动能定理典型分类例题经典题型
- 格式:docx
- 大小:39.82 KB
- 文档页数:10
动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。
动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。
动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。
动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。
例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。
可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。
由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。
为了计算物体的末速度,我们需要知道物体移动的路程。
d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。
【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。
该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。
高中物理动能定理解析例题(一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?4a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?4b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少?5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .6、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. S 2S 1LV 0V 0vmB7. 如图8-30所示,长为L ,质量为m1的木板A 置于光滑水平面上,在A 板上表面左端有一质量为m2的物块B ,B 与A 的摩擦因数为μ,A 和B 一起以相同的速度v 向右运动,在A 与竖直墙壁碰撞过程中无机械能损失,要使B 一直不从A 上掉下来,v 必须满足什么条件(用m1、m2、L 、μ表示)?倘若V0已知,木板B 的长度L 应满足什么条件(用m1、m2、V0、μ表示)?(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +2a 、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 表达式:Ek = 动能是标量,是状态量 单位:焦耳( J )221mv 2、动能定理内容:合力对物体所做的功等于物体动能的变化。
3、动能定理表达式:二、经典例题例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合 表达式:=-S f F )(221mv得到牵引力:N kmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。
两阶段的联系是,前一段的末速度等于后一段的初速度。
考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。
解析 这里提供三种解法。
解法一(应用牛顿第二定律与运动学公式求解):石头在空中做自由落体运动,落地速度gH v 2=在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有v2=2ah ,解得g hH a =由牛顿第二定律,ma mg F =-所以泥对石头的平均阻力N=820N 。
10205.005.02)()(⨯⨯+=⋅+=+=+=mg h h H g h H g m a g m F 例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
1、如图所示,质量m=0.5kg 的小球从距地面高H=5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次? (g 取10m /s 2)2、如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜面的动摩擦因数为μ,从距挡板为s 0的位置以v 0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P 碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s.3、有一个竖直放置的圆形轨道,半径为R ,由左右两部分组成。
如图所示,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给一个质量为m 的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 轨道回到点A ,到达A 点时对轨道的压力为4mg1、求小球在A 点的速度v 02、求小球由BFA 回到A 点克服阻力做的功4、如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一根光滑的细钉,已知OP = L /2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .则:(1)小球到达B 点时的速率?(2)若不计空气阻力,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在小球从A 到B 的过程中克服空气阻力做了多少功?5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。
