高三一轮复习数列精细讲义
- 格式:doc
- 大小:29.00 KB
- 文档页数:4
§6.3等比数列课标要求1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.掌握等比数列前n 项和公式,理解等比数列的通项公式与前n 项和公式的关系.3.能在具体问题情境中,发现数列的等比关系,并解决相应的问题.4.体会等比数列与指数函数的关系.知识梳理1.等比数列有关的概念(1)如果一个数列从第2项起,每一项与它的前一项的比值都是同一个常数,那么称这样的数列为等比数列,称这个常数为等比数列的公比,通常用字母q 表示(q ≠0).(2)等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么称G 为a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1(a 1≠0,q ≠0).(2)前n 项和公式:S n ,=a 1-a n q 1-q,q ≠1且q ≠0.3.等比数列的常用性质(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N +.特别地,若2w =m +n ,则a m a n =a 2w ,其中m ,n ,w ∈N +.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N +).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }数列(b ,p ,q ≠0).(4)1>0,>11<0,q <1,则等比数列{a n }递增.1>0,q <11<0,>1,则等比数列{a n }递减.4.等比数列前n 项和的常用性质若等比数列{a n }的公比q ≠-1,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .常用结论1.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.2.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).3.设数列{a n }是等比数列,S n 是其前n 项和.(1)S m +n =S n +q n S m =S m +q m S n .(2)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T3n T 2n ,…成等比数列.(3)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×)(3)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.(×)(4)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积.(√)2.设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析若a ,b ,c ,d 成等比数列,则ad =bc ,数列-1,-1,1,1满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件.3.在等比数列{a n }中,若a 3=32,S 3=92,则a 2的值为()A .32B .-3C .-32D .-3或32答案D解析由S 3=a 1+a 2+a 3=a 3(q -2+q -1+1),得q -2+q -1+1=3,即2q 2-q -1=0,解得q =1或q =-12,∴a 2=a 3q =32或-3.4.数列{a n }的通项公式是a n =a n (a ≠0),则其前n 项和为S n =________.答案a ≠0,a ≠1解析因为a ≠0,a n =a n ,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时,Sn =a (1-a n )1-a.题型一等比数列基本量的运算例1(1)(2023·全国甲卷)设等比数列{a n }的各项均为正数,前n 项和为S n ,若a 1=1,S 5=5S 3-4,则S 4等于()A.158B.658C .15D .40答案C 解析方法一若该数列的公比q =1,代入S 5=5S 3-4中,有5=5×3-4,不成立,所以q ≠1.由1-q 51-q =5×1-q 31-q -4,化简得q 4-5q 2+4=0,所以q 2=1或q 2=4,因为此数列各项均为正数,所以q =2,所以S 4=1-q 41-q =15.方法二由题知1+q +q 2+q 3+q 4=5(1+q +q 2)-4,即q 3+q 4=4q +4q 2,即q 3+q 2-4q -4=0,即(q -2)(q +1)(q +2)=0.由题知q >0,所以q =2.所以S 4=1+2+4+8=15.(2)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则Sn a n 等于()A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案B 解析方法一设等比数列{a n }的公比为q ,易知q ≠1,1q 4-a 1q 2=12,1q 5-a 1q 3=24,1=1,=2,所以S n =a 1(1-q n )1-q =2n -1,a n =a 1q n -1=2n -1,所以S n a n =2n -12n -1=2-21-n .方法二设等比数列{a n }的公比为q ,易知q ≠1,因为a 6-a 4a 5-a 3=a 4(q 2-1)a 3(q 2-1)=a 4a 3=2412=2,所以q =2,所以S na n =a 1(1-q n )1-q a 1q n -1=2n -12n -1=2-21-n .思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n 项和公式时,一定要讨论公比q =1的情形,否则会漏解或增解.跟踪训练1(1)(2023·天津)已知{a n }为等比数列,S n 为数列{a n }的前n 项和,a n +1=2S n +2,则a 4的值为()A .3B .18C .54D .152答案C解析由题意可得,当n =1时,a 2=2a 1+2,即a 1q =2a 1+2,①当n =2时,a 3=2(a 1+a 2)+2,即a 1q 2=2(a 1+a 1q )+2,②联立①②1=2,=3,则a 4=a 1q 3=54.(2)(2023·青岛模拟)云冈石窟,古称为武州山大石窟寺,是世界文化遗产.若某一石窟的某处“浮雕像”共7层,每一层的“浮雕像”个数是其下一层的2倍,共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上每一层的“浮雕像”的个数构成数列{a n },则log 2(a 3a 5)的值为()A .8B .10C .12D .16答案C解析从最下层往上每一层的“浮雕像”的个数构成数列{a n },则{a n }是以2为公比的等比数列,∴S 7=a 1(1-27)1-2=1016,即127a 1=1016,解得a 1=8,∴a n =8×2n -1,∴log 2(a 3a 5)=log 2(8×22×8×24)=12.题型二等比数列的判定与证明例2(2023·长沙模拟)记S n 为数列{a n }的前n 项和,已知a 1=2,a 2=-1,且a n +2+a n +1-6a n =0(n ∈N +).(1)证明:{a n +1+3a n }为等比数列;(2)求数列{a n }的通项公式a n 及前n 项和S n .(1)证明由a n +2+a n +1-6a n =0,可得a n +2+3a n +1=2(a n +1+3a n ),即a n +2+3a n +1a n +1+3a n=2(n ∈N +),∴{a n +1+3a n }是以a 2+3a 1=5为首项,2为公比的等比数列.(2)解由(1)可知a n +1+3a n =5·2n -1(n ∈N +),∴a n +1-2n =-3(a n -2n -1),∴a n +1-2n a n -2n -1=-3,∴{a n -2n -1}是以a 1-20=1为首项,-3为公比的等比数列,∴a n -2n -1=1×(-3)n -1,∴a n =2n -1+(-3)n -1,S n =1-2n 1-2+1-(-3)n 1-(-3)=2n -34-(-3)n 4.思维升华等比数列的四种常用判定方法(1)定义法:若a na n -1=q (q 为非零常数,且n ≥2,n ∈N +),则{a n }是等比数列.(2)等比中项法:若在数列{a n }中,a n ≠0且a 2n +1=a n a n +2(n ∈N +),则{a n }是等比数列.(3)通项公式法:若数列{a n }的通项公式可写成a n =cq n -1(c ,q 均为非零常数,n ∈N +),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =kq n -k (k 为常数,且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2(2024·潍坊模拟)已知数列{a n }和{b n }满足a 1=3,b 1=2,a n +1=a n +2b n ,b n +1=2a n +b n .(1)证明:{a n +b n }和{a n -b n }都是等比数列;(2)求{a n b n }的前n 项和S n .(1)证明因为a n +1=a n +2b n ,b n +1=2a n +b n ,所以a n +1+b n +1=3(a n +b n ),a n +1-b n +1=-(a n -b n ),又由a 1=3,b 1=2得a 1-b 1=1,a 1+b 1=5,所以数列{a n +b n }是首项为5,公比为3的等比数列,数列{a n -b n }是首项为1,公比为-1的等比数列.(2)解由(1)得a n +b n =5×3n -1,a n -b n =(-1)n -1,所以a n =5×3n -1+(-1)n -12,b n =5×3n -1-(-1)n -12,所以a n b n =5×3n -1+(-1)n -12×5×3n -1-(-1)n -12=25×32n -2-14=254×9n -1-14,所以S n =254×1-9n 1-9-n 4=25×(9n -1)-8n32.题型三等比数列的性质命题点1项的性质例3(1)(2023·全国乙卷)已知{a n }为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.答案-2解析方法一{a n }为等比数列,∴a 4a 5=a 3a 6,∴a 2=1,又a 2a 9a 10=a 7a 7a 7,∴1×(-8)=(a 7)3,∴a 7=-2.方法二设{a n }的公比为q (q ≠0),则a 2a 4a 5=a 3a 6=a 2q ·a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,∵a 9a 10=-8,则a 1q 8·a 1q 9=-8,则q 15=(q 5)3=-8=(-2)3,则q 5=-2,则a 7=a 1q ·q 5=q 5=-2.下标和相等的等差(比)性质的推广(1)若数列{a n }为等比数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则12m m a a ·…·n m a =12k k a a ·…·n k a .(2)若数列{a n }为等差数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则1m a +2m a +…+n m a =1k a +2k a +…+n k a .典例已知等差数列{a n },S n 为前n 项和,且a 9=5,S 8=16,则S 11=________.答案33解析S 8=8(a 1+a 8)2=16,∴a 1+a 8=4,又∵a 9+a 1+a 8=3a 6,∴a 6=3,故S 11=11a 6=33.(2)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N +),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.答案100解析因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 2(2a n ),所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.命题点2和的性质例4(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案2解析奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.(2)已知S n 是正项等比数列{a n }的前n 项和,S 10=20,则S 30-2S 20+S 10的最小值为________.答案-5解析依题意,S 10,S 20-S 10,S 30-S 20成等比数列,且S 10=20,不妨令其公比为q (q >0),则S 20-S 10=20q ,S 30-S 20=20q 2,∴S 30-2S 20+S 10=(S 30-S 20)-(S 20-S 10)=20q 2-20q =-5,故当q =12时,S 30-2S 20+S 10的最小值为-5.思维升华(1)在解决与等比数列有关的问题时,要注意挖掘隐含条件,利用性质,特别是“若m +n =p +q ,则a m a n =a p a q ”,可以减少运算量,提高解题速度.(2)在应用等比数列的性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.跟踪训练3(1)(2024·南昌模拟)已知等比数列{a n }满足a 2+a 4+a 6+a 8=20,a 2a 8=2,则1a 2+1a 4+1a 6+1a 8=________.答案10解析1a 2+1a 4+1a 6+1a 8==a 2+a 8a 2a 8+a 4+a 6a 4a 6=a 2+a 8+a 4+a 6a 2a 8=202=10.(2)(2023·长春统考)在等比数列{a n }中,q =12,S 100=150,则a 2+a 4+a 6+…+a 100的值是________.答案50解析设T 1=a 1+a 3+a 5+…+a 99,T 2=a 2+a 4+a 6+…+a 100,所以T 2T 1=a 2+a 4+a 6+…+a 100a 1+a 3+a 5+…+a 99=12,所以S 100=T 1+T 2=2T 2+T 2=3T 2=150,所以T 2=a 2+a 4+a 6+…+a 100=50.课时精练一、单项选择题1.(2023·本溪模拟)已知等比数列{a n }的各项均为正数,公比q =12,且a 3a 4=132,则a 6等于()A.18 B.116C.132D.164答案C解析由a 3a 4=132,得a 1q 2·a 1q 3=132,即a 21=132,所以a 21=1.又a n >0,所以a 1=1,a 6=a 1q 5=1=132.2.若1,a 2,a 3,4成等差数列;1,b 2,b 3,b 4,4成等比数列,则a 2-a 3b 3等于()A.12B .-12C .±12D.14答案B解析由题意得a 3-a 2=4-13=1,设1,b 2,b 3,b 4,4的公比为q ,则b 3=q 2>0,b 23=1×4=4,解得b 3=2,a 2-a 3b 3=-12=-12.3.(2023·济宁模拟)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n 等于()A .5B .6C .7D .8答案B解析∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又S n =126,∴2(1-2n )1-2=126,解得n =6.4.已知等比数列{a n }为递减数列,若a 2a 6=6,a 3+a 5=5,则a5a 7等于()A.32B.23C.16D .6答案A解析由{a n }为等比数列,得a 2a 6=a 3a 5=6,又a 3+a 5=5,∴a 3,a 5为方程x 2-5x +6=0的两个根,解得a 3=2,a 5=3或a 3=3,a 5=2,由{a n }为递减数列得a n >a n +1,∴a 3=3,a 5=2,∴q 2=a 5a 3=23,则a 5a 7=1q 2=32.5.(2024·揭阳模拟)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后三天所走的里程数为()A .6B .12C .18D .42答案D解析设第n (n ∈N +)天走a n 里,其中1≤n ≤6,由题意可知,数列{a n }是公比为12的等比数列,1-12=6332a 1=378,解得a 1=192,所以此人后三天所走的里程数为a 4+a5+a 6=192×18×1-12=42.6.(2023·新高考全国Ⅱ)记S n 为等比数列{a n }的前n 项和,若S 4=-5,S 6=21S 2,则S 8等于()A .120B .85C .-85D .-120答案C解析方法一设等比数列{a n }的公比为q ,首项为a 1,若q =1,则S 6=6a 1=3×2a 1=3S 2,不符合题意,所以q ≠1.由S 4=-5,S 6=21S 2,可得a 1(1-q 4)1-q =-5,a 1(1-q 6)1-q =21×a 1(1-q 2)1-q ,①由①可得,1+q 2+q 4=21,解得q 2=4,所以S 8=a 1(1-q 8)1-q =a 1(1-q 4)1-q ·(1+q 4)=-5×(1+16)=-85.方法二设等比数列{a n }的公比为q ,因为S 4=-5,S 6=21S 2,所以q ≠-1,否则S 4=0,从而S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,所以(-5-S 2)2=S 2(21S 2+5),解得S 2=-1或S 2=54,当S 2=-1时,S 2,S 4-S 2,S 6-S 4,S 8-S 6,即为-1,-4,-16,S 8+21,易知S 8+21=-64,即S 8=-85;当S 2=54时,S 4=a 1+a 2+a 3+a 4=(a 1+a 2)(1+q 2)=(1+q 2)S 2>0,与S 4=-5矛盾,舍去.综上,S 8=-85.二、多项选择题7.(2023·太原模拟)已知数列{a n }是等比数列,以下结论正确的是()A .{a 2n }是等比数列B .