信号的反噬来控制机器压板的位移速率或加速速率的压力机。
单调加载:岩石在峰值前承受的荷载一直增加。
它可分为等加载速率加载和等应变速率加载两种方式。
循环加载:逐级循环加载:指在试验过程中,当荷载加到一定值时,将荷载全部卸除,然后又加载至比原来卸载点高的压力值,再卸载,如此不断循环的加载方式。
多场耦合条件下混合岩(土)体变形破坏机理与工程防灾技术多场耦合条件下混合岩(土)体是指由不同的岩石和土层组成,在地下工程中经常遇到。
这些混合体在地下工程中的变形和破坏机理受到多种因素的耦合作用,包括地下水、地应力、温度、岩土体特性等。
理解混合岩(土)体的变形破坏机理对工程设计和防灾技术的制定至关重要。
一.混合岩体的变形机理:1.地下水的影响:①饱和与非饱和区域:地下水的存在导致混合岩体中存在饱和区域和非饱和区域,两者的力学性质和变形行为不同。
②季节性变水位:季节性水位变化会导致混合岩体中的孔隙水压变化,从而影响岩土体的有效应力状态。
2.地应力的影响:①地下深度:地应力随深度增加而增大,深埋的混合岩体受到的地应力较大,可能引起岩土体的弯曲和屈服。
②多层次压力:混合岩体中存在不同地层,地应力的分布可能导致不同层次之间的相互影响。
3.温度的影响:季节性温度变化引起的热胀冷缩效应可能导致混合岩体中的温度应力,影响其变形和稳定性。
4.岩土体特性的影响:①岩土体强度:不同岩土体的强度差异会导致混合岩体中的局部破坏和滑动。
②岩土体变形模量:不同岩土体的变形模量差异可能引起变形的集中和不均匀分布。
二.工程防灾技术:1.地下工程设计:①合理布置排水系统:针对地下水的影响,合理设计和布置排水系统,降低季节性水位变化对混合岩体的影响。
②考虑地下应力状态:在设计中充分考虑地下应力的分布和变化,采用合适的支护结构。
2.地下工程施工:①合理的开挖顺序:根据混合岩体的性质和地下条件,制定合理的开挖顺序,减小地下应力的改变。
②监测与调整:在施工过程中进行实时监测,及时调整工程方案,以应对混合岩体变形的风险。
3.防灾技术:①灾害评估:利用先进的岩土工程技术进行混合岩体的灾害评估,了解可能的灾害类型和程度。
②监测体系:建立完善的监测体系,包括地下水位监测、地应力监测、温度监测等,实时监测混合岩体的变形和破坏情况。
③预警与紧急处理:根据监测结果建立预警机制,一旦发现异常情况,采取紧急处理措施,保障工程和周边环境的安全。
第三章岩体的变形与破坏变形:不发生宏观连续性的变化,只发生形、体变化。
破坏:既发生形、体变化、也发生宏观连续性的变化。
1.岩体变形破坏的一般过程和特点(1)岩体变形破坏的基本过程及发展阶段①压密阶段(OA段):非线性压缩变形—变形对应力的变化反应明显;裂隙闭合、充填物压密。
应力-应变曲线呈减速型(下凹型)。
②弹性变形阶段(AB段):经压缩变形后,岩体由不连续介质转变为连续介质;应力-应变呈线性关系;弹性极限B点。
③稳定破裂发展阶段(BC段):超过弹性极限(屈服点)后,进入塑性变形阶段。
a.出现微破裂,随应力增长而发展,应力保持不变、破裂则停止发展;b.应变:侧向应变加速发展,轴向应变有所增高,体积压缩速率减缓(由于微破裂的出现);④不稳定破裂发展阶段(CD段):微破裂发展出现质的变化:a.破裂过程中的应力集中效应显著,即使是荷载应力保持不变,破裂仍会不断地累进性发展;b. 最薄弱部位首先破坏,应力重分布导致次薄弱部位破坏,直至整体破坏。
“累进性破坏”。
c. 应变:体积应变转为膨胀,轴向及侧向应变速率加速增大;※结构不均匀;起始点为“长期强度”;⑤强度丧失、完全破坏阶段(DE段):破裂面发展为宏观贯通性破坏面,强度迅速降低,岩体被分割成相互分离的块体—完全破坏。
应重视的问题:①各发展阶段的界限点,尤其是“长期强度”;②空隙压力曲线:a.空隙水压力~体积应变、变形发展阶段;b.工程意义:滑坡、地震等。
(2)岩体破坏的基本形式①张性破坏(图示);②剪切破坏(图示):剪断,剪切。
③塑性破坏(图示)。
破坏形式取决于:荷载条件、岩体的岩性及结构特征;二者的相互关系。
①破坏形式与受力状态的关系:a.与围压σ3有关:低围压或负围压—拉张破坏(图示);中等围压—剪切破坏(图示);高围压(150MN/m2=1500kg/cm2)—塑性破坏。
b.与σ2的关系:σ2/σ 3 <4(包括σ 2 =σ3),岩体剪断破坏,破坏角约θ=25°;σ2/σ 3 >8(包括σ 2 =σ1):拉断破坏,破坏面∥σ1,破坏角0°;4≤σ2/σ3≤8:张、剪性破坏,破坏角θ=15°。
岩质边坡有哪些变形和破坏特征?
