2019-2020学年高中数学 应用举例 解三角形学案新人教版必修5.doc
- 格式:doc
- 大小:276.00 KB
- 文档页数:3
2019-2020年高中数学 1.3 解三角形应用举例(2)教学案新人教版必修5一、教学目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神.二、教学重点、难点1.重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系2.难点:灵活运用正弦定理和余弦定理解关于角度的问题三、教学设计(一)预习指导预习教材注意思考以下问题:如何应用正余弦定理解决测量中的实际问题?(二)新课导学1.课题导入2.学习新知★【范例讲解】例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高.例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?3.课堂练习4.课堂小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.(三)作业四、课后反思2019-2020年高中数学 1.3 诱导公式(一)教案新人教A版必修4教学目标(一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.(二)过程与能力目标(1)能运用公式一、二、三的推导公式四、五.(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.(三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质. 教学重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式. 教学难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明. 教学过程 一、复习: 诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二)tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-诱导公式(四)tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒对于五组诱导公式的理解 : ①可以是任意角;公式中的α ②这四组诱导公式可以概括为:符号。
(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
6.解三角形的实际应用举例教学目标 班级:_____ 姓名:____________1.掌握利用正、余弦定理及其推论,掌握方位角,三角形面积计算等问题.2.了解数学建模思想,培养利用数学知识解决实际问题的能力.3.体会数学的实用性.教学过程一、航海问题.1.方位角的识别:(1)方位角:指从正北方向顺时针转到目标方向线的水平角.(2)方向角:从指定方向到目标方向线所成的角.例1:分别用方位角和方向角表示右图中A 、B 的方向.A 点:________________________________________B 点:________________________________________例2:甲船在A 点发现乙船在北偏东60的B 处,乙船以每小时10海里的速度向北行驶,已知甲船的速度是每小时310海里,问甲船应沿什么方向前进,才能最快与乙船相遇?练2:某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角 45,距离为10海里的C 处,并测得渔船正沿方位角为 105的方向,以10海里/小时的速度向小岛B 靠拢,我海军舰艇立即以310海里/小时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.二、三角形的面积公式: 1.高底⨯⨯=21S ;(已知底和高). 2.B ac A bc C ab S sin 21sin 21sin 21===;(已知两边及夹角) 例3:已知的面积为,且,则A=_________.练3:在ABC ∆中,已知23=a ,31cos =C ,34=∆ABC S ,求边b 的长.作业 1.一艘海轮从A 处出发,以40海里/小时的速度沿南偏东40方向直线航行,30分钟后到达B 处,在C 处有座灯塔,海轮在A 处观察灯塔,其方向为南偏东 70,在B 处观察灯塔,其方向为北偏东 65,那么B 、C 之间的距离为多少?。
最新高中数学必修5《应用举例》教案高中数学必修5《应用举例》教案【一】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一. 基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一. 小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。
利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.三.作业:P80 闯关训练高中数学必修5《应用举例》教案【二】教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:.com测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
第一章解三角形1.2应用举例1.2应用举例(第1课时)学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.2.体会数学的应用价值;同时提升运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.合作学习一、设计问题,创设情境问题1:在日常生活和工农业生产中,为了达到某种目的,常常想测得一个点与另一个不可到达的点间的距离或在远处的两个物体之间的距离,这样的想法能实现吗?如何实现呢?例如:一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅.他们经历了令人难以想象的风险,终于打通了一条长400米的隧道,从而大大拉近了闭塞小山村与现代大都市的时代距离.试思考,在隧道未打通之前,我们如何测量小山村与大都市的距离?二、信息交流,揭示规律学习了正弦定理、余弦定理后,上述所提的问题是能够实现的.有时由于条件所限,需要测量像一个点与河对面一点或船到礁石这类不可到达点的距离时,一般作法是在河这边或主航道上发生一段位移,从两个不同地点测出到这个不能到达点的视角及这段位移的长度,从而通过计算得出答案.该作法只将实际问题转化为一个数学问题:已知一个三角形的两角及夹边,要求这个三角形的其中一边,显然只要根据正弦定理,就可以达到目的.例如:当我们想在河这边测出河对面两点之间距离的时候,往往可以这样做:在河这边的两个不同的地点分别测出望河对面两点及另一地点的视角,再结合这两个地点之间的距离,通过应用正弦定理、余弦定理计算求得河对面两点之间的距离.