若a 3=2,a 7=32,则a 5=±8C .若a 1<a 2<a 3,则数列{a n }是递增数列D .若数列{a n }的前n 项和S n =3n +r ,则r =-1答案ACD 解析令等比数列{a n }的公比为q ,则a n =a 1q n -1,对于A ,a 2n +1a 2n ==q 2,且a 21≠0,则{a 2n }是等比数列,故A 正确;对于B ,由a 3=2,a 7=32,得q 4=16,即q 2=4,所以a 5=a 3q 2=2×4=8,故B 错误;对于C ,由a 1<a 2<a 31(q -1)>0,1q (q -1)>0,>0,1(q -1)>0,a n +1-a n =q n -1·a 1(q -1)>0,即∀n ∈N +,a n +1>a n ,所以数列{a n }是递增数列,故C 正确;对于D ,显然q ≠1,则S n =a 1(1-q n )1-q =a 1q -1·q n -a 1q -1,而S n =3n +r ,因此q =3,a 1q -1=1,r =-a 1q -1=-1,故D 正确.8.记等比数列{a n }的前n 项和为S n ,前n 项积为T n ,且满足a 1>1,a 2022>1,a 2023<1,则()A .a 2022a 2024-1<0B .S 2022+1<S 2023C .T 2022是数列{T n }中的最大项D .T 4045>1答案AC 解析设数列{a n }的公比为q .∵a 1>1,a 2023<1,∴0<a 2023<1,又a 2022>1,∴0<q <1.∵a 2022a 2024=a 22023<1,∴a 2022a 2024-1<0,故A 正确;∵a 2023<1,∴a 2023=S 2023-S 2022<1,即S 2022+1>S 2023,故B 错误;∵0<q <1,a 1>1,∴数列{a n }是递减数列,∵a 2022>1,a 2023<1,∴T 2022是数列{T n }中的最大项,故C 正确;T4045=a1a2a3·…·a4045=a1(a1q)(a1q2)·…·(a1q4044)=a40451q1+2+3+…+4044=a40451q2022×4045=(a1q2022)4045=a40452023,∵0<a2023<1,∴a40452023<1,即T4045<1,故D错误.三、填空题9.(2023·全国甲卷)记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为________.答案-1 2解析若q=1,则由8S6=7S3得8·6a1=7·3a1,则a1=0,不符合题意.所以q≠1.当q≠1时,因为8S6=7S3,所以8·a1(1-q6)1-q=7·a1(1-q3)1-q,即8(1-q6)=7(1-q3),即8(1+q3)(1-q3)=7(1-q3),即8(1+q3)=7,解得q=-1 2 .10.设等比数列{a n}共有3n项,它的前2n项的和为100,后2n项的和为200,则该等比数列中间n项的和等于________.答案200 3解析设数列{a n}的前n项和、中间n项和、后n项和依次为a,b,c.由题意知a+b=100,b+c=200,b2=ac,∴b2=(100-b)(200-b),∴b=200 3.11.在等比数列{a n}中,若a9+a10=4,a19+a20=24,则a59+a60=______.答案31104解析设等比数列{a n}的公比为q,则a n=a1q n-1.因为a 9+a 10=4,a 19+a 20=24,所以a 19+a 20=(a 9+a 10)q 10=24,解得q 10=6,所以a 59+a 60=(a 9+a 10)q 50=4×65=31104.12.记S n 为数列{a n }的前n 项和,S n =1-a n ,记T n =a 1a 3+a 3a 5+…+a 2n -1a 2n +1,则a n =________,T n =________.答案12n解析由题意得a 1=1-a 1,故a 1=12.当n ≥2n =1-a n ,n -1=1-a n -1,得a n =S n -S n -1=-a n +a n -1,则a n a n -1=12,故数列{a n }是以12为首项,12为公比的等比数列,故数列{a n }的通项公式为a n =12n .由等比数列的性质可得a 1a 3=a 22,a 3a 5=a 24,…,a 2n -1a 2n +1=a 22n ,所以数列{a 2n -1a 2n +1}是以a 22=116为首项,116为公比的等比数列,则T n =a 22+a 24+…+a 22n =161-116=四、解答题13.已知数列{a n }满足a 1=1,a n +1=2a n +2.(1)证明数列{a n +2}是等比数列,并求数列{a n }的通项公式;(2)求数列{a n }落入区间(10,2023)的所有项的和.解(1)由a n +1=2a n +2,得a n +1+2=2(a n +2),又a 1+2=3,所以a n +1+2a n +2=2,所以{a n +2}是首项为3,公比为2的等比数列,所以a n +2=3×2n -1,a n =3×2n -1-2.(2)由10<a n <2023,得10<3×2n -1-2<2023,即4<2n -1<675,即4≤n ≤10,故{a n }落入区间(10,2023)的项为a 4,a 5,a 6,a 7,a 8,a 9,a 10,所以其和S =a 4+a 5+a 6+a 7+a 8+a 9+a 10=3×(23+24+…+29)-2×7=3×8-10241-2-14=3034.14.(2024·邯郸模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,n ∈N +.(1)求{a n }通项公式;(2)设b n =a n n +1,在数列{b n }中是否存在三项b m ,b k ,b p (其中2k =m +p )成等比数列?若存在,求出这三项;若不存在,说明理由.解(1)由题意知,在数列{a n }中,a n +1=3S n +1,a n =3S n -1+1,n ≥2,两式相减可得,a n +1-a n =3a n ,a n +1=4a n ,n ≥2,由条件知,a 2=3a 1+1=4a 1,符合上式,故a n +1=4a n ,n ∈N +.∴{a n }是以1为首项,4为公比的等比数列.∴a n =4n -1,n ∈N +.(2)由题意及(1)得,在数列{a n }中,a n =4n -1,n ∈N +,在数列{b n }中,b n =4n -1n +1,如果满足条件的b m ,b k ,b p 存在,则b 2k =b m b p ,其中2k =m +p ,∴(4k -1)2(k +1)2=4m -1m +1·4p -1p +1,∵2k =m +p ,∴(k +1)2=(m +1)(p +1),解得k 2=mp ,∴k =m =p ,与已知矛盾,∴不存在满足条件的三项.15.(2023·杭州模拟)已知数列{a n }的前n 项和为S n .若p :数列{a n }是等比数列;q :(S n +1-a 1)2=S n (S n +2-S 2),则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若{a n }是等比数列,设公比为k ,则a 2+a 3+…+a n +1=k (a 1+a 2+…+a n ),a 3+a 4+…+a n +2=k (a 2+a 3+…+a n +1),于是(a 2+a 3+…+a n +1)2=k 2(a 1+a 2+…+a n )2=(a 3+a 4+…+a n +2)(a 1+a 2+…+a n ),即q :(S n +1-a 1)2=S n (S n +2-S 2)成立;若(S n +1-a 1)2=S n (S n +2-S 2),取a n =0,n ∈N +,显然{a n }不是等比数列,故p 是q 的充分不必要条件.16.(2023·泰安模拟)若m ,n 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同零点,且m ,n ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq =________.答案20解析+n =p >0,=q >0>0,>0,则m ,-2,n 或n ,-2,m 成等比数列,得mn =(-2)2=4.不妨设m <n ,则-2,m ,n 成等差数列,得2m =n -2.结合mn =4,可得(2m +2)m =4⇒m (m +1)=2,解得m =1或m =-2(舍去),=1,=4=5,=4⇒pq =20.。
第1讲 数列的概念及简单表示法一、知识梳理 1.数列的有关概念 (1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项. (2)数列的分类 分类标准 类型 满足条件 按项数 分类 有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系分类递增数列 a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他 标准分类有界数列存在正数M ,使|a n |≤M摆动数列 从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期数列对n ∈N *,存在正整数常数k ,使a n +k =a n数列有三种表示法,它们分别是列表法、图象法和解析式法. 2.数列的通项公式 (1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n}的前n 项和S n,则a n=⎩⎪⎨⎪⎧S 1n =1S n-S n -1n ≥2.3.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.常用结论1.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集或其子集{1,2,3,…,n }上的函数,当自变量依次从小到大取值时所对应的一列函数值.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1a n ≥a n +1若a n 最小,则⎩⎨⎧a n ≤a n -1a n ≤a n +1.二、教材衍化1.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A .32B .53C .85D .23解析:选D .a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.2.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案:5n -4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)所有数列的第n 项都能使用通项公式表示.( ) (3)数列{a n }和集合{a 1,a 2,a 3,…,a n }是一回事.( )(4)若数列用图象表示,则从图象上看都是一群孤立的点.( ) (5)一个确定的数列,它的通项公式只有一个.( )(6)若数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n =S n -S n -1.( ) 答案:(1)× (2)× (3)× (4)√ (5)× (6)× 二、易错纠偏常见误区| (1)忽视数列是特殊的函数,其自变量为正整数集N *或其子集{1,2,…,n }; (2)根据S n 求a n 时忽视对n =1的验证.1.在数列-1,0,19,18,…,n-2n2中,0.08是它的第________项.解析:依题意得n-2n2=225,解得n=10或n=52(舍).答案:102.已知S n=2n+3,则a n=________.解析:因为S n=2n+3,那么当n=1时,a1=S1=21+3=5;当n≥2时,a n=S n-S n-1=2n+3-(2n-1+3)=2n-1(*).由于a1=5不满足(*)式,所以a n=⎩⎪⎨⎪⎧5n=12n-1n≥2.答案:⎩⎪⎨⎪⎧5n=12n-1n≥2考点一由数列的前几项求通项公式(基础型)复习指导|了解数列的概念和几种简单的表示方法(列表法、图象法和通项公式法).核心素养:逻辑推理1.数列1,3,6,10,…的一个通项公式是()A.a n=n2-(n-1)B.a n=n2-1C.a n=n(n+1)2D.a n=n(n-1)2解析:选C.观察数列1,3,6,10,…可以发现1=13=1+26=1+2+310=1+2+3+4…第n项为1+2+3+4+…+n=n(n+1)2.所以a n=n(n+1)2.2.数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式是a n=________.解析:数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.答案:2n +1n 2+13.数列3,7,11,15,…的一个通项公式是________.解析:因为7-3=11-7=15-11=4,即a 2n -a 2n -1=4,所以a 2n =3+(n -1)×4=4n -1,所以a n =4n -1.答案:a n =4n -14.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子数比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式可以为a n=(-1)n·2n -32n .答案:a n =(-1)n·2n -32n解决此类问题,需抓住下面的特征: (1)各项的符号特征,通过(-1)n 或(-1)n+1来调节正负项.(2)考虑对分子、分母各个击破或寻找分子、分母之间的关系. (3)相邻项(或其绝对值)的变化特征. (4)拆项、添项后的特征.(5)通过通分等方法变化后,观察是否有规律.[注意] 根据数列的前几项求其通项公式其实是利用了不完全归纳法,蕴含着“从特殊到一般”的数学思想,由不完全归纳法得出的结果不一定是准确的!考点二 由a n 与S n 的关系求a n (基础型)复习指导| 由S n 与a n 的关系求a n .利用a n =S n -S n -1(n ≥2),求出当n ≥2时a n 的表达式.(1)(2020·湖南三市联考)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1的值为( )A .12B .14C .18D .116(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a 1=________,{a n }的通项公式为________.【解析】(1)因为S n=a1(4n-1)3,a4=32,所以S4-S3=255a13-63a13=32,所以a1=12,故选A.(2)数列{a n}满足a1+3a2+…+(2n-1)a n=2n,当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1),所以(2n-1)a n=2,所以a n=22n-1.当n=1时,a1=2,上式也成立.所以a n=22n-1.【答案】(1)A(2)2a n=22n-1(1)已知S n求a n的三个步骤①先利用a1=S1求出a1;②用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;③注意检验n=1时的表达式是否可以与n≥2的表达式合并.(2)S n与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.①利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解;②利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.1.已知数列{a n}的前n项和S n=n2+2n+1(n∈N*),则a n=________.解析:当n≥2时,a n=S n-S n-1=2n+1;当n=1时,a1=S1=4≠2×1+1.所以a n=⎩⎪⎨⎪⎧4n=12n+1n≥2.答案:⎩⎪⎨⎪⎧4n=12n+1n≥22.若数列{a n}的前n项和S n=23a n+13,则{a n}的通项公式a n=________.解析:由S n=23a n+13,得当n≥2时,S n-1=23a n-1+13,两式相减,整理得a n=-2a n-1,又当n=1时,S 1=a 1=23a 1+13,所以a 1=1,所以{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.答案:(-2)n -1考点三 由递推关系求通项公式(基础型)复习指导| 由数列的递推关系求通项公式常利用构造法、累加法、累乘法等.分别求出满足下列条件的数列的通项公式. (1)a 1=0,a n +1=a n +(2n -1)(n ∈N *); (2)a 1=1,a n +1=2n a n (n ∈N *); (3)a 1=1,a n +1=3a n +2(n ∈N *).【解】 (1)a n =a 1+(a 2-a 1)+…+(a n -a n -1)=0+1+3+…+(2n -5)+(2n -3)=(n -1)2,所以数列的通项公式为a n =(n -1)2.(2)由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1,将这n -1个等式叠乘, 得a n a 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2,所以数列的通项公式为a n =2n (n -1)2.(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以该数列的通项公式为a n =2·3n -1-1.由递推关系求数列的通项公式的常用方法1.在数列{a n }中,若a 1=2,a n +1=a n +2n -1,则a n =________.解析:a 1=2,a n +1=a n +2n -1⇒a n +1-a n =2n -1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1,则a n =2n -2+2n -3+…+2+1+a 1 =1-2n -11-2+2=2n -1+1.答案:2n -1+12.若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. 