动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。
第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。
根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。
1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。
3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。
4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。
因此,第二个物体碰撞后向前运动的速度为4/3m/s。
动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与力的关系。
根据动能定理,物体的动能的变化等于作用在物体上的合外力的做功。
动能定理题型主要包括以下几类:1. 给定物体的质量、速度和加速度,求物体所受合外力的大小和方向。
例题:一个质量为2kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体所受合外力的大小和方向。
2. 给定物体的质量、速度和作用在物体上的合外力,求物体的加速度。
例题:一个质量为3kg的物体受到作用力为15N的力,使其速度从5m/s增加到15m/s,求物体的加速度。
3. 给定物体的质量、速度和加速度,求物体在某段距离上所做的功。
例题:一个质量为4kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体在这段距离上所做的功。
4. 给定物体的质量、速度和作用在物体上的合外力,求物体在某段距离上所做的功。
例题:一个质量为5kg的物体受到作用力为20N的力,使其速度从8m/s增加到20m/s,求物体在这段距离上所做的功。
解题时,首先需要根据题目给出的条件,利用动能定理的公式进行计算。
公式为:物体的动能变化等于作用在物体上的合外力的做功,即ΔKE = W。
然后,根据题目所求的量,进行代入计算。
注意单位的转换,确保计算结果的准确性。
最后,根据题目所给的信息,判断物体所受合外力的方向以及物体在某段距离上所做的功的正负。
通过练习动能定理题型,可以帮助学生巩固对动能定理的理解,并提高解题能力。
在解题过程中,需要灵活运用物理学的知识,结合实际情况进行分析和计算,培养学生的物理思维能力和解决问题的能力。
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
动能定理经典试题
1. 一个质点从静止出发,在水平面内受到一个力推动,速度逐渐增加到v。
求质点的动能增量。
答:动能增量为K = 1/2 mv^2
2. 一个质点从A点自由落体到B点,质量为m,A点高度为h,B点速度为v。
求质点在AB段的动能变化。
答:A点动能为0,B点动能为1/2 mv^2;因为质点自由落体,满足势能变化等于动能变化,所以质点在AB段的动能变化为
K = mgh - 1/2 mv^2。
3. 一个滑雪者从山顶出发,滑到平地,总下落高度为h,滑雪
者质量为m,摩擦力不计。
求滑雪者的最终速度。
答:由能量守恒原理,滑雪者的势能转化为动能,即mgh =
1/2 mv^2,解得v = (2gh)^1/2。
学习目标1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
动能定理典型例题【例题】1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力。
2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。
拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度静止在水平面上,求物体在水平面上滑动的位移。
4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端的速度。
拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少?拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。
类型题题型一:应用动能定理求解变力做功1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为()A.mgLcos0 B.FLsinθC.FLθ∙D.(1cos).-mgLθ2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面上以速度V向右匀速运动的人拉着,设人从地面上由平台的边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少?3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R过程中拉力对小球做的功多大?4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C 点刚好停止。