岩质边坡中未出现贯通性破裂面之前,坡体的变化特征属变形持征;出现贯通性破裂面后的坡体特征属破坏特征。
其发展过程是:坡面及附近岩体松动(又称松弛张裂)岩体蠕动加速蠕动破坏。
其中,前三步的特征均属变形特征,最后一步的特征才是破坏特征。
1.变形持征
在边坡形成的韧始阶段,由于卸荷作用,岩体内的应力重新分布,使边坡表面及其附近岩体发生松动,形成表面张开裂隙,包括:回弹裂隙,坡面、坡项张裂带裂隙,坡脚应力集中带的张开裂隙。
岩坡发生松动后,降低了岩体的强度,在外力(主要是自重)作用下,岩体向自由面方向缓慢变形,称之为岩坡的蠕动。
如果坡体中的应力小于岩体的长期强度,坡体的蠕动逐渐减速,最后趋于稳定;反之,坡体蠕动加速,最终导致破坏。
2.破坏特征
由于边坡的破坏有各种各样的原因,而产生破坏后的形态和作用也极不一致,因而岩坡破坏形式的分类也是各种各样的。
从破坏的力学特征看,将常见的边坡破坏形式分为岩石崩塌、平移滑动、旋转滑动、岩块流动和岩层曲折五类。
软岩边坡变形破坏机理一、前言软岩边坡是指由软岩构成的边坡,其特点是岩体强度低、可塑性大、易变形和破坏。
软岩边坡在地质灾害中占有重要地位,其变形和破坏机理的研究对于预防和治理软岩边坡灾害具有重要意义。
二、软岩边坡变形机理1. 岩体物理特性软岩的物理特性决定了其易发生变形和破坏。
软岩的孔隙度大、渗透性好,容易与外界水分接触,导致水分进入岩体内部,使得岩体内部产生饱和状态。
同时,软岩的强度低,易受外力作用而发生变形。
2. 地质构造特征软岩边坡所处地区的地质构造特征也会影响其变形机理。
例如,在断层带附近的软岩边坡上,由于断层活动导致应力集中,容易引起较大规模的滑动或崩塌。
3. 外力作用外力作用是导致软岩边坡发生变形和破坏的主要原因之一。
外力作用包括自然因素和人为因素。
自然因素包括降雨、地震等,而人为因素则包括开采、挖掘等。
4. 水分作用水分作用是导致软岩边坡发生变形和破坏的重要原因之一。
水分作用主要表现为两种形式:一是水分渗透到岩体内部,使得岩体内部产生饱和状态,从而引起岩体的流动性增加;二是水分在岩体内部形成冻融循环,导致岩体内部应力状态变化,从而引起软岩边坡的变形和破坏。
三、软岩边坡破坏机理1. 滑动滑动是软岩边坡最常见的破坏方式之一。
滑动通常发生在软岩层与硬质地层之间或者在不同软岩层之间。
滑动主要受到外力作用、地质构造特征和水分作用等影响。
2. 坍塌坍塌是指软岩边坡整体向下移动或者垮塌的现象。
坍塌通常发生在整个边坡的上部或者下部,其主要原因是岩体内部的应力状态发生了变化。
坍塌通常受到地质构造特征、外力作用和水分作用等影响。
3. 滑移滑移是指软岩边坡局部向下滑动的现象。
滑移通常发生在软岩层与硬质地层之间或者在不同软岩层之间。
滑移主要受到外力作用、地质构造特征和水分作用等影响。
4. 剪切破裂剪切破裂是指软岩边坡中出现的断裂现象。
剪切破裂通常发生在软岩层与硬质地层之间或者在不同软岩层之间。
剪切破裂主要受到外力作用、地质构造特征和水分作用等影响。
岩体的变形与破坏1 基本概念及研究意义变形:岩体的宏观连续性无明显变化者。
破坏:岩体的宏观连续性已发生明显变化。
岩体破坏的基本形式:(机制)剪切破坏和拉断(张性)破坏。
一、岩体破坏形式与受力状态的关系岩体破坏形式与围岩大小有明显关系。
注意:岩全破坏机制的转化随围压条件的变化而变化。
破坏机制转化的界限围压称破坏机制转化围压。
一般认为,1/5~1/4[σ]不可拉断转化为剪切。
1/3~2/3[σ]可由剪切转化为塑性破坏。
有人认为(纳达),可用2σ偏向1σ的程度来划分应力状态类型。
应力状态类型参数313122σσσσσα---= (=1,即σ2=σ1; =-1,即σ2=σ3) 二、岩体破坏形式与岩体结构的关系低围压条件下岩石三 轴试验表明。
坚硬的完整岩体主要表现为张性破坏。
含软弱结构面的块状岩体,当结构面与最大主应力夹角合适时,则表现为沿结构面的剪切。
碎裂岩体的破坏方式介于二者之间。
碎块状或散体状岩体主要为塑性破坏。
对第一种情况,某破坏判据已经介绍很多了。
第二种情况,可采用三向应力状态莫尔圆图解简单判断。
三、岩体的强度特征单轴应力状态时,结构与1σ方向决定了岩体的破坏形式。
复杂应力状态时,含一组结构面的岩体破坏形式与岩体性质、结构面产状,应力状态关系很大。
2 岩体在加荷过程中的变形与破坏2.1 拉断破坏机制与过程一、拉应力条件下的拉断破坏当0331≤+σσ时,拉应力对岩石破坏起主导作用。
t S -=][3σ二、压应力条件下的拉断破坏压应力条件下裂缝尖端拉应力集中最强的部位位于与主压应力是︒=40~30β地方向上,并逐渐向与1σ平行地方向扩展。
当0331>+σσ时,破坏准则为:t S 8)/()(31231=+-σσσσ3σ=0时为单轴压拉断。
2.2 剪切变形破坏机制与过程一、潜在剪切面剪断机制与过程A .滑移段B .锁固段进入稳定破裂阶段后,岩体内部应力状态变化复杂。
产生一系列破裂。
(1)拉张分支裂隙的形成,原理同前。