解析:由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34×23×1=2n +1,(*)又a 1也满足(*)式,所以a n =2n +1. 答案:2n +1考点四 数列的函数特征(综合型)复习指导| 通过实例,了解数列是一种特殊函数. 核心素养:逻辑推理 角度一 数列的单调性已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)【解析】 因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k2n +1<0,所以k >3-3n 对任意n ∈N *恒成立,所以k ∈(0,+∞).故选D .【答案】 D(1)解决数列单调性问题的三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断;③结合相应函数的图象直观判断. (2)求数列最大项或最小项的方法①可以利用不等式组⎩⎨⎧a n -1≤a na n ≥a n +1(n ≥2)找到数列的最大项;②利用不等式组⎩⎨⎧a n -1≥a na n ≤a n +1(n ≥2)找到数列的最小项.角度二 数列的周期性设数列{a n }满足:a n +1=1+a n1-a n ,a 2 020=3,那么a 1=( )A .-2B .2C .-3D .3【解析】 设a 1=x ,由a n +1=1+a n1-a n ,得a 2=1+x1-x,a 3=1+a 21-a 2=1+1+x 1-x 1-1+x1-x =-1x ,a 4=1+a 31-a 3=1-1x 1+1x =x -1x +1,a 5=1+a 41-a 4=1+x -1x +11-x -1x +1=x =a 1,所以数列{a n }是周期为4的周期数列. 所以a 2 020=a 505×4=a 4=x -1x +1=3.解得x =-2.【答案】 A解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.1.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取得最大值时的项数n 的值为( )A .5B .6C .5或6D .6或7解析:选C .由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C .2.(2020·辽宁重点中学协作体联考)在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 18=( )A .0B .18C .10D .9解析:选C .因为a n +1-a n =sin(n +1)π2, 所以a n +1=a n +sin (n +1)π2.因为a 1=1,所以a 2=a 1+sin π=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin 4π2=0,a 5=a 4+sin 5π2=1,a 6=a 5+sin 6π2=1,a 7=a 6+sin 7π2=0, a 8=a 7+sin 8π2=0,…,故数列{a n }为周期数列,周期为4.所以S 18=4(a 1+a 2+a 3+a 4)+a 1+a 2=10.故选C .3.已知数列{a n }满足a n =(n -λ)2n (n ∈N *),若{a n }是递增数列,则实数λ的取值范围是________.解析:因为数列{a n }是递增数列,所以a n +1>a n ,所以(n +1-λ)2n +1>(n -λ)2n ,化为λ<n +2,对∀n ∈N *都成立.所以λ<3.答案:(-∞,3)[基础题组练]1.已知数列5,11,17,23,29,…,则55是它的( ) A .第19项 B .第20项 C .第21项D .第22项 解析:选C .数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n =5+6(n -1)=6n -1,令6n -1=55,得n =21. 2.已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A .132B .116C .14D .12解析:选A .因为数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,所以a 2=a 1a 1=14,a 3=a 1·a 2=18.那么a 5=a 3·a 2=132.故选A .3.在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B .“|a n +1|>a n ”⇔a n +1>a n 或-a n +1>a n ,充分性不成立,数列{a n }为递增数列⇔|a n+1|≥a n +1>a n 成立,必要性成立,所以“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件.故选B .4.(多选)已知数列{a n }满足a n +1=1-1a n (n ∈N *),且a 1=2,则( )A .a 3=-1B .a 2 019=12C .S 3=32D .S 2 019=2 0192解析:选ACD .数列{a n }满足a 1=2,a n +1=1-1a n (n ∈N *),可得a 2=12,a 3=-1,a 4=2,a 5=12,…所以a n -3=a n ,数列的周期为3.a 2 019=a 672×3+3=a 3=-1.S 3=32,S 2 019=2 0192.5.(2020·广东广州天河毕业班综合测试(一))数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A .9998B .2C .9950D .99100解析:选C .由a n +1=1+a n +n ,得a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2n -2n +1, 则1a 1+1a 2+…+1a 99=2×[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫199-1100]=2×⎝⎛⎭⎫1-1100=9950.故选C . 6.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________. 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2)a 1·a 2·a 3·…·a n -1=n (n +1)故当n ≥2时,a n =n +2n,所以a n =⎩⎪⎨⎪⎧6n =1n +2n n ≥2n ∈N *. 答案:a n =⎩⎪⎨⎪⎧6n =1n +2n n ≥2n ∈N * 7.(2020·黑龙江大庆一中模拟)数列{a n }的前n 项和S n 满足a 2=2,S n =12n 2+An ,则A =________,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n =________. 解析:因为a 2=S 2-S 1=(2+2A )-⎝⎛⎭⎫12+A =2,所以A =12. 所以当n ≥2时,a n =S n -S n -1=12n 2+12n -⎣⎡⎦⎤12(n -1)2+12(n -1)=n ,当n =1时,a 1=S 1=1满足上式,所以a n =n .所以1a n a n +1=1n (n +1)=1n -1n +1,所以T n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 答案::12 n n +18.(2020·重庆(区县)调研测试)已知数列{a n }的前n 项和为S n ,a 1=1,2S n =(n +1)a n ,则a n =________.解析:由2S n =(n +1)a n 知,当n ≥2时,2S n -1=na n -1,所以2a n =2S n -2S n -1=(n +1)a n -na n -1,所以(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11=1,所以a n =n . 答案:n9.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .解:(1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6n =12×3n -1+2n ≥2. 10.(2020·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3.(1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. [综合题组练]1.(2020·安徽江淮十校第三次联考)已知数列{a n }满足a n +1-a n n =2,a 1=20,则a n n的最小值为( )A .4 5B .45-1C .8D .9 解析:选C .由a n +1-a n =2n 知a 2-a 1=2×1,a 3-a 2=2×2,…,a n -a n -1=2(n -1),n ≥2, 以上各式相加得a n -a 1=n 2-n ,n ≥2,所以a n =n 2-n +20,n ≥2,当n =1时,a 1=20符合上式,所以a n n =n +20n-1,n ∈N *, 所以n ≤4时a n n 单调递减,n ≥5时a n n单调递增, 因为a 44=a 55,所以a n n 的最小值为a 44=a 55=8,故选C . 2.(多选)在数列{a n }中,a n =(n +1)⎝⎛⎭⎫78n,则数列{a n }中的最大项可以是( )A .第6项B .第7项C .第8项D .第9项 解析:选AB .假设a n 最大,则有⎩⎪⎨⎪⎧a n ≥a n +1a n ≥a n -1即⎩⎪⎨⎪⎧(n +1)⎝⎛⎭⎫78n ≥(n +2)⎝⎛⎭⎫78n +1(n +1)⎝⎛⎭⎫78n ≥n ·⎝⎛⎭⎫78n -1所以⎩⎪⎨⎪⎧n +1≥78(n +2)78(n +1)≥n 即6≤n ≤7,所以最大项为第6项或第7项. 3.(2020·河南焦作第四次模拟)已知数列{a n }的通项公式为a n =2n ,记数列{a n b n }的前n项和为S n ,若S n -22n +1+1=n ,则数列{b n }的通项公式为b n =________. 解析:因为S n -22n +1+1=n ,所以S n =(n -1)·2n +1+2.所以当n ≥2时,S n -1=(n -2)2n +2,两式相减,得a n b n =n ·2n ,所以b n =n ;当n =1时,a 1b 1=2,所以b 1=1.综上所述,b n =n ,n ∈N *.故答案为n .答案:n4.(2020·新疆一诊)数列{a n }满足a 1=3,a n -a n a n +1=1,A n 表示{a n }的前n 项之积,则A 2 019=________.解析:由a n -a n a n +1=1,得a n +1=1-1a n, 又a 1=3,则a 2=1-1a 1=23,a 3=1-1a 2=1-32=-12,a 4=1-1a 3=1-(-2)=3, 则数列{a n }是周期为3的周期数列,且a 1a 2a 3=3×⎝⎛⎭⎫23×⎝⎛⎭⎫-12=-1,则A 2 019=(a 1a 2a 3)·(a 4a 5a 6)·…·(a 2017a 2 018a 2 019)=(-1)673=-1.答案:-15.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理a 3=3,a 4=4.(2)S n =12a 2n +12a n,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .6.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解:(1)依题意得S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)可知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 所以,当n ≥2时,a n +1≥a n ⇒12⎝⎛⎭⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1,a ≠3.所以,所求的a 的取值范围是[-9,3)∪(3,+∞).。
2022届高考数学一轮复习讲义__62_等差数列及其前n项和一轮复习讲义要点梳理忆一忆知识要点1.等差数列的定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d.3.等差中项a+b如果A=2,那么A叫做a与b的等差中项.d表示.要点梳理忆一忆知识要点4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d,(n,m∈N 某).(2)若{an}为等差数列,且k+l=m+n,(k,l,m,n∈N某),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,(k,m∈N某)是公差为md 的等差数列.要点梳理忆一忆知识要点5.等差数列的前n项和公式na1+an设等差数列{an}的公差为d,其前n项和Sn=或2nn-1Sn=na1+2d.6.等差数列的前n项和公式与函数的关系dd2Sn=n+a1-2n.2数列{an}是等差数列Sn=An2+Bn,(A、B为常数).7.等差数列的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.要点梳理[难点正本疑点清源]1.等差数列的判定忆一忆知识要点(1)定义法:an-an-1=d(n≥2);(2)等差中项法:2an+1=an+an+2.2.等差数列与等差数列各项和的有关性质(1)am,am+k,am+2k,am+3k,仍是等差数列,公差为kd.(2)数列Sm,S2m-Sm,S3m-S2m,也是等差数列.(3)S2n-1=(2n-1)an.n(4)若n为偶数,则S偶-S奇=d.2若n为奇数,则S奇-S 偶=a中(中间项).等差数列的判定或证明31例1已知数列{an}中,a1=,an=2-(n≥2,n∈N某),数5an-11列{bn}满足bn=(n∈N某).an-1(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)可利用定义证明bn-bn-1(n≥2)为常数来证明数列{bn}是等差数列.(2)通过{bn}是等差数列,求得{an}的通项,然后从函数的观点解决数列的最大项和最小项的问题.1(1)证明∵an=2-(n≥2,n∈N),bn=.an-1an-111∴n≥2时,bn-bn-1=-an-1an-1-111=-1an-1-12-a-1某n-1an-11=-=1.an-1-1an-1-115又b1==-.2a1-15∴数列{bn}是以-为首项,1为公差的等差数列.2712(2)解由(1)知,bn=n-,则an=1+b=1+,22n-7n2设函数f(某)=1+,2某-777易知f(某)在区间-∞,2和2,+∞内为减函数.∴当n=3时,an取得最小值-1;当n=4时,an取得最大值3.探究提高证明或判断一个数列为等差数列,通常有两种方法:(1)定义法:an+1-an=d;(2)等差中项法:2an+1=an+an+2.变式训练1Sn-1已知数列{an}的前n项和为Sn,且满足Sn=(n≥2),a12Sn-1+1=2.1(1)求证:S是等差数列;n(2)求an的表达式.Sn-1(1)证明方法一由Sn=,2Sn-1+112Sn-1+11得S==+2,Sn-1Sn-1n11∴S-=2,Sn-1n2为公差的等差数列.111∴S是以即为首项,以S12n方法二2Sn-1+1111∵当n≥2时,S-=-Sn-1Sn-1Sn-1n2Sn-1==2,Sn-1111∴S是以即为首项,以2为公差的等差数列.S12n113(2)解由(1)知S=+(n-1)某2=2n-,22n1∴Sn=,32n-211∴当n≥2时,an=Sn-Sn-1=-372n-2n-22-2=;372n-2n-22当n=1时,a1=2不适合an,2-2故an=372n-2n-22n=1n≥2.等差数列的基本量的计算例2设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(1)若S5=5,求S6及a1;(2)求d的取值范围.(1)由S5S6+15=0与S5=5可构建关于a1,d的方程组.(2)由S5S6+15=0可化为关于a1的一元二次方程,因为{an}存在,所以关于a1的一元二次方程有解.-15解(1)由题意知S6==-3,a6=S6-S5=-8.S55a1+10d=5,所以a1+5d=-8.解得a1=7,所以S6=-3,a1=7.(2)方法一∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.因为关于a1的一元二次方程有解,所以Δ=81d2-8(10d2+1)=d2-8≥0,解得d≤-22或d≥22.方法二∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.故(4a1+9d)2=d2-8.所以d2≥8.故d的取值范围为d≤-22或d≥22.探究提高(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.变式训练2(2022·福建)已知等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.解(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.由a1=1,a3=-3,可得1+2d=-3,解得d=-2.从而an=1+(n-1)某(-2)=3-2n.(2)由(1)可知an=3-2n,n[1+3-2n]所以Sn==2n-n2.2由Sk=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5.又k∈N某,故k=7.等差数列的前n项和及综合应用例3(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和.(1)由a1=20及S10=S15可求得d,进而求得通项,由通项得到此数列前多少项为正,或利用Sn是关于n的二次函数,利用二次函数求最值的方法求解.(2)利用等差数列的性质,判断出数列从第几项开始变号.解方法一∵a1=20,S10=S15,10某915某145∴10某20+d=15某20+d,∴d=-.2235565∴an=20+(n-1)某-3=-n+.33∴a13=0,即当n≤12时,an>0,n≥14时,an<0,∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12某2012某115+某-3=130.25方法二同方法一求得d=-.3nn-152523125521255-=-n+n-+∴Sn=20n+·n=-.22666243∵n∈N某,∴当n=12或13时,Sn有最大值,且最大值为S12=S13=130.方法三5同方法一得d=-.3又由S10=S15得a11+a12+a13+a14+a15=0.∴5a13=0,即a13=0.∴当n=12或13时,Sn有最大值.且最大值为S12=S13=130.(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4某1-25=-21.所以数列{an}是以-21为首项,以4为公差的递增的等差数列.①an=4n-25<0,令②an+1=4n+1-25≥0,11由①得n<6;由②得n≥5,所以n=6.44即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,而|a7|=a7=4某7-24=3.设{|an|}的前n项和为Tn,则21n+nn-1某-4n≤62Tn=n-6n-766+3n-6+某4n≥722-2n+23nn≤6,=22n-23n+132n≥7.。