解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.三、运用规律,解决问题【例1】如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51°,∠ACB=75°.求A,B两点的距离(精确到0.1m).问题1:在△ABC中,根据已知的边和对应角,运用哪个定理比较恰当?问题2:运用该定理解题还需要哪些边和角呢?请学生回答.四、变式训练,深化提高【例2】如图,A,B两点都在河的对岸(不可到达),设计一种测量A,B两点间距离的方法.五、限时训练1.海上有A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°视角,则B,C间的距离是()A.10海里B.海里C.5海里D.5海里2.某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰好km,那么x的值为.3.如图,设A,B两点在河的两岸,一测量者在点A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为m.4.为了测量河的宽度,在一岸边选定两点A和B,望对岸的标记物C,测得∠CAB=45°,∠CBA=75°,AB=120m,求河的宽度.六、反思小结,观点提炼解三角形应用题的一般步骤:参考答案一、略二、略三、运用规律,解决问题【例1】解:根据正弦定理,得,≈65.7(m).AB=--答:A,B两点间的距离为65.7米.问题1:从题中可以知道角A和角C,所以角B就可以知道,又因为AC可以量出来,所以应该用正弦定理.问题2:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.四、变式训练,深化提高【例2】解:测量者可以在河岸边选定两点C,D,测得CD=a,并且在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ,在△ADC和△BDC中,应用正弦定理得,AC=-BC=.-计算出AC和BC后,再在△ABC中,应用余弦定理计算出A,B两点间的距离AB=-.五、限时训练1.D2.或23.504.解:如图,在△ABC中,由已知,可得AC==20(3)(m),设C到AB的距离为CD,CD=AC=20(+3)(m),所以河的宽度为20(+3)m.六、反思小结,观点提炼(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.。
人教版必修5课题:《解三角形应用举例》教材:人教版教学目标:(1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题;(3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力;(5)指导学生学会评价分析与改进优化。
教学重点、难点:分析测量问题的实际情景,从而找到合适的测量距离的方法。
教学方法与手段:学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。
教学内容设计:一、情境导入位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示:探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上)测量工具为:测角仪与皮尺首先通过示图,了解测角仪的原理与作用测角仪常用于测量:(1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)图1 图2 图3此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。
二、学生设计方案交流从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。
三、分析与解决问题学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。
交流方案一:(以张靖同学为组长来介绍)如图4,线段CA 表示西塔,线段DB 表示海心塔在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ∆得海心塔与西塔的距离αtan h AB =教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便;(3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。
§ 正弦定理课型:新讲课 编写人: 审查人:【学习目标和要点、难点】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.【学习内容和学习过程】 一、新课导入 试验:固定 ABC 的边 CB 及 B,使边 AC 绕着极点 C 转动. 思虑:C 的大小与它的对边AB 的长度之间有如何的数目关系明显,边 AB 的长度跟着其对角C 的大小的增大而.可否用一个等式把这类关系精准地表示出来二、新课导学研究 1:在初中,我们已学过如何解直角三角形,下边就第一来商讨直角三角形中,角与边的等式关系 . 如图,在 Rt ABC 中,设 BC=a , AC=b , AB=c ,∠ C=90° 依据锐角三角函数中正弦函数的定义,有 a sin A , bsin B ,又 sin C 1 c ,c c c进而在直角三角形 ABC 中, a b c.sin A sin B sin C研究 2:那么对于随意的三角形,以上关系式能否仍旧成立可分为锐角三角形和钝角三角形两种状况:当 ABC 是锐角三角形时,设边 AB 上的高是 CD ,依据随意角三角函数的定义,有 CD= asin B bsin A ,则 a b c bsin A,同理可得 sin C ,sin B sin B 进而 a b c .sin A sin B sin C近似可推出,当ABC 是钝角三角形时,以上关系式仍旧成立.请你试一试导.新知:正弦定理在一个三角形中,各边和它所对角的的比相等,即a bc.sin Asin Bsin C试一试:( 1)在 ABC 中,必定成立的等式是( ).A . a sin A b sinB B. a cosA b cosB C. asin B bsin A D. acosB b cosA( 2)已知△ ABC 中, a = 4, b = 8,∠ A = 30°,则∠ B 等于.[ 理解定理 ]( 1)正弦定理说明同一三角形中, 边与其对角的正弦成正比,且比率系数为同一正数,即存在正数 k 使 a k sin A ,, c k sinC ;( 2) a b c, c b a c. 等价于sin C ,sin A sin C sin A sin B sin Csin B ( 3)正弦定理的基本作用为:①已知三角形的随意两角及其一边能够求其余边,如 ab sin A ;b .sin B②已知三角形的随意两边与此中一边的对角能够求其余角的正弦值, 如 sin Aasin B ; sinC.b( 4)一般地,已知三角形的某些边和角,求其余的边和角的过程叫作 解三角形 .