21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 动能是标量,是状态量 单位:焦耳( J )表达式:Ek = 221mv2、动能定理内容:合力对物体所做的功等于物体动能的变化。
3、动能定理表达式:二、经典例题例1、一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力.例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)图5—45例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。
(2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。
例题4. 一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 很缓慢地移动到Q 点,如图所示,则力F 所做的功为 ( CA .θcos mglB .θsin FlC .)cos 1(θ-mglD .)cos 1(θ-Fl例题5、如图所示,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好从圆轨道的定点C水平抛出,求水平力.机械能守恒定律及其应用内容:成立条件:1、质量为m的物体,从静止开始以2g的加速度竖直向下运动的位移为h ,空气阻力忽略不计,下列说法正确的是()A.物体的重力势能减少mgh B.物体的重力势能减少2mghC.物体的动能增加2mgh D.物体的机械能保持不变2、下列关于机械能守恒的说法中正确的是()A.做匀速运动的物体,其机械能一定守恒B.做匀加速运动的物体,其机械能一定不守恒C.做匀速圆周运动的物体,其机械能一定守恒D.除重力做功外,其他力做的功之和为零,物体的机械能一定守恒3、质量为m的小球,从离桌面H高处由静止下落,桌面离地高度为h,若以桌面为参考平面,那么小球落地时的重力势能及整个过程中小球重力势能的变化分别为A.mgh,减少mg(H-h) B.mgh,增加mg(H+h)C.-mgh,增加mg(H-h) D.-mgh,减少mg(H+h4、质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,下列说法中正确的是:(g=10m/s2) ( )A.手对物体做功12J B.合外力对物体做功12JC.合外力对物体做功2J D.物体克服重力做功10J5、在做“验证机械能守恒定律”的实验时,请从以下列出的步骤中将合理的步骤选出来,并按合理的顺序把它们的字母代号依次填在横线上_________.(A)用毫米刻度尺测量起点与各计数点间的距离,并记录数据(B)将纸带固定在重锤上(C)用天平测出重锤的质量(D)将纸带穿过打点计时器,并将重锤提高使之靠近打点计时器(E)把打点计时器接在直流低压电源上(H)合上开关,接通电源,放开纸带(I)拆除并整理仪器(J)把打点计时器接在交流低压电源上(K)切断电源、更换纸带,重新进行两次实验(L)在三条纸带中选出第一、第二两点间的间距最接近2mm且点迹清晰的一条纸带、(M)根据测量数据进行计算,得出结论14.(5分)在《验证机械能守恒定律》的实验中,电源频率是50Hz。
h H 2-7-2 动能和动能定理经典例题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为多少?例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5某同学从高为h 处水平地投出一个质量为m 的铅球,测得成绩为s ,求该同学投球时所做的功.例6 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例7 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-3 θ F O PQ l例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
答案为6.21m/s。
2.一个质量为M的物体以v=0的初速度沿倾角为α的斜面上滑,物体与斜面的摩擦系数为μ,求物体在斜面上滑行L 的距离时的速度。
答案为v=sqrt(2gLsinα/(1+μcosα))。
1.求木块达到的最大高度(不考虑空气阻力)和回到地面时的速度。
2.一个质量为10kg的物体在斜面上受到F=200N的推力,斜面与水平地面的夹角为37度,斜面固定不动。
物体从静止开始沿着斜面运动,F作用2m后撤去,再经过2秒最后速度减为零。
求物体与斜面间的动摩擦因数μ和物体从开始沿斜面运动到速度为零时间内的总位移S。
已知sin37°=0.6,cos37°=0.8,g=10m/s²。
3.一个质量为10kg的物体在斜面上受到平行于斜面的拉力F作用,斜面与物体间的动摩擦因数为0.1.当物体运动到斜面中点时,去掉拉力F,物体刚好能运动到斜面顶端停下,斜面倾角为30°。
求拉力F的大小。
g=10m/s²。
4.如图所示,一个小滑块从斜面顶点A由静止滑至水平部分C点而停止。
已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同。
求此动摩擦因数。
5.一个物块从斜面上的A处由静止滑下,在由斜面底端进入水平面时速度大小不变,最后停在水平面上的B处。
已知A、B两点间的水平距离为s,A高为h,物体与斜面及水平面的动摩擦因数相同。
求此动摩擦因数μ。
6.一个人以初速度v将一个质量为m的物体竖直向上抛出,上升的最大高度为h,空中受的空气阻力大小___为f。
求人在此过程中对球所做的功。