专题十《数列》讲义10.4数列求和知识梳理.数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n ,q ≠1.推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和:①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1);③1+3+5+…+(2n -1)=n 2.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.题型一.裂项相消1.数列{a n}的通项公式a n=1or1),已知它的前n项和S n=99100,则项数n=()A.98B.99C.100D.101【解答】解:列{a n}的通项公式a n=1or1)=1−1r1,所以=1−12+12−13+⋯+1−1r1=1−1r1,由于前n项和S n=99100,所以1−1r1=99100,解得n=99.故选:B.2.已知等差数列{a n}满足a3=10,a1+a4=17.(1)求{a n}的通项公式;(2)设b n=3r1,求数列{b n}的前n项和S n.【解答】解:(1)设首项为a1,公差为d的等差数列,满足a3=10,a1+a4=17.所以3=101+4=17,解得1=4=3,所以a n=4+3(n﹣1)=3n+1.(2)由(1)得b n=3r1=13r1−13r4,所以S n=b1+b2+…+b n=14−17+17−110+⋯+13r1−13r4=14−13r4.3.已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(1)求数列{a n}的通项公式;(2)设=1(+2),数列{c n}的前n项和为T n,求T n.【解答】解:(1)在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,∵4S n=(2n﹣1)a n+1+1,∴当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),∴(2n+1)a n=(2n﹣1)a n+1,即r1=2r12K1(≥2).∴=K1⋅K1K2⋅K2K3⋯⋅32⋅21⋅1=2K12K3⋅2K32K5⋅2K52K7⋯53⋅31⋅1=2−1,故a n=2n﹣1.(2)=1(+2)=1(2K1)(2r1)=12(12K1−12r1),T n=c1+c2+…+c n=12[(1−13)+(13−15)+(15−17)+⋯+(12K1−12r1)]=12(1−12r1)=2r1,所以=2r1.题型二.错位相减1.已知等差数列{a n}公差不为零,且满足:a1=2,a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设=3,求数列{b n}的前n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,d≠0,由题,1=222=15,即(1+p2=1(1+4p,解得d=4.∴a n=2+4(n﹣1)=4n﹣2.(Ⅱ)=3=(4n﹣2)•3n=2(2n﹣1)•3n,设数列{b n}的前n项和为T n,=2×1×31+2×3×32+2×5×33+⋯+2(2n﹣1)×3n,①3=2×1×32+2×3×33+2×5×34+⋯2(2n﹣1)×3n+1,②①﹣②,得:−2=2×1×3+2×2×32+2×2×33+⋯+2×2×3n﹣2(2n﹣1)×3n+1=6+4×32(1−3K1)1−3−2(2−1)×3r1=−12﹣4(n﹣1)•3n+1,∴=6+2(−1)⋅3r1.∴数列{b n}的前n项和=6+2(−1)⋅3r1.2.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=13,b2b3=127.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由S5=30,S7=56,得51+5×42=3071+7×62=56,解得1=2=2.∴a n=2+2(n﹣1)=2n;设等比数列{b n}的公比为q(q>0),由b1b2=13,b2b3=127,得12=13123=127,解得1=1=13.∴=(13)K1;(2)a n•b n=23K1=2⋅3K1.令{3K1}的前n项和为R n,则=130+231+332+⋯+3K1,13=13+232+333+⋯+K13K1+3两式作差可得:23=1+13+132+⋯+13K1−3=1×(1−13)1−13−3=32−2r32⋅3,∴=94−2r34⋅3K1.则=2=92−2r32⋅3K1.3.(2015·山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=3,=13K1,>1..(Ⅱ)因为a n b n=log3a n,所以b1=13,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=13;当n>1时,T n=b1+b2+…+b n=13+[1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n],所以3T n=1+[1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n],两式相减得:2T n=23+[30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n]=23+1−31−1−3−1−(n﹣1)×31﹣n=136−6r32×3,所以T n=1312−6r34×3,经检验,n=1时也适合,综上可得T n=1312−6r34×3.题型三.分组求和1.已知数列{a n}是公差不为零的等差数列,a1=2,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n﹣2,求数列{b n}的前n项和S n.【解答】解:(1)由题意,设等差数列{a n}的公差为d(d≠0),则a2=2+d,a4=2+3d,∵a1,a2,a4成等比数列,∴a22=a1•a4,即(2+d)2=2(2+3d),整理,得d2﹣2d=0,解得d=0(舍去),或d=2,∴a n=2+2(n﹣1)=2n,n∈N*.(2)由(1)知,设b n=a n﹣2=2n﹣22n=2n﹣4n,故S n=b1+b2+…+b n=(2×1﹣41)+(2×2﹣42)+…+(2n﹣4n)=2×(1+2+…+n)﹣(41+42+…+4n)=2×or1)2−4(1−4)1−4=n2+n+43−4r13.2.在公差不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,又数列{b n}满足=2,=2−1,2,=2,(k∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前2n项和T2n.【解答】解:(1)公差d不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,可得a32=a1a9,a3=a1a3,可得(a1+2d)2=a1(a1+8d),a1=1,化简可得a1=d=1,即有a n=n,n∈N*;(2)由(1)可得b n=2,=2−12,=2,k∈N*;前2n项和T2n=(2+8+16+…+22n﹣1)+(4+8+12+…+4n)=2(1−4)1−4+12n(4+4n)=2(4−1)3+2n(n+1).3.已知数列{a n}、{b n}满足:a n+1=a n+b n,{b n+2}为等比数列,且b1=2,a2=4,a3=10.(1)试判断数列{b n}是否为等差数列,并说明理由;(2)求数列{a n}的前n项和S n.【解答】解:(1)数列{b n}不是等差数列.理由如下:由a n+1﹣a n=b n,且a2=4,a3=10,b1=2,得b2=a3﹣a2=6,又∵数列{b n+2}为等比数列,∴数列{b n+2}的首项为4,公比为2.∴3+2=4×22=16,得b3=14,显然2b2=12≠b1+b3=16.故数列{b n}不是等差数列;(2)结合(1)知,等比数列{b n+2}的首项为4,公比为2.故+2=4⋅2K1=2r1,∴=2r1−2.∵a n+1﹣a n=b n,b1=2,a2=4,∴a1=2,∴−K1=2−2(n≥2).令n=2,…,(n﹣1).得2−1=22−2,3−2=23−2,…−K1=2−2(n≥2),累加得−2=(22+23+⋯+2)−2(−1)(n≥2).∴=(2+22+23+⋯+2)−2+2=2(2−1)2−1−2+2=2r1−2(n≥2).又a1=2满足上式,∴=2r1−2.∴=(22−2×1)+(23−2×2)+⋯+(2r1−2p=(22+23+…+2n+1)﹣2(1+2+…+n)=4(2−1)2−1−2×or1)2=2r2−2−−4.题型四.讨论奇偶、绝对值求和1.数列{a n}的前n项和记为S n,对任意的正整数n,均有4S n=(a n+1)2,且a n>0.(1)求a1及{a n}的通项公式;(2)令=(−1)K14r1,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,41=(1+1)2,则a1=1;当n≥2时,由4S n=(a n+1)2,知4S n﹣1=(a n﹣1+1)2,联立两式,得4a n=(a n+1)2﹣(a n﹣1+1)2,化简得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即{a n}是以a1=1为首项,2为公差的等差数列,故a n=2n﹣1;(2)=(−1)K14r1=(−1)K14(2K1)(2r1)=(﹣1)n﹣1(12K1+12r1),下面对n分奇偶数讨论:当n为偶数时,T n=(1+13)﹣(13+15)+…+(12K3+12K1)﹣(12K1+12r1)=1−12r1=22r1,当n为奇数时,T n=(1+13)﹣(13+15)+…﹣(12K3+12K1)+(12K1+12r1)=1+12r12r22r1,所以T n=为奇数为偶数.2.已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设=(−1),求{b n}前2n项和T2n.【解答】解:(1)由题意,设等差数列{a n}的公差为d,则5=1+4=95=51+5×42=25,整理,得1+4=91+2=5,解得1=1=2,∴a n=1+2(n﹣1)=2n﹣1,n∈N*,=o1+2K1)2=2.(2)由(1)知,设=(−1)=(﹣1)n•n2.T2n=b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n﹣1+b2n)=(﹣12+22)+(﹣32+42)+…+[﹣(2n﹣1)2+(2n)2]=[(2﹣1)×(2+1)]+[(4﹣3)×(4+3)]+…+[2n﹣(2n﹣1)]×[2n+(2n﹣1)]=1+2+3+4+…+(2n﹣1)+2n=2δ(1+2p2=2n2+n.3.已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(1)求a2,a3,a4;(2)猜想{a n}的通项公式并加以证明;(3)求数列{|a n|}的前n项和S n.【解答】解:(1)由已知,易得a2=0,a3=4,a4=12.(2)猜想=2−4.因为a n+1=2a n+4,所以a n+1+4=2(a n+4),r1+4+4=2,则{a n+4}是以2为首项,以2为公比的等比数列,所以+4=2,所以==2−4.(3)当n=1时,a1=﹣2<0,S1=|a1|=2;当n≥2时,a n≥0,所以=−1+2+⋯+=2+(22−4)+⋯+(2−4)=2+22+⋯+2−4(−1)=2(1−2)1−2−4(−1)=2r1−4+2,又n=1时满足上式.所以,当n∈N*时,=2r1−4+2.题型五.数列求和选填综合1.首项为正数的等差数列{a n}中,34=75,当其前n项和S n取最大值时,n的值为()A.5B.6C.7D.8【解答】解:∵首项为正数的等差数列{a n}中,34=75,∴5(a1+2d)=7(a1+3d),整理,得:1=−112,∵a1>0,∴d<0,∴=−112B+oK1)2=2(n﹣6)2﹣18d,∴当其前n项和S n取最大值时,n的值为6.故选:B.2.在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为112(1−42).【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:23=214+27=34,整理得:13=213+216=34,解得:1=14=2.则:=1K1=2K3,所以:b n =a 2n ﹣1﹣a 2n =22K32−22K3=−22n ﹣4,则:T 2n =−14(1−42)1−4=112(1−42).故答案为:112(1−42).3.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2且对于任意n >1,n ∈N *满足S n +1+S n ﹣1=2(S n +1),则()A .a 4=7B .S 16=240C .a 10=19D .S 20=381【解答】解:当n ≥2时,S n +1+S n ﹣1=2(S n +1)⇒S n +1﹣S n =S n ﹣S n ﹣1+2⇒a n +1=a n +2.所以数列{a n }从第2项起为等差数列,a n =1,=12−2,≥2,所以,a 4=6,a 10=18.S n =a 1+(2+)(K1)2=n (n ﹣1)+1,S 16=16×15+1=241,S 20=20×19+1=381.故选:D .4.已知数列{a n }是首项为1,公差为2的等差数列,数列{b n }满足关系11+22+33+⋯+=12−1,数列{b n }的前n 项和为S n ,则S 5的值为()A .﹣454B .﹣450C .﹣446D .﹣442【解答】解:数列{a n }是首项为1,公差为2的等差数列,可得a n =1+2(n ﹣1)=2n ﹣1,由11+22+33+⋯+=12−1,可得11=12−1=−12,可得b 1=﹣2,又11+22+⋯+K1K1=12K1−1,且11+22+33+⋯+=12−1,两式相减可得=12−12K1=−12,可得b n=﹣(2n﹣1)•2n,则S5=﹣2﹣3•4﹣5•8﹣7•16﹣9•32=﹣454,故选:A.5.已知数列{a n}满足1=32,r1=3+3,若=3,则c1+c2+⋅⋅⋅+c n=(2r1)⋅3−14.【解答】解:因为1=32,r1=3+3,所以1r1=+33=13+1,即1r1−1=13,所以数列{1}是首项11=23,公差为13的等差数列,所以1=23+13(−1)=r13,则=3=(+1)3K1,则1+2+⋅⋅⋅+=2×30+3×31+4×32+⋅⋅⋅+(+1)×3K1,设T=2×30+3×31+4×32+⋅⋅⋅+(n+1)×3n﹣1①,则3T=2×3+3×32+……+n×3n﹣1+(n+1)×3n②,①﹣②可得:﹣2T=2+3+32+……+3n﹣1﹣(n+1)×3n=1+3−13−1−(n+1)×3n,则=(2r1)⋅3−14.即1+2+⋅⋅⋅+=(2r1)⋅3−14.故答案为:(2r1)⋅3−14.6.已知数列{a n}的前n项和为S n,a1=2,S n=λa n﹣2,其中λ为常数,若a n b n=13﹣n,则数列{b n}中的项的最小值为−1214.【解答】解:根据题意,数列{a n}的满足a1=2,S n=λa n﹣2,当n=1时,有a1=S1=λa1﹣2,即2=2λ﹣2,解可得λ=2,则S n=2a n﹣2,①=2a n﹣1﹣2,②则有S n﹣1①﹣②:a n=2a n﹣2a n﹣1,变形可得a n=2a n﹣1,则数列{a n }是首项为a 1=2,公比为2的等比数列,则a n =2n ,又由a n b n =13﹣n ,则b n =13−2,当n ≤13时,b n ≥0,当n ≥14时,b n <0,且{b n }为递增数列,则当n =14时,b n 取得最小值,此时b 14=−1214;故答案为:−1214.7.已知数列{a n }和{b n }首项均为1,且a n ﹣1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2019=()A .2019B .12019C .4037D .14037【解答】解:∵a n ﹣1≥a n (n ≥2),a n +1≥a n ,∴a n ≥a n +1≥a n ,∴a n =a n +1,另外:a 1≥a 2≥a 1,可得a 2=a 1=1,∴a n =1.∵2S n S n +1+a n b n +1=0,∴2S n S n +1+b n +1=0,∴2S n S n +1+S n +1﹣S n =0,∴1r1−1=2.∴数列{1}是等差数列,首项为1,公差为2.∴1=1+2(n ﹣1)=2n ﹣1,∴S n =12K1.∴S 2019=14037.故选:D .8.已知数列{a n }满足:a 1=1,a 2=13,11+22+⋅⋅⋅+=r1K1+6(n ≥2且n ∈N +),等比数列{b n }公比q =2,令c n =为奇数,为偶数,则数列{c n }的前n 项和S 2n =2n 2﹣n +4r1−43.