三、讲堂稳固例1.在ABC 中,已知 A 45 , B 60 , a 42 c m ,解三角形.变式:在 ABC 中,已知 B 45 , C 60 , a 12cm ,解三角形.例 2. 在ABC中, c6, A 45 , a 2,求 b和B, C .变式:在ABC中, b3, B 60 ,c 1,求a和A, C .【学习小结】1. 正弦定理:a b c sin A sin B sin C2.正弦定理的证明方法:①三角函数的定义,还有②等积法,③外接圆法,④向量法 . 3.应用正弦定理解三角形:①已知两角和一边;②已知两边和此中一边的对角.【课后作业】基础部分1.在ABC 中,若sin A b,则 ABC 是() . sin B aA.等腰三角形B.等腰三角形或直角三角形C.直角三角形D.等边三角形2.已知△ ABC中, A∶ B∶ C= 1∶ 1∶ 4,则 a∶ b∶ c 等于() .A. 1∶1∶ 4B.1∶1∶2C.1∶ 1∶ 3D.2∶ 2∶ 3 3.在△ ABC中,若sin A sin B ,则 A 与 B 的大小关系为() .A.A BB. A BC.A≥D.A、B 的大小关系不可以确立B4.已知ABC中,sin A :sin B :sinC1:3:3,则 a : b : c =.5.已知ABC中,A60, a 3 ,则a b c=.sin A sin B sin C1.已知△ ABC中, AB=6,∠ A= 30°,∠ B=120,解此三角形.提升部分2. 已知△ ABC中, sinA∶ sinB∶ sinC=k∶ (k+ 1)∶ 2k (k≠0),务实数k 的取值范围为.§余弦定理课型:新讲课编写人:审查人:【学习目标和要点、难点】1.掌握余弦定理的两种表示形式;2.证明余弦定理的向量方法;3.运用余弦定理解决两类基本的解三角形问题.【学习内容和学习过程】复习 1 :在一个三角形中,各=.和它所对角的的相等,即=复习2:在△ABC中,已知c10 ,A=45,C=30,解此三角形.思虑:已知两边及夹角,如何解此三角形呢二、新课导学问题:在ABC 中, AB 、BC 、 CA 的长分别为c、a、 b .rC∵r b r,b a∴ b ? bA c B同理可得:2222bc cos A ,a b cc2 a 2b22abcos C .新知:余弦定理:三角形中任何一边的等于其余两边的的和减去这两边与它们的夹角的的积的两倍.思虑:这个式子中有几个量从方程的角度看已知此中三个量,能够求出第四个量,可否由三边求出一角从余弦定理,又可获得以下推论:cos A b 2c2 a 2,,.2bc[ 理解定理 ],这时 c2a2 b 2( 1)若∠ C= 90,则cosC由此可知余弦定理是勾股定理的推行,勾股定理是余弦定理的特例.( 2)余弦定理及其推论的基本作用为:①已知三角形的随意两边及它们的夹角就能够求出第三边;②已知三角形的三条边就能够求出其余角.试一试:( 1)△ ABC中, a 3 3 ,c 2 , B 150 ,求 b .( 2)△ ABC中,a2,b 2 , c 3 1,求A.三、讲堂稳固例 1. 在△ ABC 中,已知 a 3 , b 2 ,B45 ,求A, C 和 c .变式:在△ ABC中,若 AB= 5 , AC=5,且 cosC=9,则 BC=________.10例 2. 在△ ABC 中,已知三边长 a 3 , b 4 ,c37,求三角形的最大内角.变式:在ABC 中,若 a 2 b 2 c 2 bc ,求∠ A .【学习小结】1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:① 已知三边,求三角;② 已知两边及它们的夹角,求第三边. 知识拓展在△ ABC 中, 22若 a b22若 a b 若 a 2 b 2c 2,则角 c 2,则角 c 2,则角C 是直角; C 是钝角;C 是锐角.【课后作业】基础部分1. 已知 a =3 , c =2,∠ B = 150°,则边 b 的长为() .34 B. 34C.13A.D. 13222. 已知三角形的三边长分别为3、 5、 7,则最大角为().A . 60o °B . 75o °C . 120o °D . 150o °3. 已知锐角三角形的边长分别为2、 3、x ,则 x 的取值范围是( ) .A . 5 x 13B . 13 < x <5C . 2< x < 5D . 5 < x <5uuuruuur uuur 4.uuur uuur uuur 在△ ABC 中, | AB | =3,| AC | =2, AB 与 AC 的夹角为 60°,则 | AB - AC | = ________.5. 在△ ABC 中,已知三边 a 、 b 、 c 知足 b 2a 2 c 2 ab ,则∠ C 等于.1. 在△ ABC 中,已知 a = 7, b = 8, cosC = 13,求最大角的余弦值.14提升部分uuur uuur2. 在△ ABC中, AB= 5, BC= 7, AC=8,求 AB BC 的值 .§ 正弦定理和余弦定理(练习)课型:新讲课编写人:审查人:【学习目标和要点、难点】1.进一步熟习正、余弦定理内容;2.掌握在已知三角形的两边及此中一边的对角解三角形时,有两解或一解或无解等情况.【学习内容和学习过程】一、新课导入复习 1:在解三角形时已知三边求角,用定理;已知两边和夹角,求第三边,用定理;已知两角和一边,用定理.复习 2:在△ ABC中,已知A=,a=252 , b= 50 2 ,解此三角形.6二、新课导学研究:在△ ABC中,已知以下条件,解三角形.①A=,a =25, b= 50 2 ; 6②A=,a =50 6, b=50 2 ;63③A=,a =50, b= 50 2 . 6思虑:解的个数状况为什么会发生变化新知:用以以下图示剖析解的状况(A 为锐角时).已知边 a,b 和AC C C Cb b b b aa a a aA A A AH B B1 H B2H Ba<CH=bsinA a=CH=bsinA CH=bsinA<a<b a b无解仅有一个解有两个解仅有一个解试一试:1.用图示剖析( A 为直角时)解的状况2.用图示剖析( A 为钝角时)解的状况三、讲堂稳固例 1. 在ABC 中,已知a80 , b 100 , A 45 ,试判断此三角形的解的状况.变式:在ABC中,若a1,c 1, C40 ,则切合题意的 b 的值有_____个.2例2.在ABC 中,A60 , b 1 , c 2 ,求a b c的值.sin A sin B sin C【学习小结】1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4.已知三角形两边和此中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种状况).在ABC中,已知 a,b, A ,议论三角形解的状况:①当A为钝角或直角时,一定a b 才能有且只有一解;不然无解;②当 A 为锐角时,假如 a ≥b,那么只有一解;假如 a b ,那么能够分下边三种状况来议论:( 1)若a bsin A ,则有两解;( 2)若a bsin A ,则只有一解;( 3)若a b sin A ,则无解.