7.一个人站在距地面高h=15m处,将一质量为m=100g的石块以v=10m/s的速度斜向上抛出。
若不计空气阻力,求石块落地时的速度v。
若石块落地时速度的大小为vt=19m/s,求石块克服空气阻力做的功W。
8.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v,当它落到地面时速度为v。
用g表示重力加速度,则在此过程中物块克服空气阻力所做的功是多少?9.物体以速度V1竖直向上抛出,物体落回原处时速度大小为V2,设空气阻力保持不变。
求物体上升的最大高度和阻力与重力之比。
10.将一质量为m的小球以v竖直上抛,受到的空气阻力大小不变,最高点距抛出点为h。
求空气阻力的大小。
1.如图所示,一滑雪者在斜坡上滑行,滑行距离为L,滑行过程中,重力做功Wg,摩擦力做功Wf,滑雪者的动能增加了△E。
若滑行距离为2L,重力做功2Wg,摩擦力做功2Wf,求滑雪者动能增加的大小。
2.如图所示,一滑雪者从斜坡顶端出发,滑行到斜坡底端,滑行距离为L,斜坡的倾角为θ,重力加速度为g,滑雪者的质量为m。
在滑行过程中,滑雪者受到重力和摩擦力的作用,摩擦力的大小为μmg,其中μ为摩擦系数。
求滑雪者滑行到底端时的速度大小。
3.如图所示,一滑雪者从斜坡顶端出发,滑行到斜坡底端,滑行距离为L,斜坡的倾角为θ,重力加速度为g,滑雪者的质量为m。
在滑行过程中,滑雪者受到重力和摩擦力的作用,摩擦力的大小为μmg,其中μ为摩擦系数。
若滑雪者从斜坡顶端出发时速度为v0,求滑雪者滑行到底端时的速度大小。
运营前需要进行各项测试,其中包括测试列车的最大运行速度和加速度等参数。
假设一辆测试列车质量为m,最大运行速度为v,加速度为a,求:1)列车行驶时所需的最大功率P;2)列车行驶时所需的最小功率P;3)列车行驶时所需的平均功率P。
2.汽车是我们日常生活中常见的交通工具,汽车的发动机功率是衡量汽车性能的重要指标之一。
假设一辆汽车的质量为m,行驶速度为v,行驶时所受到的空气阻力为F,求:1)汽车行驶时所需的最大功率P;2)汽车行驶时所需的最小功率P;3)汽车行驶时所需的平均功率P。
3.电动汽车是一种新型的环保交通工具,它的驱动方式是电动机。
假设一辆电动汽车的质量为m,最大速度为v,电动机的最大输出功率为P,求:1)电动汽车行驶时所需的最大功率P;2)电动汽车行驶时所需的最小功率P;3)电动汽车行驶时所需的平均功率P。
运营前需要进行测试。
在一次测试中,列车从静止加速到最大速度360 km/h所用时间为550秒。
已知列车总质量为4.4×10^5 kg,列车所受牵引力的总功率为8800 kW,列车在运动中所受的阻力大小不变。
在这次测试中,当速度为180km/h时,列车的加速度大小为多少?在550秒内,列车通过的路程是多少?假设质量为M的列车以恒定功率P沿平直轨道从静止开始行驶,受到的阻力大小恒为f,从静止到最大速度所经历的时间为t。
求出最大速度V和列车经过的位移S。
摩托车做特技表演时,以10 m/s的初速度冲向高台,然后从高台水平飞出。
在冲向高台的过程中,摩托车以1.8 kW 的额定功率行驶,冲到高台上所用时间为16秒,人和车的总质量为1.8×10^2 kg,台高为5.0m,摩托车的落地点到高台的水平距离为7.5m。
不计空气阻力,取g=10m/s^2.求摩托车从高台飞出到落地所用时间、落地时速度的大小以及摩托车冲上高台过程中克服阻力所做的功。
质量为500t的列车以恒定功率沿平直轨道行驶,在3分钟内行驶了2160m。
这一过程中速度由10m/s增加到最大速度15m/s。
求机车的功率(g=10m/s^2)。
京沪高铁系统包括轨道系统、车辆系统、信号系统、供电系统、调度系统。
动车组车辆系统是把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车。
动车组由几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组。
在某次运行中,因为这趟车客流比较多,用了8节动车和8节拖车组成动车组。
假设每节动车的额定功率都相等,且行驶中每节动车在同一时刻的实际功率均相同。
在行驶过程中,动车组所受的总阻力恒定为1.2×10^5 N,动车组的总质量为320t。
开始时,动车组从静止以恒定加速度0.5 m/s^2启动做直线运动,达到额定功率后再做变加速直线运动。
总共经过372.8秒的时间加速后,保持功率不变,动车组开始以最大速度306 km/h匀速行驶。
求动车组的额定功率、动车组匀加速运动的时间以及动车组在变加速运动过程中所通过的路程(计算结果保留3位有效数字)。
本文探讨了滑动摩擦力所做的功以及为什么不存在“摩擦力势能”的概念。
首先,我们需要明确滑动摩擦力所做的功。
当物体在水平面上滑动时,摩擦力会阻碍其运动。
这时,摩擦力所做的功等于摩擦力与物体移动的距离的乘积。
与此同时,弹力也会对物体做功,这是因为物体在受到弹力作用时会发生形变,而弹性势能会转化为动能。
因此,摩擦力和弹力都会对物体做功,但它们的性质是不同的。
其次,我们需要解释为什么不存在“摩擦力势能”的概念。
一般来说,势能可以定义为一个系统的状态所具有的潜在能量。
在重力场中,物体的势能可以通过其高度来计算。
而在电场中,电荷的势能可以通过其位置和电势差来计算。
然而,摩擦力并没有一个对应的“势能”概念。
这是因为摩擦力是由物体之间的接触面和表面粗糙度等因素决定的,而这些因素的变化并没有一个明确的规律可言。
因此,我们无法将摩擦力转化为一个具有普适性的势能概念。
综上所述,本文阐述了滑动摩擦力所做的功以及为什么不存在“摩擦力势能”的概念。
我们需要注意的是,在物理学中,不同类型的力具有不同的性质和作用方式,我们需要具体分析每个力的特点和作用,以便更好地理解其在物理系统中的作用。