【解答】解:因为a1=1,a2=13,11+22+⋅⋅⋅+=r1K1+6(n≥2且n∈N+),①可得n=2时,11+22=31+6,即b1+3b2=b3+6,由等比数列的{b n}的公比为q=2,即b1+6b1=4b1+6,解得b1=2,所以b n=2n,当n=3时,11+22+33=42+6,即2+3×4+83=3×16+6,解得a3=15,又11+22+⋯+K1K1=K2+6(n≥3,且n∈N+),②①﹣②可得,=r1K1−K2,即2=2r1K1−2K2,化为1+1K2=2K1,又11+13=6=22,所以{1}为等差数列,且公差d=12−11=2,则1=11+2(n﹣1)=2n﹣1,所以c n=2−1,为奇数2,为偶数,所以S2n=1+22+5+24+…+(4n﹣3)+22n=(1+5+…+4n﹣3)+(22+24+…+22n)=o1+4K3)2+4(1−4)1−4=2n2﹣n+4r1−43.故答案为:2n2﹣n+4r1−43.9.已知数列{a n}满足2a n a n+1+a n+3a n+1+2=0,其中1=−12,设=K+1,若b3为数列{b n}中唯一最小项,则实数λ的取值范围是(5,7)【解答】解:∵2a n a n+1+a n+3a n+1+2=0,∴a n+1=−(+2)2+3,∴r1+1=−(+2)2+3+1=+12+3,∴1r1+1=2+3+1=2+1+1,即1r1+1−1+1=2,所以数列{1+1}是公差为2的等差数列,∵11+1=2,∴1+1=2+(−1)×2=2n,∴b n=2n(n﹣λ),∴b n+1﹣b n=2(n+1)(n+1﹣λ)﹣2n(n﹣λ)=4n+2﹣2λ,因为b3为数列{b n}中唯一最小项,所以b1>b2>b3<b4<b5<…,∴当n=1时,b2﹣b1=6﹣2λ<0,得λ>3,当n=2时,b3﹣b2=10﹣2λ<0,得λ>5,当n≥3时,4n+2﹣2λ>0恒成立,即λ<2n+1,即有λ<7.所以5<λ<7.故答案为:(5,7).课后作业.数列求和1.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.(1)求数列{a n}的通项公式;(2)设T n为数列{1r1}的前n项和,若λT n≤a n+1对一切n∈N*恒成立,求实数λ的最大值.【解答】解:(1)各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.设公差为d,由已知得:41+6=14(1+2p2=1(1+6p,,联立解得d=1或d=0(舍去),a1=2,故:a n=n+1.(2)由(1)得:1r1=1(r1)(r2)=1r1−1r2,所以:=12−13+13−14+⋯+1r1−1r2.=12−1r2,=2(r2).由于:λT n≤a n+1对一切n∈N*恒成立,所以:2(r2)≤+2,解得:≤2(r2)2+4)+8,由于:+4≥≥4故:2(+4)+8≥16,即:λ≤16.故λ的最大值为16.2.设等差数列{a n}的前n项和为S n,a3=6,a7=14.(1)求数列{a n}的通项公式及S n;(2)若_____,求数列{b n}的前n项和T n.在①b n=2•a n;②b n=2+r12;③b n=(﹣1)n•a n这三个条件中任选一个补充在第(2)问中,并对其求解.【解答】解:(1)设等差数列{a n}的公差为d,由a3=6,a7=14.得4d=a7﹣a3=14﹣6=8,解得d=2,所以a1=a3﹣2d=6﹣4=2,所以a n=2+2(n﹣1)=2n;S n=2(2+2n)=n2+n.(2)若选择条件①:由(1)可知a n=2n,则b n=2•a n=2n•4n,所以T n=b1+b2+…+b n=2×41+4×42++6×43…+(2n)•4n;4T n=2×42+4×43+6×44+…+(2n)•4n+1,两式相减得:﹣3T n=2×41+2×42+2×43+…+2×4n﹣2n•4n+1=2×4(1−4)1−4−2n•4n+1=−83(1﹣4n)﹣2n•4n+1,所以T n=89(1﹣4n)+23•4n+1;若选择条件②:由a n=2n,S n=n2+n,得b n=2+r12=82+8r4or1)=8+4or1)=8+4(1−1r1),所以T n=b1+b2+b3+…+b n=8n+4(1−12+12−13+⋯+1−1r1)=8n+4r1=82+12r1;若选择条件③:由a n=2n,得b n=(﹣1)n•a n=(﹣1)n•2n,所以T n=﹣2+4﹣6+8+…+(﹣1)n•2n,当n为偶数时,T n=(﹣2+4)+(﹣6+8)++[﹣2(n﹣1)+2n]=2×2=n,当n为奇数时,T n=(﹣2+4)+(﹣6+8)+…+[﹣2(n﹣2)+2(n﹣1)]﹣2n=K12×2n =﹣n﹣1,所以T n=,为奇数−−1,为偶数.3.已知数列{a n}的各项均为正数,前n项和为S n,且S n=(+1)2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2(−2)(r1),T n=b1+b2+…+b n,求T n.【解答】解:(1)S n=(+1)2(n∈N*),当n=1时,1=1(1+1)2,∴a1=1,当n≥2时,由S n=(+1)2,得2=2+①取n=n﹣1,得2K1=K12+K1②①﹣②得:2=2(−K1)=2−K12+−K1,∴(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1,n≥2,∴数列{a n}是等差数列,则a n=n;(2)由S n=(+1)2,a n=n,∴=or1)2,则=2(−2)(r1)=(−2),∴=1−2+2(−2)2+⋯+K1(−2)K1+(−2),−2=1+2−2+⋯+K1(−2)K2+(−2)K1,两式作差得:∴−3=1+1−2+⋯+1(−2)K1−(−2)=1−(−12)1−(−12)−(−2)=2+(−12)K13−(−2),∴=3(−2)−2+(−12)K19=3r29(−2)−29.4.在数列{a n}中,a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;并求满足S n<1516时n的最大值.【解答】解:(I)∵a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立,∴1(r1)r1−1B=1.∴1B=2+(n﹣1)=n+1,∴a n=1or1).(II)a n=1or1)=1−1r1.∴数列{a n}的前n项和S n=(1−12)+(12−13)+⋯+(1−1r1)=1−1r1,S n<1516,即1−1r1<1516,解得n<15,因此满足S n<1516时n的最大值为14.。
§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。
§6.1数列的概念考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的通项公式如果数列{a n}的第n项a n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.4.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.常用结论1.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *);若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)1,1,1,1,…,不能构成一个数列.( × )(3)任何一个数列不是递增数列,就是递减数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 教材改编题1.若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2 023的值为( )A .2B .-3C .-12 D.13答案 C解析 因为a 1=2,a n +1=1+a n1-a n ,所以a 2=1+a 11-a 1=-3,同理可得a 3=-12,a 4=13,a 5=2,…,可得a n +4=a n ,则a 2 023=a 505×4+3=a 3=-12.2.数列13,18,115,124,135,…的通项公式是a n =________.答案1n (n +2),n ∈N *解析 ∵a 1=11×(1+2)=13,a 2=12×(2+2)=18,a 3=13×(3+2)=115,a 4=14×(4+2)=124,a 5=15×(5+2)=135,∴通过观察,我们可以得到如上的规律, 则a n =1n (n +2),n ∈N *.3.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. 答案 4n -5解析 a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1 =(2n 2-3n )-[2(n -1)2-3(n -1)] =4n -5,因为a 1也适合上式,所以a n =4n -5.题型一 由a n 与S n 的关系求通项公式例1 (1)设S n 为数列{a n }的前n 项和,若2S n =3a n -3,则a 4等于( ) A .27 B .81 C .93 D .243答案 B解析 根据2S n =3a n -3, 可得2S n +1=3a n +1-3, 两式相减得2a n +1=3a n +1-3a n , 即a n +1=3a n ,当n =1时,2S 1=3a 1-3,解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列, 所以a 4=a 1q 3=34=81.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n ,①∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1, ∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n=⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.教师备选1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________. 答案 2n +1解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1, ∴a 1=-1.当n ≥2时,S n =2a n +1,① S n -1=2a n -1+1.②①-②得S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1, 即a n =2a n -1(n ≥2),∴{a n }是首项为a 1=-1,公比为q =2的等比数列. ∴a n =a 1·q n -1=-2n -1.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.跟踪训练1 (1)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n +1,n ∈N *,则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2解析 根据题意,可得S n -1=2(n -1)2+(n -1)+1. 由通项公式与求和公式的关系, 可得a n =S n -S n -1, 代入化简得a n =2n 2+n +1-2(n -1)2-(n -1)-1=4n -1. 经检验,当n =1时,S 1=4,a 1=3, 所以S 1≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则a n =________. 答案 ⎩⎪⎨⎪⎧-1,n =1,1n (n -1),n ≥2解析 由已知得a n +1=S n +1-S n =S n +1S n , 两边同时除以S n +1S n , 得1S n +1-1S n =-1. 故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n . 所以S n =-1n .当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),故a n=⎩⎨⎧-1,n =1,1n (n -1),n ≥2.题型二 由数列的递推关系求通项公式 命题点1 累加法例2 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 命题点2 累乘法例3 若数列{a n }满足a 1=1,na n -1=(n +1)·a n (n ≥2),则a n =________. 答案2n +1解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1×n -1n ×n -2n -1×…×34×23×1=2n +1,又a 1=1满足上式,所以a n =2n +1. 教师备选1.在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1n (n +1)=1n -1n +1,∴当n ≥2时,a n -a n -1=1n -1-1n ,a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n ,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.2.若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =________.答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得 n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0,∴a n +1a n =2(n +1)n , 又a 1=1, ∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2(n -1)n -2×2(n -2)n -3×…×2×32×2×21×1=2n -1·n .又n =1时,a 1=1适合上式, ∴a n =n ·2n -1.思维升华 (1)形如a n +1-a n =f (n )的数列,利用累加法,即利用公式a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1(n ≥2),即可求数列{a n }的通项公式.(2)形如a n +1a n =f (n )的数列,常令n 分别为1,2,3,…,n -1,代入a n +1a n =f (n ),再把所得的(n -1)个等式相乘,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1(n ≥2)即可求数列{a n }的通项公式.跟踪训练2 (1)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. 答案 2n -1+n解析 ∵a n +1=a n +2n -1+1, ∴a n +1-a n =2n -1+1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -2+2n -3+…+2+1+a 1+n -1=1-2n -11-2+2+n -1=2n -1+n .又∵a 1=2满足上式, ∴a n =2n -1+n .(2)(2022·莆田模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案 a n =2n (n +1)解析 由S n =n 2a n ,可得当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1, 即(n 2-1)a n =(n -1)2a n -1, 易知a n ≠0,故a n a n -1=n -1n +1(n ≥2).所以当n ≥2时,a n =a na n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n +1×n -2n ×n -3n -1×…×24×13×1=2n (n +1).当n =1时,a 1=1满足a n =2n (n +1).故数列{a n }的通项公式为a n =2n (n +1).题型三 数列的性质 命题点1 数列的单调性例4 已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若数列{a n }为递增数列, 则有a n +1-a n >0,∴(n +1)2-2λ(n +1)-n 2+2λn =2n +1-2λ>0,即2n +1>2λ对任意的n ∈N *都成立,于是有λ<⎝⎛⎭⎪⎫2n +12min =32, ∵由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件. 命题点2 数列的周期性例5 (2022·广州四校联考)数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2 023等于( ) A .-2 B .-1 C .2 D.12答案 C解析 ∵数列{a n }满足a 1=2, a n +1=11-a n(n ∈N *), ∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3, 即a n +3=a n ,则a 2 023=a 1=2. 命题点3 数列的最值例6 已知数列{a n }的通项公式a n =(n +1)·⎝⎛⎭⎫1011n ,则数列{a n }的最大项为( ) A .a 8或a 9 B .a 9或a 10 C .a 10或a 11 D .a 11或a 12答案 B解析 结合f (x )=(x +1)⎝⎛⎭⎫1011x的单调性, 设数列{a n }的最大项为a n ,所以⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1,所以⎩⎨⎧(n +1)·⎝⎛⎭⎫1011n ≥(n +2)·⎝⎛⎭⎫1011n +1,(n +1)·⎝⎛⎭⎫1011n≥n ·⎝⎛⎭⎫1011n -1,解不等式组可得9≤n ≤10.所以数列{a n }的最大项为a 9或a 10. 教师备选1.已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 因为a n +1-a n =3n +3+k 2n +1-3n +k2n=3-3n -k2n +1,由数列{a n }为递减数列知, 对任意n ∈N *,an +1-a n =3-3n -k2n +1<0, 所以k >3-3n 对任意n ∈N *恒成立, 所以k ∈(0,+∞).2.