【课后作业】基础部分1.已知 a、 b 为△ ABC 的边, A、 B 分别是 a、 b 的对角,且sin A2 ,则 ab的值 =) .sin B3b(1245A. B. C. D.33332.已知在△ ABC中, sinA∶ sinB∶ sinC= 3∶ 5∶ 7,那么这个三角形的最大角是().A. 135°B.90°C. 120° D. 150°3.假如将直角三角形三边增添相同的长度,则新三角形形状为() .A.锐角三角形B.直角三角形C.钝角三角形D.由增添长度决定4.在△ ABC中, sinA:sinB:sinC= 4:5:6,则 cosB=.5.已知△ ABC中,bcosC c cosB,试判断△ ABC的形状.1.在 ABC中, a xcm,b2cm , B 45 ,假如利用正弦定理解三角形有两解,求 x 的取值范围.提升部分a、b、 c,且知足1ab sin C2222. 在ABC中,其三边分别为a b c,求角 C.24§应用举例—①丈量距离课型:新讲课编写人:【学习目标和要点、难点】审查人:能够运用正弦定理、余弦定理等知识和方法解决一些相关丈量距离的实质问题【学习内容和学习过程】一、新课导入复习 1 在△ ABC中, b=10, A= 30°,问 a 取何值时,此三角形有一个解两个解无解二、新课导学例 1. 如图,设A、 B 两点在河的两岸,要丈量两点之间的距离,丈量者在在所在的河岸边选定一点C,测出 AC 的距离是55m,BAC= 51,A 的同侧,ACB= 75 . 求 A、B 两点的距离 (精准到 0.1m).发问 1:ABC中,依据已知的边和对应角,运用哪个定理比较适合发问 2:运用该定理解题还需要那些边和角呢剖析:这是一道对于丈量从一个可抵达的点到一个不行抵达的点之间的距离的问题题目条件告诉了边AB 的对角, AC 为已知边,再依据三角形的内角和定理很简单依据两个已知角算出应用正弦定理算出AB边 .AC 的对角,新知 1:基线在丈量上,依据丈量需要适合确立的叫基线 .例 2. 如图, A、B 两点都在河的对岸(不行抵达),设计一种丈量 A、 B 两点间距离的方法 .剖析:这是例 1 的变式题,研究的是两个的点之间的距离丈量问题.第一需要结构三角形,因此需要确立C、D 两点 .依据正弦定理中已知三角形的随意两个内角与一边既可求出另两边的方法,分别求出 AC和 BC,再利用余弦定理能够计算出AB 的距离 .变式:如上图若在河岸选用相距40 米的 C、 D 两点, BCA=60°, ACD=30 ° CDB=45°,BDA =60°求 AB.练:两灯塔 A、B 与大海察看站 C 的距离都等于 a km,灯塔 A 在察看站 C 的北偏东 30°,灯塔 B 在察看站 C南偏东 60°,则 A、 B 之间的距离为多少【学习小结】1. 解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图(2)建模:依据已知条件与求解目标,把已知量与求解量尽量集中在相关的三角形中,成立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)查验:查验上述所求的解能否切合实质意义,进而得出实质问题的解.2.基线的选用:丈量过程中,要依据需要选用适合的基线长度,使丈量拥有较高的精准度.【课后作业】基础部分1.水平川面上有一个球,现用以下方法丈量球的大小,用锐角 45 的等腰直角三角板的斜边紧靠球面, P 为切点,一条直角边 AC 紧靠地面,并使三角板与地面垂直,假如测得 PA=5cm,则球的半径P等于() .A CA. 5cmB. 52cmC. 5( 2 1)cmD. 6cm2. 台风中心从 A 地以每小时20 千米的速度向东北方向挪动,离台风中心30 千米内的地域为危险区,城市 B 在 A 的正东 40 千米处, B 城市处于危险区内的时间为().A.小时B. 1 小时C.小时D.2 小时3. 在ABC 中,已知(a2b2 )sin( A B) (a2b2 )sin( A B) ,则ABC 的形状().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC中,已知a 4,b 6, C 120o,则sin A的值是.5. 一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔 B 在北偏东60o,行驶4 h 后,船抵达C 处,看到这个灯塔在北偏东 15o,这时船与灯塔的距离为km .1. 隔河能够看到两个目标,但不可以抵达,在岸边选用相距3 km 的C、D 两点,并测得∠ACB= 75°,∠ BCD= 45°,∠ ADC= 30°,∠ ADB= 45°, A、 B、C、D 在同一个平面,求两目标 A、 B 间的距离 .提升部分2. 某船在海面 A 处测得灯塔 C 与 A 相距 10 3 海里,且在北偏东30与 A 相距 15 6 海里,且在北偏西75 方向.船由 A 向正北方向航行到B 在南偏西60方向 . 这时灯塔 C 与 D 相距多少海里方向;测得灯塔D 处,测得灯塔B§应用举例—②丈量高度课型:新讲课编写人:审查人:【学习目标和要点、难点】1.能够运用正弦定理、余弦定理等知识和方法解决一些相关底部不行抵达的物体高度丈量的问题;2.丈量中的相关名称 .【学习内容和学习过程】一、新课导入复习 1:在ABC中,cos Ab5 ,则ABC的形状是如何cos B a3复习 2:在 ABC中, a 、b、c 分别为 A、 B、 C的对边,若a : b: c =1:1: 3,求 A:B:C 的值 .二、新课导学新知:坡度、仰角、俯角、方向角方向角---从指北方向顺时针转到目标方向线的水平转角;坡度 ---沿余坡向上的方向与水平方向的夹角;仰角与俯角 ---视野与水平线的夹角当视野在水平线之上时,之下时,称为俯角.称为仰角;当视野在水平线研究:物高度AB 是底部 B 不行抵达的一个建筑物,AB 的方法 .A 为建筑物的最高点,设计一种丈量建筑剖析:选择基线HG,使 H、 G、 B 三点共线,要求 AB,先求 AE在ACE 中,可测得角,要点求AC在ACD 中,可测得角,线段,又有故可求得AC三、讲堂稳固例 1. 如图,在山顶铁塔上 B 处测得地面上一点角=54 40,在塔底 C 处测得 A 处的俯角=50A 的俯1 .已知铁塔 BC部分的高为27.3 m,求出山高CD(精准到 1 m)例 2. 如图,一辆汽车在一条水平的公路上向正东行驶,到 A 处时测得公路南侧远处一山顶D 在东偏南15 的方向上,行驶5km 后抵达B处,测得此山顶在东偏南25 的方向上,仰角为8 ,求此山的高度CD.问题 1:欲求出 CD,思虑在哪个三角形中研究比较适合呢问题 2:在 BCD中,已知 BD 或 BC都可求出 CD,依据条件,易计算出哪条边的长变式:某人在山顶察看到地面上有相距2500西 57°,俯角是60°,测得目标 B 在南偏东米的A、B 两个目标,测得目标78°,俯角是 45°,试求山高.A 在南偏【学习小结】利用正弦定理和余弦定理来解题时,要学会审题及依据题意画方向图,要懂得从所给的背景资猜中进行加工、抽取主要要素,进行适合的简化.在湖面上高h处,测得云之仰角为,湖中云之影的俯角为,则云高为hg sin() .sin()【课后作业】基础部分1. 在ABC中,以下关系中必定成立的是() .A.a b sin A B.a bsin AC.a b sin A D.a bsin A2. 在ABC 中, AB=3,BC= 13 , AC=4,则边 AC 上的高为() .A .3 2B .3 3C .3D .3 32 2 23. D 、C 、B 在地面同向来线上, DC=100 米,从 D 、C 两地测得 A 的仰角分别为 30o 和 45o ,则 A 点离地面的高 AB 等于( )米.A . 100B . 50 3C .50( 3 1)D .50 (3 1)4. 在地面上 C 点,测得一塔塔顶 A 和塔基 B 的仰角分别是 60 和 30 ,已知塔基 B 超出 地面 20m ,则塔身 AB 的高为 _________ m .5. 在ABC 中, b 2 2 , a 2 ,且三角形有两解, 则 A 的取值范围是 .1. 为测某塔 AB 的高度,在一幢与塔AB 相距 20m 的楼的楼顶处测得塔顶 A 的仰角为30°,测得塔基 B 的俯角为 45°,则塔 AB 的高度为多少 m提升部分2. 在平川上有 A 、 B 两点, A 在山的正东, B 在山的东南,且在 A 的南偏西 15°距离300 米的地方,在 A 侧山顶的仰角是 30°,求山高 .§应用举例—③丈量角度课型:新讲课编写人:审查人:【学习目标和要点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些相关计算角度的实质问题【学习内容和学习过程】一、新课导入.复习1:在△ABC中,已知c 2 ,C,且1absin C 3 ,求a,b .32二、新课导学例 1. 如图,一艘海轮从 A 出发,沿北偏东75 的方向航行n mile 后抵达海岛 B,而后从 B 出发,沿北偏东32的方向航行n mile 后达到海岛 C.假以下次航行直接从 A 出发抵达 C,此船应当沿如何的方向航行,需要航行多少距离(角度精准到,距离精准到mile)剖析:第一由三角形的内角和定理求出角ABC,而后用余弦定理算出AC边,再依据正弦定理算出AC边和 AB 边的夹角CAB.例 2. 某巡逻艇在 A 处发现北偏东 45 相距 9 海里的 C处有一艘走私船,正沿南偏东 75 的方向以 10 海里 / 小时的速度向我海岸行驶,巡逻艇立刻以 14 海里 /小时的速度沿着直线方向追去,问巡逻艇应当沿什么方向去追需要多少时间才追追上该走私船手试一试练 1. 甲、乙两船同时从 B 点出发,甲船以每小时10( 3 + 1)km 的速度向正东航行,乙船以每小时20km 的速度沿南偏东60°的方向航行, 1 小时后甲、乙两船分别抵达A、C 两点,求A、 C 两点的距离,以及在 A 点察看 C 点的方向角 .练 2. 某渔轮在 A 处测得在北偏东45°的 C 处有一鱼群,离渔轮9 海里,并发现鱼群正沿南偏东75°的方向以每小时10 海里的速度游去,渔轮立刻以每小时14 海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群【学习小结】1. 已知量与未知量所有集中在一个三角形中,挨次利用正弦定理或余弦定理解之.;2.已知量与未知量波及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐渐在其余的三角形中求出问题的解.拓展已知 ABC的三边长均为有理数, A= 3,B=2,则 cos5是有理数,仍是无理数由于 C5,由余弦定理知cosC a 2b2c2为有理数,2 ab)cosC 为有理数 .因此 cos5cos(5【课后作业】基础部分1.从 A 处望 B 处的仰角为,从 B 处望 A 处的俯角为,则,的关系为().A.B.=C.+=90o D.+=180o2.已知两线段 a 2 ,b 2 2 ,若以 a 、b为边作三角形,则边 a 所对的角 A的取值范围是() .A. (, )B. (0,]636C. (0,)D. (0,]2243.对于 x 的方程 sin Agx sin C0 有相等实根,且 A、B、C 是 ABC 的三个2sin Bgx内角,则三角形的三边a、 b、c 知足() .A.b ac B.a bcC.c ab D. b2ac4.△ ABC 中,已知 a:b:c=( 3+1):( 3 -1): 10 ,则此三角形中最大角的度数为.5.在三角形中,已知 :A,a, b 给出以下说法 :(1)若 A≥ 90°,且 a≤ b,则此三角形不存在(2)若 A≥ 90°,则此三角形最多有一解(3)若 A< 90°,且 a=bsinA,则此三角形为直角三角形,且(4)当 A< 90°, a<b 时三角形必定存在(5)当 A< 90°,且 bsinA<a<b 时,三角形有两解B=90°此中正确说法的序号是.提升部分1. 我舰在敌岛 A 南偏西50以 10 海里 / 小时的速度航行敌舰相距 12 海里的 B 处,发现敌舰正由岛沿北偏西.问我舰需以多大速度、沿什么方向航行才能用10 的方向2 小时追上§应用举例—④解三角形课型:新讲课编写人:审查人:【学习目标和要点、难点】1.能够运用正弦定理、余弦定理等知识和方法进一步解决相关三角形的问题;2.掌握三角形的面积公式的简单推导和应用;3.能证明三角形中的简单的恒等式.【学习内容和学习过程】复习 1:在ABC 中( 1)若 a1,b3, B120,则 A等于.( 2)若 a 3 3 ,b2, C150 ,则c_____.复习 2:在 ABC 中,a33, b 2 , C150,则高 BD=,三角形面积=.二、新课导学研究:在ABC中,边 BC上的高分别记为h a,那么它如何用已知边和角表示h a =bsinC=csinB依据从前学过的三角形面积公式S= 1ah,2S=1代入能够推导出下边的三角形面积公式,absinC,2或 S=,同理 S=.新知:三角形的面积等于三角形的随意两边以及它们夹角的正弦之积的一半.三、讲堂稳固例 1. 在ABC 中,依据以下条件,求三角形的面积( 1)已知 a=, c=, B= ;( 2)已知 B= , C= , b=;( 3)已知三边的长分别为a=,b=,S(精准到 2 ):c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的地区改造成室内公园,经过测量获得这个三角形地区的三条边长分别为 68m, 88m, 127m,这个地区的面积是多少(精准到2)例 2. 在ABC 中,求证:(1) a 2b2sin2 A sin2 B ;c2sin2 C(2) a 2 + b 2 + c2 =2( bccosA+cacosB+abcosC).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 着手试一试练1.在ABC 中,已知a,33cm,B45o,则ABC 的面积是.28cm c练 2. 在ABC 中,求证:c(a cos B b cos A) a 2b2.【学习小结】1. 三角形面积公式:S= 1absinC= = .22. 证明三角形中的简单的恒等式方法: 应用正弦定理或余弦定理, “边”化“角”或“角”化“边”.识拓展三角形面积 Sp( p a)( p b)( p c) ,这里 p1( a b c) ,这就是着名的海伦公式.2【课后作业】 基础部分1. 