在数列{a n }中,a 1=1,a n a n +3=1,则log 5a 1+log 5a 2+…+log 5a 2 023等于( ) A .-1 B .0 C .log 53 D .4答案 B解析 因为a n a n +3=1,所以a n +3a n +6=1,所以a n +6=a n ,所以{a n }是周期为6的周期数列, 所以log 5a 1+log 5a 2+…+log 5a 2 023 =log 5(a 1a 2…a 2 023)=log 5[(a 1a 2…a 6)337·a 1], 又因为a 1a 4=a 2a 5=a 3a 6=1, 所以a 1a 2…a 6=1,所以原式=log 5(1337×1)=log 51=0. 思维升华 (1)解决数列的单调性问题的方法用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)求数列的最大项与最小项的常用方法 ①函数法,利用函数的单调性求最值.②利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.跟踪训练3 (1)在数列{a n }中,a n +1=⎩⎨⎧2a n ,a n <12,2a n-1,a n≥12,若a 1=45,则a 2 023的值为( )A.35B.45C.25D.15答案 D 解析 a 1=45>12,∴a 2=2a 1-1=35>12,∴a 3=2a 2-1=15<12,∴a 4=2a 3=25<12,∴a 5=2a 4=45,……可以看出四个循环一次,故a 2 023=a 4×505+3=a 3=15.(2)(2022·沧州七校联考)已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 a n =n +13n -16=13⎝⎛⎭⎪⎫1+193n -16, 当n >5时,a n >0,且单调递减; 当n ≤5时,a n <0,且单调递减, ∴当n =5时,a n 最小.课时精练1.数列{a n }的前几项为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92答案 A解析 数列为12,62,112,162,212,…,其分母为2,分子是以首项为1,公差为5的等差数列,故数列{a n }的通项公式为a n =5n -42.2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.已知数列{a n }的前n 项积为T n ,且满足a n +1=1+a n 1-a n (n ∈N *),若a 1=14,则T 2 023为( )A .-4B .-35C .-53D.14答案 C解析 由a n +1=1+a n 1-a n,a 1=14,得a 2=53,a 3=-4,a 4=-35,a 5=14,…,所以数列{a n }具有周期性,周期为4, 因为T 4=a 1·a 2·a 3·a 4=1,2 023=4×505+3, 所以T 2 023=(a 1a 2a 3a 4)…(a 2 021a 2 022a 2 023) =14×53×(-4)=-53. 4.若数列{a n }的前n 项和S n =2a n -1(n ∈N *),则a 5等于( ) A .8 B .16 C .32 D .64 答案 B解析 数列{a n }的前n 项和S n =2a n -1(n ∈N *), 则S n -1=2a n -1-1(n ≥2), 两式相减得a n =2a n -1(n ≥2), 由此可得,数列{a n }是等比数列, 又S 1=2a 1-1=a 1,所以a 1=1, 故数列{a n }的通项公式为a n =2n -1, 令n =5,得a 5=16.5.(多选)已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *),则下列结论正确的是( ) A .这个数列的第10项为2731B.97100是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内D .数列{a n }是单调递减数列 答案 BC解析 a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1) =3n -23n +1, 令n =10得a 10=2831,故A 错误;令3n -23n +1=97100得n =33∈N *, 故97100是数列中的项,故B 正确; 因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *.所以数列{a n }是单调递增数列, 所以14≤a n <1,故C 正确,D 不正确.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =lnn n +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1, 所以{a n +1-a n }为递增数列,故B 错误; 对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln nn +1,则a n +1-a n =ln n +1n +2-ln nn +1=ln ⎝⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n , 由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确.7.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2解析 ∵a n +1=3S n (n ∈N *), ∴当n =1时,a 2=3; 当n ≥2时,a n =3S n -1, ∴a n +1-a n =3a n , 得a n +1=4a n ,∴数列{a n }从第二项起为等比数列, 当n ≥2时,a n =3·4n -2,故a n =⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2.8.(2022·临沂模拟)已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ∈N *,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 9.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3,由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知当n =1时,a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1,于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n -1个等式中等号两端分别相乘,整理得a n =n (n +1)2. 当n =1时,a 1=1满足a n =n (n +1)2. 综上可知,{a n }的通项公式为a n =n (n +1)2.10.求下列数列{a n }的通项公式. (1)a 1=1,a n +1=a n +3n ; (2)a 1=1,a n +1=2n a n .解 (1)由a n +1=a n +3n 得a n +1-a n =3n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=1+31+32+33+…+3n -1 =1×(1-3n )1-3=3n -12,当n =1时,a 1=1=31-12,满足上式,∴a n =3n -12(n ∈N *).(2)由a n +1=2n a n 得a n +1a n=2n ,当n ≥2时,a n =a 1×a 2a 1×a 3a 2×a 4a 3×…×a na n -1=1×2×22×23×…×2n -1 =21+2+3+…+(n -1)=()122n n -.当n =1时,a 1=1满足上式, ∴a n =()122n n -(n ∈N *).11.已知数列{a n }满足a n =⎩⎪⎨⎪⎧(3-a )n -2,n ≤6,a n -5,n >6,且{a n }是递增数列,则实数a 的取值范围是( ) A.⎝⎛⎭⎫167,3 B.⎣⎡⎭⎫167,3 C .(1,3) D .(2,3)答案 D解析 若{a n}是递增数列,则⎩⎪⎨⎪⎧3-a >0,a >1,a 7>a 6,即⎩⎪⎨⎪⎧a <3,a >1,a 2>6(3-a )-2,解得2<a <3,即实数a 的取值范围是(2,3).12.(多选)(2022·江苏盐城中学模拟)对于数列{a n },若存在数列{b n }满足b n =a n -1a n (n ∈N *),则称数列{b n }是{a n }的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{a n }是单增数列,则其“倒差数列”不一定是单增数列 B .若a n =3n -1,则其“倒差数列”有最大值 C .若a n =3n -1,则其“倒差数列”有最小值 D .若a n =1-⎝⎛⎭⎫-12n ,则其“倒差数列”有最大值 答案 ACD解析 若数列{a n }是单增数列,则b n -b n -1=a n -1a n -a n -1+1a n -1=(a n -a n -1)⎝ ⎛⎭⎪⎫1+1a n a n -1,虽然有a n >a n -1,但当1+1a n a n -1<0时,b n <b n -1,因此{b n }不一定是单增数列,A 正确; a n =3n -1,则b n =3n -1-13n -1,易知{b n }是递增数列,无最大值,B 错误;C 正确,最小值为b 1.若a n =1-⎝⎛⎭⎫-12n , 则b n =1-⎝⎛⎭⎫-12n -11-⎝⎛⎭⎫-12n ,∵函数y =x -1x 在(0,+∞)上单调递增,∴当n 为偶数时,a n =1-⎝⎛⎭⎫12n∈(0,1), ∴b n =a n -1a n<0,当n 为奇数时,a n =1+⎝⎛⎭⎫12n>1,显然a n 是单调递减的, 因此b n =a n -1a n 也是单调递减的,即b 1>b 3>b 5>…,∴{b n }的奇数项中有最大值为b 1=32-23=56>0,∴b 1=56是数列{b n }(n ∈N *)中的最大值,D 正确.13.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________. 答案 5解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.14.(2022·武汉模拟)已知数列{a n }中,a 1=1,1a n +1-1a n =n +1,则其前n 项和S n =________.答案2n n +1解析 ∵1a 2-1a 1=2,1a 3-1a 2=3,1a 4-1a 3=4,…,1a n -1a n -1=n , 累加得1a n -1a 1=2+3+4+…+n ,得1a n =1+2+3+4+…+n =n (n +1)2, ∴a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=2nn +1.15.(多选)若数列{a n }满足a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),记数列{a n }的前n 项积为T n ,则下列说法正确的有( ) A .T n 无最大值 B .a n 有最大值 C .T 2 023=1 D .a 2 023=1答案 BCD解析 因为a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),所以a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,… 因此数列{a n }为周期数列,a n +6=a n ,a n 有最大值3,a 2 023=a 1=1,因为T 1=1,T 2=3,T 3=9,T 4=9,T 5=3,T 6=1,T 7=1,T 8=3,…, 所以{T n }为周期数列,T n +6=T n ,T n 有最大值9, T 2 023=T 1=1.16.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a的取值范围是(-10,-8).。
高中数学总复习讲义(培优版)供理科生使用数列四讲第一讲 数列的概念及简单表示教学目标了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 教学重难点1.本部分主要考查数列的基本概念及表示方法、通项公式的求法以及数列的性质.2.题型多以选择、填空题为主,有时也作为解答题的一问,难度不大. 教材知识再现一.基础知识1.数列的概念:按一定 排列的一列数叫做数列。
数列中的每一个数都叫做数列的 。
从函数的角度看:数列可以看作是一个定义域为 或它的有限子集,当自变量从小到大依次取值时对应的一列 。
2.数列的表示方法:(1)列表法;(2)图示法:数列的图像是离散的点,而不是曲线; (3)通项公式法:用含)(n f a a n n n =,即的式子表示(4)递推公式法: 3.数列的分类:(1)按项数的多少可分为 和 ;(2)按数列中相邻两项的大小关系可分为 、 、 和 。
4.(1)数列{}n a 的前n 项和:n n a a a a S ++++= 321(2)的关系与n n S a : ⎩⎨⎧≥-==-.2111n S S n S a n nn ,,,基本方法 用函数的思想方法处理数列问题(数列的本质是函数) (1)如何理解数列是函数? (2)如何求数列的通项公式?(3)如何判断数列的单调性及求数列中的最大(小)项? (4)如何求数列的前n 项和公式?经典习题奠基1.数列⋅⋅⋅,95,74,53,32,1的一个通项公式是2.已知数列{a n }的通项公式为a n =n +1,则这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 3.在数列{a n }中,a n +1=a n +2+an ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 4,已知数列{}n a 的通项公式⎩⎨⎧-⋅=-52321n a n n122+==k n kn )(N k ∈,则=⋅34a a 5. 已知数列{}n a 的通项公式为n q pn a n +=,且23,2342==a a ,则=8a 关键要点点拨1.求通项公式的技巧根据数列的前几项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用n 表示出来.不是所有的数列都有通项公式,一个数列的通项公式在形式上可以不唯一 2.数列中最大项与最小项的求法考点一 由数列的前几项求数列的通项公式[例1] 下列可作为数列{}⋅⋅⋅,2,1,2,1,2,1:n a 的通项公式的是( )A.1=n aB.21)1(+-=n n aC. 2sin 2πn - D. 23)1(1+-=-n n a1.已知数列⋅⋅⋅,13,10,7,2则72是该数列的( ) A.第7项 B.第8项 C.第9项 D.第10项2.写出下列各数列的一个通项公式 (1)3,5,7,9,…(2)⋅⋅⋅,3231,1615,87,43,21 (3)⋅⋅⋅---,63,51,43,31,23,11.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可使用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.3.观察、分析问题的特点是最重要的,观察要有目的,观察出项与n 之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)建立合理的联想、转换而使问题得到解决.考点二 由n a 和n S 的关系求通项[例2]数列{}n a 的前n 项和为n S ,若)1(3,111≥==+n S a a n n ,则=6a 3. 数列{}n a 的前n 项和为n S ,且1+=n n S n ,则=51a 4. 数列{}n a 的前n 项和为n S ,求{}n a 的通项公式 (1)Sn =2n 2-3n ; (2)Sn =4n +b .n a 和n S 的关系通常用)2(1≥-=-n S S a n n n ,注意验证1=n考点三 由数列的递推关系求通项公式[例3] 数列{}n a 满足2,3311=-=+n a a a n n ,求nan 的最小值为( ) A.9.5 B.10.6 C.10.5 D.9.6变式:若本例条件变为:数列{a n }满足下列条件:a 1=1,且对于任意的正整数n (n ≥2,n ∈N*),有2a n =2n a n -1,则a 100的值为________.5. 已知数列{}n a 中,)2()1(1,111≥--==-n n n a a a n n ,则=16a6.分别求满足下列条件的数列的通项公式(1))12(,011-+==+n a a a n n (2))2(1,111≥-==-n a n na a n n 由a 1和递推关系求通项公式,可观察其特点,一般常利用“化归法”、“累加法”、“累乘法”等.1.对于形如“a n +1=a n +f (n )”型的递推关系式求通项公式,只要f (n )可求和,便可利用累加的方法. 2.对于形如)"("1n g a a nn =+型的递推关系式来求通项公式,只要)(n g 可求积,便可以利用累积或迭代的方法。
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
等差等比数列【知识梳理】一、通项公式等差数列:,为首项,为公差.等比数列:11-⋅=n n q a a ,为首项,为公比.二、前项和公式 等差数列:或 等比数列:当1≠q 时, qq a S n n --=1)1(1 或 q q a a S n n --=11当1=q 时,1na S n =三、差比数列的判定方法1.定义法:(,是常数)是等差数列;q a a nn =+1(,是常数){}n a 是等比数列.2.中项法:()是等差数列;221++⋅=n n n a a a ()且0≠n a {}n a 是等比数列.四、差比数列的常用性质等差数列:若,则; 等比数列:若,则q p n m a a a a ⋅=⋅.课中讲解一、等差等比数列的判定 典型例题1. 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求()d n a a n 11-+=1a d 1a q n ()21na a S n n +=()d n n na S n 211-+=d a a n n =-+1+∈N n d ⇔{}n a +∈N n 0≠q ⇔212+++=n n n a a a +∈N n ⇔{}n a +∈N n ⇔),,,(+∈+=+N q p n m q p n m q p n m a a a a +=+),,,(+∈+=+N q p n m q p n m证:数列{b n}是等差数列。