在 ABC 中, a2,b 3, C 60 ,则 S ABC ( ).A. 23B.3 C. 3D. 322 2. 三角形两边之差为2,夹角的正弦值为 3 ,面积为 9,那么这个三角形的两边长分) .5 2别是(A.3和5B.4和6C.6和 8D.5和 73. 在 ABC 中,若 2cosB sin AsinC ,则 ABC 必定是( )三角形. A. 等腰 B. 直角 C. 等边 D. 等腰直角4. ABC 三边长分别为3,4,6 ,它的较大锐角的均分线分三角形的面积比 是 .5. 已知三角形的三边的长分别为 a 54cm , b 61cm , c 71cm ,则ABC 的面积是 .6. 已知在ABC 中, B=30,b=6, c=6 3 ,求 a 及 ABC 的面积 S .提升部分2. 在△ ABC 中,若 sin A sin B sin C (cos A cos B) ,试判断△ ABC 的形状 .第一章解三角形(复习)课型:新讲课编写人:审查人:【学习目标和要点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些相关丈量距离的实质问题【学习内容和学习过程】一、新课导入复习 1:正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形;②知两边及此中一边所对的角解三角形(要议论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习 2:应用举例①距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为 2 公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变 . 则斜坡长变成 ___.二、新课导学例 1. 在ABC中 tan( A B) 1 ,且最长边为1,tan A tan B ,tan B 1,求角 C的大小及△ABC最短边的长.2例 2. 如图,当甲船位于 A 处时获悉,在其正东方向相距20 海里的 B 处有一艘渔船遇险等候营救.甲船立刻前去营救,同时把信息见告在甲船的南偏西30 o,相距 10 海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前去 B 处营救(角度精准到 1 o)北A2010C例3.在ABC 中,设tan A2c b, 求 A 的值.tan B bB手试一试练 1. 如图,某海轮以 60 n mile/h的速度航行,在A点测得海面上油井P在南偏东 60°,向北航行 40 min 后抵达 B 点,测得油井 P 在南偏东 30°,海轮改为北偏东 60°的航向再行驶 80 min 抵达 C 点,求 P、 C 间的距离.北C60°B30°A60°P练 2. 在△ ABC 中, b= 10,A=30°,问 a 取何值时,此三角形有一个解两个解无解【学习小结】1.应用正、余弦定理解三角形;2.利用正、余弦定理解决实质问题(丈量距离、高度、角度等);3.在现实生活中灵巧运用正、余弦定理解决问题. (边角转变).设在ABC 中,已知三边 a ,b, c ,那么用已知边表示外接圆半径R 的公式是abcRp( p a)( p b )( p c)【课后作业】 基础部分1. 已知△ ABC 中, AB =6,∠ A = 30°,∠ B = 120 ,则△ ABC 的面积为().A . 9B . 18C .9D .18 32.在△ ABC 中,若 c 2a 2b 2ab ,则∠ C=( ) .A . 60°B . 90°C .150°D . 120°3. 在 ABC 中, a 80 , b100 ,A=30°,则 B 的解的个数是( ) .A .0 个B .1 个C .2 个D .不确立的4. 在△ ABC 中, a 32 , b2 3 , cosC1,则 S △ABC _______35. 在 ABC 中, a 、 b 、 c 分别为 A 、 B 、C 的对边,若 a 2b 2c 22bcsin A ,则 A=___ ____.1. 已知 A 、B 、C 为 ABC 的三内角,且其对边分别为a 、b 、c ,若cos B cos C sin B sin C 1 .2( 1)求 A ;( 2)若 a 2 3, b c 4 ,求 ABC 的面积.提升部分2. 在 △ ABC 中, a, b,c 分别为角 2228bc A 、B 、C 的对边, ac b , a =3, △ ABC 的面积为 6,5( 1)求角 A 的正弦值; (2)求边 b 、c.。
2019-2020年高中数学第一章解三角形全套教案新人教A版必修5●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程Ⅰ.课题导入如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。
A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C BⅡ.讲授新课[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又, A 则 b c从而在直角三角形ABC中, C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C同理可得, b a从而 A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A作,C由向量的加法可得则 A B∴()(00j AB A j CBcos900cos90-=+∴,即同理,过点C 作,可得从而类似可推出,当ABC 是钝角三角形时,以上关系式仍然成立。
高中数学必修5 《解三角形》知识点:1、 正弦定理:在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,R 为ABC ∆的外接圆的半径,则有2sin sin sin Ca b c R ===A B . 2、 正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sinC c R =; ②sin 2a RA =,sin 2b RB =,sinC 2c R =; ③::sin :sin :sinC a b c =A B ; ④sin sin sin C sin sin sin Ca b c a b c ++===A +B +A B . 3、 三角形面积公式:111sin sin C sin 222ABC S bc ab ac ∆=A ==B . 4、 余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cosC c a b ab =+-.5、 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos C 2a b c ab+-=. 6、 设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高、角平分线、中线)及周长等基本问题.例1 ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB例2 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值.二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形三、 解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.例4 在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________四、求值问题例5 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+ 和321+=b c,求A ∠和B tan 的值.五、正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际生活中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识。
《解三角形应用举例》教案(1)教学目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.2.通过解决“测量平面上两个不能到达的地方的之间的距离”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.3.进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.4.激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.教学重点难点1.重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;2.难点:根据题意建立数学模型,画出示意图.教法与学法1.教法选择:“提出问题——引发思考——探索猜想——总结规律——反馈训练”;2.学法指导:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.教学过程一、设置情境,激发学生探索的兴趣启发提问1 ∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2 运用该定理解题还需要那些边和角呢?请学生回答.解:测量者可以在河岸边选定两点C 、D CD =a ,并且在C 、D 两点分别测得∠BCA ∠ACD =β,∠CDB =γ,∠BDA =δ∆ADC 和∆BDC 中,应用正弦定理得)sin(δγ+a sin(γa三、思维拓展,课堂交流②两点能相互看到,但不能到达③两点都不能到达课堂检测:四、归纳小结,课堂延展1.教材地位分析解三角形应用举例是在学习了正弦定理、余弦定理的基础上安排的一节应用举例课程,本节主要介绍了正弦定理和余弦定理在测量距离中的应用.教材首先通过例1提出了如何测量从一个可到达点和一个不之间的距离,进一步通过例2解决了两个不可到达点之间的距离问题.本节课是解三角形应用举例形第一阶段.2.学生现实状况分析通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法.但学生对正弦定理和余弦定理适用条件缺乏清晰的概念.因此,本节课遵循学生由具体到抽象,由感性到理性的认知规律,从学生已有的经验出发,设计一系列有意义的数学活动,让学生去探索、去实验、去发现,进一步认识正弦定理和余弦定理,体验三角形在生活中的作用.。
2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。
另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。
只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验●教学重点推导三角形的面积公式并解决简单的相关题目●教学难点利用正弦定理、余弦定理来求证简单的证明题●教学过程Ⅰ.课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。
在ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?生:同理可得,S=bcsinA, S=acsinB师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解Ⅱ.讲授新课[范例讲解]例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
教师课时教案教师课时教案到0.1m) 启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB = ABCACB AC ∠∠sin sin = ABCACB ∠∠sin sin 55= )7551180sin(75sin 55︒-︒-︒︒= ︒︒54sin 75sin 55 ≈ 65.7(m)答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距教师课时教案AC 和BC ,再利用余弦定理可以计算出AB 的距离。
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得 AC = )](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠3。
1.2应用举例1.能够利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题;2.提高运用所学知识解决实际问题的能力,并初步掌握数学建模的思想方法;3.掌握运用正弦定理、余弦定理解决几何计算问题的方法.一、解三角形应用题的步骤解三角形在实际中应用非常广泛,如测量、航海、几何、物理等方面都要用到解三角形的知识,解题时应认真分析题意,并做到算法简练,算式工整,计算正确.其解题的一般步骤是:(1)准确理解题意,尤其要理解应用题中的有关名词和术语;明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,并将已知条件在图形中标出,将实际问题抽象成解三角形模型;(3) 分析与所研究的问题有关的一个或几个三角形,正确运用正弦定理和余弦定理,有顺序的求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位及近似计算要求,回答实际问题.要点诠释:二、解三角形应用题的基本思路实际问题画图数学问题解三角形数学问题的解检验实际问题的解三、实际问题中的一些名词、术语仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:坡角和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i表示。
坡比是坡角的正切值。
方位角与方向角:方位角:一般指正北方向线顺时针到目标方向线的水平角。
方位角的取值范围为0°~360°。