2.若数列{a n}的前n项和为S n,且满足a n+2S n S n-1=0(n≥2),a1=12,求证:数列⎩⎨⎧⎭⎬⎫1S n是等差数列。
3.已知数列{a n}满足对任意的正整数n,均有a n+1=5a n-2·3n,且a1=8,证明:数列{a n-3n}为等比数列。
4. 已知S n是数列{a n}的前n项和,且满足S n-2a n=n-4,证明:{S n-n+2}为等比数列。
年高三理科数学一轮复习讲义【数列求和】最新考纲1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知识梳理1.特殊数列的求和公式(1) 等差数列的前 n 项和公式:S n =n ( a 1+ a n )=na 1+n ( n - 1)d.22(2) 等比数列的前 n 项和公式:na 1, q = 1, S n =a 1- a n q = a 1( 1-q n ),q ≠1W.1- q1-q2.数列求和的几种常用方法 (1) 分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2) 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3) 错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前 n 项和可用错位相减法求解 . (4) 倒序相加法如果一个数列 { a n } 的前 n 项中与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前 n 项和即可用倒序相加法求解 . [ 微点提醒 ]1.1+ 2+ 3+ 4+ + n = n ( n +1).22.12+22+ +n 2=n (n +1)(2n +1).613.裂项求和常用的三种变形1 1 1(1)n ( n +1) = n -n + 1.11 1-1(2)( 2n -1)( 2n + 1) = 22n + 1.2n - 1 1= n + 1- n.(3)n + n + 1基础自测1.判断下列结论正误 (在括号内打“√”或“×” )(1) 若数列 { a n } 为等比数列,且公比不等于1,则其前 n 项和 S n =a 1-a n +1.()1- q(2) 当 n ≥2 时, 2 11 1 -1).( )= (n -1 2 n - 1 n + 1(3) 求 S n = a + 2a 2+ 3a 3+ + na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得 .()n- 1(4) 若数列 a 1,a 2-a 1 , ,a n - a n - 1 是首项为 1,公比为 3 的等比数列,则数列 { a n } 的通项公式是 a n = 3.()2解析 (3)要分 a =0 或 a =1 或 a ≠ 0 且 a ≠ 1 讨论求解 .答案 (1)√ (2) √ (3)×(4) √2.(必修 5P47B4 改编 ) 数列 { a n } 中, a n = 1,若 { a n } 的前 n 项和为2 019,则项数 n 为 ()n (n + 1) 2 020 A.2 018B.2 019C.2 020D.2 021解析 a =1=1-1,nnn (n + 1) n + 1n = 1-1+ 1-1++ 1-1=1-1=n=2 019,所以 n = 2019.S2 2 3nn + 1n + 1n + 1 2 020答案 B3.(必修 5P56 例 1 改编 ) 等比数列 { a n } 中,若 a 1= 27, a 9 =1, q>0, S n 是其前 n 项和,则 S 6= ________.243解析 由 a 1=27, a 9=1知, 1= 27·q 8,243 2432又由 q>0,解得 q=1,327 1-163=364所以 S6=.1 91-3答案364 94.(2018 东·北三省四校二模)已知数列 { a n} 满足 a n+1- a n= 2,a1=- 5,则 |a1|+ |a2 |++ |a6|= ()A.9B.15C.18D.30解析由题意知 { a n}是以 2 为公差的等差数列,又1=-5,所以|a12 6a |+ |a|++ |a |= |-5|+ |- 3|+ |- 1|+ 1+3+ 5= 5+ 3+ 1+ 1+ 3+ 5=18.答案C5.(2019 昆·明诊断 )已知数列 { a n} , { b n } 的前 n 项和分别为n n+1 2 -2,S n, T n, b n- a n= 2 +1,且 S n+ T n= 2 + n则 2T n= ________________.解析由题意知T n- S n= b1- a1+ b2- a2++b n-a n=n+2n+1-2,又 S n+ T n= 2n+1+ n2-2,所以 2T n= T n-S n+S n+ T n= 2n+2+ n(n+1) -4.答案n+2+n(n+ 1)- 4 26.(2019 河·北“五个一”名校质检 )若 f(x)+f(1- x)=4,a n= f(0) +f1++ fn-1+ f(1)(n∈* n n n),则数列{ a }的通项公式为 ________.解析由 f(x)+ f(1-x)=4,可得 f(0) + f(1) =4,,f 1 + fn-1= 4,所以 2a n= [f(0) + f(1)] +f 1+f n-1n n n n++ [f(1)+ f(0)] =4(n+ 1),即 a n= 2(n+1).答案a n= 2(n+ 1)3【例 1】 (2019 ·郴州质检 )已知在等比数列 { a n } 中, a 1= 1,且 a 1, a 2, a 3- 1 成等差数列 . (1) 求数列 { a n } 的通项公式;(2) 若数列 { b n } 满足 b n = 2n - 1+ a n (n ∈* ) ,数列 { b n } 的前 n 项和为 S n ,试比较 S n 与 n 2+ 2n 的大小 . 解 (1) 设等比数列 { a n } 的公比为 q ,∵a 1,a 2, a 3- 1 成等差数列, ∴ 2a 2= a 1+ (a 3- 1)= a 3,∴ q =a 3=2, a 2∴ a n =a 1q n -1= 2n -1(n ∈* ).(2) 由 (1)知 b n = 2n - 1+ a n = 2n -1+ 2n -1, ∴S n =(1+ 1)+ (3+ 2)+ (5+ 22)+ + (2n - 1+ 2n -1) = [1 +3+ 5+ + (2n - 1)]+ (1+ 2+ 22+ + 2n -1)1+( 2n -1)1-2n2 n= 2 ·n + 1- 2 = n + 2 - 1. ∵S n -(n 2+2n )=- 1<0 ,∴ S n <n 2+ 2n . 规律方法1.若数列 { c n } 的通项公式为 c n = a n ±b n ,且 { a n } , { b n } 为等差或等比数列,可采用分组求和法求数 列{ c n } 的前 n 项和 .a n , n 为奇数,2.若数列 { c n } 的通项公式为 c n = 其中数列 { a n } , { b n } 是等比数列或等差数列,可采用分组求 b n ,n 为偶数,和法求 { a n } 的前 n 项和 .【训练 1】 (2019 ·南昌一模 )已知等差数列 { a n } 的前 n 项和为 S n ,且 a 1=1, S 3+ S 4= S 5. (1) 求数列 { a n } 的通项公式;(2) 令 b n = (- 1)n -1a n ,求数列 { b n } 的前 2n 项和 T 2n .解 (1) 设等差数列 { a n } 的公差为 d ,由 S 3+ S 4= S 5可得 a 1+ a 2+ a 3= a 5,即 3a 2=a 5, ∴3(1+ d)= 1+ 4d ,解得 d = 2. ∴ a n =1+ (n - 1)× 2= 2n - 1.(2) 由 (1)可得 b n = (-1) n -1·(2n -1).∴T 2n =1- 3+ 5-7+ + (2n - 3)- (2n - 1)= (- 2)× n =- 2n.4a n+1【例 2】 (2019 ·郑州模拟 )已知数列 { a n } 的前 n 项和为 S n ,且 a 2= 8, S n =2 -n -1.(1) 求数列 { a n } 的通项公式;2× 3n (2) 求数列a n a n +1的前n 项和Tn .解 (1) ∵a 2= 8, S n =a n+1- n -1, 2∴ a 1=S 1=a 2- 2=2, 2当 n ≥ 2 时, a n = S n - S n -1=a n+1- n -1-a n- n ,22 即 a n +1= 3a n + 2,又 a 2= 8= 3a 1+ 2,∴a n +1= 3a n + 2, n ∈*, ∴ a n +1+ 1=3(a n +1) ,∴数列 { a n +1} 是等比数列,且首项为 a 1+ 1= 3,公比为 3,∴ a n +1= 3× 3n -1= 3n ,∴ a n =3n - 1.2× 3n= 2×3n1 1(2) ∵n n+1= n- n +1.a n a n +1 ( 3 -1)( 3- 1)3 -13 - 1∴数列2× 3n的前n 项和a n a n +1 1 -2 1 +1- 1+ +111 - 1T n =- 1 23n- n + 1= n +1.3-1 33 - 1 3 - 13 - 13 - 12 3- 1规律方法 1.利用裂项相消法求和时, 应注意抵消后并不一定只剩下第一项和最后一项, 也有可能前面剩两项,后面也剩两项 .2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等. 【训练 2】 设 S n 为等差数列 { a n } 的前 n 项和,已知 S 3= a 7, a 8- 2a 3=3. (1) 求 a n ;1 (2) 设 b n =S n ,求数列 { b n } 的前 n 项和 T n . 解 (1) 设数列 { a n } 的公差为 d ,3a 1+ 3d = a 1+6d ,由题意得 ( a 1+ 7d )- 2( a 1+ 2d )= 3,5解得 a 1= 3, d = 2,∴ a n =a 1+ (n - 1)d = 2n +1.(2) 由 (1)得 S n = na 1+n (n -1)d = n(n +2), 211 11 ∴b n=n (n +2)=2 n -n +2. ∴ T n = b 1+ b 2+ + b n -1+ b n 1 11- 11 - 11- 1=2 1-3 + 24 + + n - 1 n + 1 + n n + 2=11+ 1- 1 - 1 2 2 n +1 n + 2 3 1 1 +1= 4- 2 n+1 n + 2.考点三 错位相减法求和【例 3】 已知 { a n } 是各项均为正数的等比数列,且 a 1 + a 2= 6, a 1a 2= a 3.(1) 求数列 { a n } 的通项公式;(2){ b n } 为各项非零的等差数列,其前n 项和为 S n ,已知 S 2n +1= b n b n + 1,求数列b n的前 n 项和 T n .a n解 (1) 设{ a n } 的公比为 q ,a 1( 1+ q )= 6,由题意知22a 1q = a 1q ,又 a n >0,解得a 1= 2,所以 a n = 2n.q =2,( 2n + 1)( b 1+ b 2n+1)(2) 由题意知: S 2n +1 == (2n + 1)b n + 1,2又 S 2n +1= b n b n +1,b n +1≠ 0,所以 b n = 2n + 1.令 c n =b n ,则c n = 2n +1 a n 2n ,因此 T n = c 1+ c 2+ + c n3 5 72n - 1 + 2n + 1= + 23 2- n ,2 2 +2 ++ n 121 T n = 3 5 72n - 1+ 2n + 1,又 2+3+ 4+ + n 2 n + 1 2 2 2 2 26两式相减得1 =3+ 1 11 2n + 1+ 2+ + - 1 - +,2Tn22 22n 2n12n + 5所以 T n = 5-2n .规律方法1.一般地,如果数列 { a n } 是等差数列, { b n } 是等比数列,求数列 { a n ·b n } 的前 n 项和时,可采用错 位相减法 .2.用错位相减法求和时,应注意:(1) 要善于识别题目类型,特别是等比数列公比为负数的情形.n nn -qS n ” 的 (2) 在写出 “S ”与“qS ”的表达式时应特别注意将两式 “ 错项对齐 ” ,以便于下一步准确地写出 “S 表达式 .【训练 3】 已知等差数列 { a n } 满足: a n +1>a n ( n ∈ * ),a 1= 1,该数列的前三项分别加上 1,1,3 后成等比数 列, a n + 2log 2b n =- 1.(1) 分别求数列 { a n } , { b n } 的通项公式; (2) 求数列 { a n ·b n } 的前 n 项和 T n .解 (1) 设等差数列 { a n } 的公差为 d ,则 d>0,由 a 1= 1, a 2= 1+d , a 3= 1+2d 分别加上 1, 1,3 后成等比数列,得(2 +d)2=2(4+ 2d),解得 d = 2(舍负 ),所以 a n = 1+ (n - 1)× 2= 2n -1.1又因为 a n + 2log 2b n =- 1,所以 log 2b n =- n ,则 b n =2n .1 (2) 由 (1)知 a n ·b n = (2n - 1) ·2n ,则 T n = 1 3 5 2n - 121+ 22+ 23++ 2n ,①11352n - 1 ,②T n = 2+ 3+ 4+ + n + 12 2 2 2 2 由①-②,得1 1 + 2× 1 1 11 2n - 1 T n =2 2+3 + 4+ + n - n +1 .2 2 2 22 2 711-1∴1T n=1+2×4 2n- 1 2n- 11-n+ 1 ,2 21-22∴T n= 1+ 2-2 2n-1 4+2n- 1=3-3+ 2n n- 1-2n = 3-n2n .2 2[ 思维升华 ]非等差、等比数列的一般数列求和,主要有两种思想1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[ 易错防范 ]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母 )时,应对其公比是否为1进行讨论 .2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组(建议用时: 40 分钟 )一、选择题1.(2017 全·国Ⅲ卷 )等差数列 { a n} 的首项为 1,公差不为0.若 a2,a3,a6成等比数列,则 { a n} 前 6 项的和为 ()A.- 24B.-3C.3D.8解析设 { a n} 的公差为d,根据题意得a23= a2·a6,8即( a1+ 2d) 2= (a1+ d)(a1+ 5d),解得 d=- 2,所以数列 { a n} 的前 6 项和为 S6= 6a1+6× 56×5× (-2)=- 24. 2d= 1× 6+ 2答案 A2.数列 { a n} 的通项公式为a n=(- 1)n-1·(4n-3),则它的前100 项之和 S100等于 ()A.200B. -200C.400D. - 400解析S100= (4×1- 3)- (4× 2- 3)+ (4× 3- 3)--(4× 100-3)=4×[(1-2)+(3-4)++(99-100)]=4× ( -50)=- 200.答案 B3.数列 { a n} 的通项公式是a n= 1 ,前 n 项和为 9,则 n 等于 ()n+n+ 1A.9B.99C.10D.1001= n+1- n,解析因为 a n=n+n+1所以 S n= a1+ a2++ a n= ( n+ 1-n)+ ( n-n-1)++(3- 2)+ ( 2-1)=n+ 1- 1,令 n+ 1-1= 9,得 n= 99.答案 B4.(2019 合·肥调研 )已知n 为数列2n+1的前 n 项和,若 m>T10+1 013恒成立,则整数m 的最小值为 () nT2A.1 026B.1 025C.1 024D.1 023n1 n12 + 1解析∵2n= 1+2 ,∴T n= n+ 1-2n,∴T10 +1 013= 11-1 1 10+1 013=1 024- 10,2 2又 m>T10+ 1 013 恒成立,∴整数 m 的最小值为 1 024.答案C95.(2019 厦·门质检 )已知数列 { a n} 满足 a n+1+ (- 1)n+1a n= 2,则其前100 项和为 ()A.250B.200C.150D.100解析当 n= 2k(k∈a2k+2+ a2k+1= 2,∴ a2k+1+ a2k-1= 4,a2k+2+ a2 k= 0,∴ { a n} 的前 100 项和= (a1+ a3)++ (a97+a99)+ (a2+a4)++(a98+a100)=25× 4+25× 0=100.答案D二、填空题6.已知正项数列{ a n } 满足 a2n+1- 6a2n= a n+1a n.若 a1= 2,则数列 { a n } 的前 n 项和 S n= ________.解析由 a2n+1- 6a2n= a n+1a n,得( a n+1- 3a n)(a n+1+2a n) =0,又 a n>0,所以 a n+1= 3a n,又 a1= 2,所以 { a n} 是首项为2,公比为3 的等比数列,n故S n=2(1-3)=3n-1.1- 3答案 3n- 17.(2019 武·汉质检 )设数列 {( n2+ n)a n} 是等比数列,且a1=1, a2=1,则数列 {3 n a n} 的前 15 项和为 ________.6 541 1 1 1 n- 1解析等比数列 2 ,故公比为 2 1 1{( n + n)a n} 的首项为2a1=,第二项为 6a2 =3 ,所以 ( n + n) a n=·=n,3 9 3 3 3 1 n 1 1 1 1 1 15所以 a n=n 2 ,则 3 a n= 2=n-,其前 n 项和为1-n+1, n= 15 时,为 1-16=16.3 ( n +n)n + n n+ 1答案15168.(2019 福·州调研 )已知数列 { na n} 的前 n 项和为 S n,且 a n= 2n,且使得 S n-na n+1+ 50<0 的最小正整数n 的值为________.10解析S n = 1×21+2× 22+ + n × 2n , 则 2S n = 1× 22+ 2×23++n × 2n +1,两式相减得-S n =2+ 22+ +2n - n ·2n+ 1= 2( 1-2n) 1, - n ·2n + 1- 2n + 1故 S n = 2+ (n - 1) ·2.又 a n = 2n ,∴S n -na n +1+ 50=2+ (n - 1) ·2n +1- n ·2n +1+50=52- 2n +1, 依题意 52- 2n +1<0 ,故最小正整数 n 的值为 5.答案5三、解答题2n + n *9.已知数列 { a n } 的前 n 项和 S n =, n ∈.2(1) 求数列 { a n } 的通项公式;(2) 设 b n = 2a n +(-1)n a n ,求数列 { b n } 的前 2n 项和 . 解 (1)当 n = 1 时, a 1= S 1= 1;当 n ≥ 2 时, a = S - S - =n 2+n - ( n -1) 2+( n - 1) =n.nnn 12 2a 1 也满足 a n =n ,故数列 { a n } 的通项公式为 a n = n. (2) 由 (1)知 a n = n ,故b n = 2n + (- 1)n n.记数列 { b n } 的前 2n 项和为 T 2n ,则 T 2n =(2 1+22+ + 22n )+ (- 1+ 2-3+ 4- + 2n).记 A = 21+ 22+ + 22n , B =- 1+ 2-3+ 4- + 2n ,2n则A = 2( 1- 2 )=22n +1-2,1- 2B = (- 1+ 2)+ (- 3+ 4)+ + [ - (2n -1)+ 2n]= n.2 n + 1故数列 { b n } 的前 2n 项和 T 2 n = A + B =2+ n - 2.1110.设数列 { a n } 的前 n 项和为 S n , a 1= 2, a n +1= 2+ S n (n ∈* ). (1) 求数列 { a n } 的通项公式; (2) 设 b n = 1+ log 2 (a n ) 1的前 n 项和 T n < 1 . 2,求证:数列b n b n +1 6(1) 解 因为 a n +1= 2+ S n (n ∈* ), 所以 a n = 2+ S n -1(n ≥ 2),所以 a n +1-a n =S n - S n -1= a n , 所以 a n +1=2a n (n ≥ 2).又因为 a 2= 2+a 1=4, a 1= 2,所以 a 2= 2a 1, 所以数列 { a n } 是以 2 为首项, 2 为公比的等比数列,则 a n = 2·2n -1= 2n (n ∈* ).(2) 证明因 b n = 1+ log 2(a n )2,则 b n = 2n + 1.则 1 = 1 1 - 1,b n b n +1 2 2n + 1 2n + 3 所以 T n = 1 1 1 1 1 + + 1 - 1 2 - + -2n +3 3 5 5 7 2n +1 = 1 1111 12 -2n + 3 = -2( 2n + 3)<6.36能力提升题组(建议用时: 20 分钟 ) n1= 1, a n + 1- a n ≥2(n ∈*n 为{ a n} 的前 n 项和,则 ()11.(2019 广·州模拟 )已知数列 { a } 满足 a),且 SA. a n ≥ 2n +1B.S n ≥n 2C.a n ≥ 2n -1D.S n ≥2n -1解析由题意得a 2- a 1≥ 2, a 3- a 2≥ 2, a 4- a 3≥2,, a n -a n -1≥ 2,∴ a 2-a 1+ a 3- a 2+ a 4- a 3+ +a n - a n -1≥ 2(n - 1), ∴ a n -a 1≥ 2(n - 1),∴ a n ≥2n - 1,∴ a 1≥1, a 2≥ 3,a 3≥ 5, , a n ≥2n - 1, ∴ a 1+a 2+ a 3+ + a n ≥1+ 3+ 5+ + 2n -1,12∴S n ≥n ( 1+ 2n - 1) =n 2.2答案 B12.已知数列 { a n } 中, a n =- 4n + 5,等比数列 { b n } 的公比 q 满足 q = a n - a n -1(n ≥2) 且 b 1= a 2,则 |b 1|+ |b 2|+|b 3|+ + |b n |= ________.解析由已知得b 1= a 2=- 3, q =- 4,∴b n =(-3)× n 1 n 1(- 4) -, ∴ |b n |= 3×4- ,即{| b n为首项, 4 为公比的等比数列, |}是以 33( 1- 4n )∴|b 1 |+ |b 2|+ + |b n |= =4n - 1.1-4答案 4n - 1n1=________. 13.(2017 全·国 Ⅱ 卷)等差数列 { a n } 的前 n 项和为 S n , a 3= 3, S 4= 10,则∑k =1S k解析设等差数列 { a n } 的公差为 d ,则a 3= a 1+ 2d = 3,a 1= 1, n ( n - 1)n (n + 1)由4= 4a 1+ 4× 3得∴S n =n × 1+ × 1=2,d = 1.2S2 d = 10,1211= = 2 n-n + 1 .Snn ( n + 1)n1+1- 1+ 1- 1+ +1-11-1∴∑11111 = 21- 2nk = 1S k = S 1+ S 2+ S 3++S n 2233 4n n + 1 =2n + 1=.n + 1答案2nn + 114.(2019 河·南、河北两省联考 )已知数列 { a n } 的前 n 项和为 S n , a 1= 5,nS n +1- (n + 1)S n = n 2+ n.S n (1) 求证:数列n为等差数列;(2) 令 b n = 2n a n ,求数列 { b n } 的前 n 项和 T n .13(1) 证明 由 nS n + 1- (n + 1)S n = n 2+ n 得S n+1-S n=1,n + 1 n又S 1=5,所以数列S n 是首项为 5,公差为 1 的等差数列 . 1n(2) 解由(1) 可知Sn n = 5+ (n -1) =n + 4,所以 S n = n 2+ 4n.当 n ≥ 2 时, a n = S n - S n -1=n 2+4n - (n - 1)2- 4(n - 1)=2n + 3. 又 a 1= 5 也符合上式,所以 a n = 2n +3(n ∈*),所以b n =(2n +3)2n , 所以 T n = 5×2+ 7× 22+ 9× 23+ + (2n +3)2n ,①2T n = 5× 22+ 7×23+ 9× 24+ + (2n + 1)2n + (2n + 3)2n +1,② 所以②-①得T n =(2n +3)2n+1-10-(23+24+ +2n +1)=(2n +3)2n+1-10-23(1-2n -1)1-2= (2 n + 3)2n +1- 10- (2n +2- 8)= (2n +1)2n +1- 2.14。
(一) 数列的基础知识一、复习要点1、 数列的定义:2、 数列的前n 项和=n S ;11a S ==-1n S ;=+1n S ;n a = ;=+1n a ;3、 已知数列{}n a 的前n 项和n S ,求n a :二、练习1、 已知数列1,4,7,10,……3m+7,求其通项公式n a 及该数列的项数。
2、 已知数列{}n a 的前n 项和n S ;求n a(1)n S =3n n -2 (2)232+-=n n S n (3)121-=+n n S3、 已知数列2,10,4……)13(2-n ,……,那么8是第 项。
4、 已知数列{}n a 中,221+=+n n n a a a 且1a =1,求432,,a a a 及n a 5、 数列通项9,11=++=n n S nn a ,求n 6、 数列{}n a 中,n S =522++n n ,求876a a a ++的值7、 数列{}n a 中,1a =1,2321n a a a a n =⋅⋅ ,求53a a +8、 写出通项公式(1)3,5,9,17,……n a =(2)n a ,1615,87,43,21= (3)42,30,20,12,6,2---……n a =等差数列1、 定义:2、 通项公式 ,则+=m n a a d若q p n m +=+,则 ,若k n m 2=+,则=k a ,A 是b a ,的等差中项,则A=3、 前n 项和n S =(1)0,01<>d a 时{}n a 是 数列,n S 有 值,满足条件⎩⎨⎧<≥+001n n a a(2)0,01><d a 时{}n a 是 数列,n S 有 值,满足条件(3)K K K K k S S S S S 232,,--仍是 数列4、 特殊数列求和:1+2+3+……+n = ;1+3+5+7+……+()12-n = 练习:1、已知等差数列{}n a 中,255=a ,,10010=S 求3015,S S2、在等差数列{}n a 中,若8124=+a a ,求15S 及8a3、等差数列{}n a 中,12010=S ,求92a a +4、等差数列{}n a 中,公差2-=d ,5097741=++++a a a a ,求=++++99963a a a a5、等差数列{}n a 和{}n b 中前n 项和分别为n n T S ,,若132+=n n T S n n ,求99b a 6、等差数列{}n a 中,82=a ,01210=+a a ,求n S d a 及,1,并求n S 的最大值。
高三第一轮复习数学---数列的极限一、教学目标:理解数列极限的概念,会判断一些简单数列的极限,掌握极限的四则运算法则,会求某些数列的极限。
二、教学重点:1、按定义直观地感受一个数列是否有极限以及极限常数是什么,这是本节重点之一。
2、掌握三个常用极限是本节重点之二。
3、利用定义证明一个数列的极限,需要写成ε—N 语言的形式,这是本节难点。
三、教学过程:(一)主要知识: 1、 数列极限定义(1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim∞→n a n =a 。
对前任何有限项情况无关。
*(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε<a n <a+ε,即a n ∈(a-ε,a+ε);因此,借助数轴可以直观地理解数列极限定义:不论a 点的ε邻域怎么小,数列{a n }从某一项以后的所有项都要进入这个邻域中,也可以说点a 的任意小的ε邻域(a-ε,a+ε)中含有无穷数列{a n }的几乎所有的项,而在这个邻域之外至多存在有限个项,由此可以想像无穷数列{a n }的项是多么稠密地分布在点a 的附近。
2、应该牢固掌握的常用极限①lim ∞→n C=C (常数列的极限就是这个常数) ②设a>0,则特别地 01lim=∞→nn ③设q ∈(-1,1),则lim∞→n q n =0;;1lim ,1==∞→nn q q ,1-=q 或nn q q ∞→>lim ,1不存在。
若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:qa s s n n -==∞→1lim 13、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B(3)lim∞→n n n b a =BA(B ≠0) 极限不存在的情况是1、±∞=∞→n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1….4、一个重要的极限:ennn=⎪⎭⎫⎝⎛++∞→11lim思维方法:直接从常用的重要极限出发,运用数列极限的运算法则解题。
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
数列专题
基础知识梳理
1.数列:按排列的一列数叫做数列;数列中的每个数都叫这个数列的项,记作,序号为的项叫第项,也叫通项,即;数列一般简记作。
2.通项公式:如果数列可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
用表示数列的通项公式,这里要注意同一个数列的通项公式的形式不一定唯一,不是每个数列都有通项公式。
3.从函数观点看,数列实质上是定义域为的函数,其图象是。
4.数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列,
数列,数列,数列。
5递推公式定义:如果已知数列的第1项(或前几项),且任一项与间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
6..等差数列一般地,如果一个数列从第项起,每一项与它一项的等于同一个常数,
这个数列就叫做等差数列. 这个常数就叫做等差数列的,常用字母表示.
7.等差中项由三个数,,组成的等差数列,这时数叫做数和的等差中项,用等式表示为= .
8.等差数列的通项公式.
9. 等差数列的常见性质:若数列为等差数列,且公差为,则此数列具有以下性质:
(1);
(2);
(3)则.
10. 等差数列的前项和公式1:公式2:.
11.在等差数列中,每隔相同的项抽出来的项按照原来顺序排列,构成的新数列仍然是等差数列。
如:公差为 ;
是等差数列;公差为;
成等差数列.
12.等比数列
13.等差数列的性质
(1),;
(2)在等差数列中,若,则,若,则;
(3),为等差数列,公差分别为,则数列,,为数列;
(4)在等差数列中,等距离取出若干项也构成一个等差数列,即,,,…为等差数列,公差为;(5)等差数列的前项和为S n,则S n,S2n-S n,S3n-S2n,…也为等差数列,公差为;
(6)通项公式是是一次函数的形式;前项和公式是不含常数项的二次函数的形式。
(注当时,S n=na1, a n=a1)
(7)若,,有最值,可由不等式组来确定;
若,,有最值,可由不等式组来确定.
14.等比数列的性质
(1);
(2)在等比数列中,若,则;若,则;
(3)若,均为等比数列,且公比分别为,,则数列,,,,也为等比数列,且公比分别为;(4)在等比数列中,等距离取出若干项也构成一个等比数列,即,,,…为等比数列,公比为;
(5)等比数列的前n项和为S n,则,,,…也为等比数列,公比为.
15.数列求和直接法:即直接用等差、等比数列的求和公式求和:
(1)等差数列的求和公式:
(2)等比数列的求和公式(切记:公比含字母时一定要讨论)
16.数列求和倒序相加法:如果一个数列,与首末两端等“距离”的两项的和等于同一常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的(阅读课本39页回顾等差数列求和公式的推导过程)。
17.数列求和错位相减法:数列,其中成等差数列,成等比数列,那么这个数列的前n项和即可用此法来求
[深入探究]:错位相减法步骤是怎样进行的?需要注意哪些问题?
17.数列求和分组求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和。
18.数列求和裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:
___________;_______________________;
若是等差数列,公差为d则
___________;___________;
典型例题:
例题1. 根据下面各数列前几项的值,写出数列的一个通项公式:
(1)–1,7,–13,19,…;(2)…;
(3)…;(4)5,55,555,5555,…;
(5)5,0,–5,0,5,0,–5,0,…;(6)1,3,7,15,31,….
例题2.如果试写出数列的前3项
例题3.已知数列的前项和为,求数列的通项公式;
例题4.(1)已知数列的前项和,则其通项= ;
(2)已知数列的前项和,则其通项= 。
例题5.已知数列.
(1)若,
①数列中有多少项是负数?
②为何值时,有最小值?并求出最小值.
(2)若且对于,都有成立.求实数的取值范围.
例题6.若数列的通项公式为:,设,求数列中的最大项.
例题7.已知数列满足,,令.
(1)求证:数列是等差数列;
(2)求数列的通项公式.
则_______.
例题8.已知数列是等差数列,若,且
,
例题9.在等差数列{a n}中,已知a5+a7=10,S n是数列{a n}的前n项和,则S11的值是 ( ).A.45 B.50 C.55 D.60
例题10.已知S n为等差数列{a n}的前n项和,若S1=1,S2S4=4,则S4S6的值为 ( ).
A.49
B.23
C.35D.4
例题11.等差数列的前项和为,已知,则的最小值为________.
例题12.已知是等差数列,,公差,为其前项和,若成等比数列,则
例题13.数列的前项和为,若,.
(1)求证:数列是等比数列;
(2)并求数列的通项公式.
例题14.在数列中,.
(1)证明数列是等比数列;
(2)求数列的通项公式.
例题15.等比数列满足:,,且公比.
(1)求数列的通项公式;
(2)若该数列前项和,求的值.
例题16.已知首项为的等比数列的前项和为(),且,,成等差数列.
(1)求数列的通项公式;
(2)证明:().
例题17.(1)在等比数列中,已知,, = .
(2)已知各项均为正数的等比数列,,,则____
(3)在等比数列中,,,则 .
例题18.数列的前n项和记为,
(1)求数列的通项公式;
(2)等差数列的各项为正,其前n项和为,且,又成等比数列,求.
例题19.已知数列为等差数列,且,为等比数列,数列的前三项依次为3,7,13.求:(1)数列,的通项公式
(2)数列的前项和.
例题20.设曲线处的切线为,数列的首项(其中常数m为正奇数),且对任意,点均在直线上。
(1)求出的通项公式;
(2)令,当恒成立时,求出n的取值范围,使得。
例题21.已知数列的前n项和为,对一切正整数n,点(S n,n)都在函数的图象上.
(1)求数列的通项公式;
(2)设,求数列的前n项的和T n.
例题22.已知是等差数列,其前n项和为S n,是等比数列,且,.
(1)求数列与的通项公式;
(2)记证明
例题23.已知数列{a n}的前n项和S n,
例题24.已知数列{a n}满足且a1=2,求a n.
例题25.已知数列{a n}满足,,求a n
例题26.,求a n.
例题27.在数列{a n}中,,求通项a n
例题28.在数列{a n}中,,求通项a n.
例题29.已知数列的通项公式,求数列的前n项和。
例题30.求数列的前n项和.
例题31.设数列{a n}满足a1+3a2+32a3+…+3n-1a n=3n,n∈N*.
(1)证明:数列{a n}为等比数列;
(2)设,求数列{b n}的前n项和S n。