如图,点B的方位角是0α=。
135方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度。
如图为南偏西060);60方向(指以正南方向为始边,向正西方向旋转0如图为北偏东030).30方向(指从正北开始向正东方向旋转0东南方向:指经过目标的射线是正东与正南的夹角平分线.依此可类推西南方向、西北方向等;四、解三角形应用中的常见题型正弦定理和余弦定理解三角形的常见题型有:1.测量距离问题:这类问题的情景一般属于“测量有障碍物相隔的两点间的距离”,在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.2.测量高度问题:这类问题的情景属于“测量底(顶)部不能到达的物体的高度”.测量过程中,要注意选取适量不同的测量点,使测量有较高的精确度.3.测量角度问题:这类问题的情景属于“根据需要,对某些物体定位”.测量数据越精确,定位精度越高典型例题分析【题型一】:距离问题.如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【答案】(1) 28.28米.(2) 26.93米.【思路点拨】(1)这是一道关于求两点之间的距离问题。
2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5•教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。
另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。
只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验•教学重点推导三角形的面积公式并解决简单的相关题目•教学难点利用正弦定理、余弦定理来求证简单的证明题•教学过程I .课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。
在ABC中,边BC CA AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生: h=bsinC=csinBh=cs in A=as inCh=as in B=bs inaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC ,大家能推出其它的几个公式吗?生:同理可得,S=bcsi nA, S=acsi nB师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解n .讲授新课[范例讲解]例1、在ABC中,根据下列条件,求三角形的面积S (精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
2019-2020学年高中数学应用举例解三角形学案新人教版必修5 【学习目标】
1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;
2. 掌握三角形的面积公式的简单推导和应用;
3. 能证明三角形中的简单的恒等式.
【课前体验】
复习1:在∆ABC中
(1)若1,120
a b B
===︒,则A等于.
(2)若a=2
b=,150
C=︒,则c= _____.
复习2:
在ABC
∆中,a=2
b=,150
C=︒,则高BD= ,三角形面积= .
【课堂体验】
探究一:
在∆ABC中,边BC上的高分别记为h
a
,那么它如何用已知边和角表示?
h
a
=bsi nC=csinB
根据以前学过的三角形面积公式S=1
2 ah,
代入可以推导出下面的三角形面积公式,S=1
2
absinC,或S= ,同理
S= .
新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.
探究二:
例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):
(1)已知a=14.8cm,c=23.5cm,B=148.5︒;
(2)已知B=62.7︒,C=65.8︒,b=3.16cm;
(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.
变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)
例2. 在∆ABC 中,求证:
(1)222222sin sin sin a b A B c C
++=; (2)2a +2b +2c =2(bccosA+cacosB+abcosC ).
小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.
练习:
练1. 在∆ABC 中,已知28a cm =,33c cm =,45B =,则∆ABC 的面积是 .
练2. 在∆ABC 中,求证: 22(cos cos )c a B b A a b -=-.
【规律总结】
1.根据所给条件确定三角形的形状,主要有两条途径:(1)化边为角;(2)化角为边 具体方法:①通过正弦定理,②通过余弦定理,③通过面积公式。
2.三角形的面积公式:
(1)S =
21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)S =21ab sin C =21bc sin A =21ac sin B ; (3)S =)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)
sin(2sin sin 2B A B A c +; (4)S =2R 2sin A sin B si n C 。
(R 为三角形外接圆半径)
(5)S =R abc 4;
【课后体验】 (也可以选择课本上的题)
1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).
A. 32 2. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).
A. 3和5
B. 4和6
C. 6和8
D. 5和7
3. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形.
A. 等腰
B. 直角
C. 等边
D. 等腰直角
4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .
5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .
6.已知在∆ABC 中,∠B=30︒,b=6,a 及∆ABC 的面积S .
7. 在△ABC 中,若
sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.
【直击高考】
1.(辽宁卷文17)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3
C π=.
(Ⅰ)若ABC △a b ,; (Ⅱ)若sin 2sin B A =,求ABC △。