初中数学应用题归纳总结完整版
- 格式:docx
- 大小:73.76 KB
- 文档页数:2
数学应用题公式大全一、和差倍数问题1、和差问题(求两数之和与差)大数=和+差÷2小数=和-大数=差+大数2、和倍问题(已知两个数的和,又知其中的一个数是另一个数的几倍,求另一个数)和÷(倍数+1)=小数小数×倍数=大数或者和-小数=大数)3、差倍问题(已知两个数的差,又知其中的一个数是另一个数的几倍,求另一个数)小数=差÷(倍数-1)小数+差=大数或者小数×倍数=大数二、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间三、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间四、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 五、鸡兔同笼问题鸡数=(兔头数×4-总头数)÷2兔数=(总头数-鸡头数)÷2六、植树问题与方阵问题1、植树问题的模型: (1)分清棵树与间隔的关系 (2)画图分析 (3)标出已知数据与未知数据 (4)列方程求解。
5若在封闭图形上栽树则棵树等于间隔数。
6若在环行图形上栽树则棵树与间隔数相等。
7若在方形图形上栽树则四个角上各栽一棵并且棵树等于行数列数之和。
8若在三角形图形上栽树则棵树等于行数列数之积。
9若在长方形图形上栽树则棵树等于行数的平方列数的积。
10若在等腰梯形图形上栽树则棵树等于(上底+下底)×高÷2。
11若在五角星形图形上栽树则棵树等于顶点数×2-1。
12若在正六边形图形上栽树则棵树等于边数。
13若在正n边形图形上栽树则棵树等于顶点数×(n-2)。
14若在求各种形状的周长与面积时也可栽培树。
方法是在第一象限内顺次连接图形各点两点之间划断两点之间栽一棵树。
初中数学常见应用题归纳【文章】初中数学常见应用题归纳数学是一门应用广泛、内容丰富的学科,而在初中阶段,我们学习的数学知识也逐渐增多,其中包括了很多常见的应用题。
在这篇文章中,我将对初中数学常见应用题进行一个归纳,以帮助我们更好地理解和应对这些题型。
一、图形的面积和周长1. 矩形的面积和周长矩形是最常见的图形之一,其面积计算公式为:面积=长×宽,周长计算公式为:周长=2×长+2×宽。
我们需要注意将题目中给出的长度、宽度代入公式进行计算。
2. 三角形的面积三角形的面积计算公式为:面积=底×高÷2。
其中,底和高指的是三角形的底边和垂直于底边的高。
在计算时,需注意正确地选取底和高,并将其代入公式进行计算。
3. 圆的面积和周长圆的面积计算公式为:面积=πr²,其中π≈3.14,r为圆的半径。
圆的周长计算公式为:周长=2πr。
当题目中给出了半径或直径时,我们可直接代入公式计算;若未给出,则需根据已知信息推算出半径或直径,再进行计算。
二、比例和百分数1. 比例的计算比例是一种表示两个或多个物体或量之间关系的方式。
计算比例时,需将题目中给出的各个物体或量代入比例式中,再进行计算。
例如,确定两个长度的比例,可用公式:比例=较大的长度÷较小的长度。
2. 百分数的计算百分数是一种表示数值相对大小的方式,以百分号“%”表示,相当于除以100。
计算百分数时,需将题目中给出的部分或整体数量代入百分比公式中,再进行计算。
如计算某数占总数的百分比,可用公式:百分数=某数÷总数×100%。
三、速度、时间和距离1. 速度的计算速度是表示物体在单位时间内移动的距离,计量单位通常为米/秒(m/s)。
计算速度时,需将题目中给出的距离和时间代入速度公式中,再进行计算。
公式为:速度=距离÷时间。
2. 时间和距离的计算时间和距离之间有着紧密的关系。
完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
分数乘除法应用题解题方法总结汇总在初中数学的学习过程中,分数乘除法是一个很重要的知识点。
而应用题更是能够帮助我们更好地掌握这个知识点。
因此,在本文中,我们将会就分数乘除法的应用题解题方法进行详细的总结和归纳,以便同学们更好地掌握和运用这一知识点。
一、分数的乘法1.1 两个分数相乘实际应用题中,两个分数相乘时,需要转化为通分后再相乘,最后再约分。
例如:有一块长方形土地,面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩。
求这块土地的长度。
解法:由于面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩,所以这块土地的长度可以表示为:$\text{长度} = \dfrac{\text{面积}}{\text{宽度}}=\dfrac{\frac{3}{4}}{\frac{3}{5}}=\dfrac{5}{4}\times\dfrac{5}{3}=\dfrac{25}{12}$ 亩。
因此,这块土地的长度为$\frac{25}{12}$ 亩。
1.2 分数与整数相乘实际应用题中,分数与整数相乘时,先将整数化为分数,然后再进行通分运算。
例如:小明拥有$\frac{3}{5}$ 米宽的布料,他要用这些布料为客户定制长为2.6 米的窗帘。
他需要多少米的布料?解法:首先,将 2.6 米化为$\frac{26}{10}$ 米,然后将$\frac{26}{10}$ 与$\frac{3}{5}$ 相乘,即$\text{所需布料}=\frac{26}{10}\times\frac{3}{5}=\frac{26\times3}{10\times5}=\frac{ 39}{25}$ 米。
因此,小明需要$\frac{39}{25}$ 米的布料。
二、分数的除法2.1 分数与整数相除在实际应用题中,分数与整数相除时,可将整数化为分数,然后将两个分数相除,最后约分。
例如:某场馆共有150 个座位,其中$\frac{2}{5}$ 的座位已售出。
应用题练习 行程问题1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?2、甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?3、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?二、工程类问题1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,则甲桶剩的水是乙桶所剩的4倍。
问每桶放出了多少升水?2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。
如果甲完成任务的31以后,由乙完成其余部分,则两人共用1小时50分钟。
间由甲、乙两人单独完成分别要用几小时?3、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产4、*工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?5、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。
初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。
所以小明的爸爸实际支付了400元。
2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。
男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。
女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。
因此,需要选出2名男生和1名女生。
3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。
答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。
4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。
所以合格的零件数为100个 - 2个 = 98个。
5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。
5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。
原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。
6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。
如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。
单位的一致等。
内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。
应用题公式大全及题解应用题是指将数学知识应用于实际问题的题目,涉及各个领域的应用题都有相应的公式和解题方法。
下面我将从几个常见的应用题领域,包括几何、代数、概率与统计等,给出一些常用的公式,并附上相应的题解。
1. 几何应用题:长方形的面积公式,面积 = 长× 宽。
三角形的面积公式,面积 = 底边长× 高 / 2。
圆的面积公式,面积= π × 半径²。
三角形的余弦定理,c² = a² + b² 2abcos(C),其中c为斜边,a、b为两边,C为夹角。
直角三角形的勾股定理,c² = a² + b²,其中c为斜边,a、b为两边。
2. 代数应用题:一元二次方程的求解公式,x = (-b ± √(b² 4ac)) / (2a),其中a、b、c为方程的系数。
等比数列的通项公式,an = a1 × r^(n-1),其中a1为首项,r为公比,an为第n项。
等差数列的前n项和公式,Sn = (a1 + an) × n / 2,其中a1为首项,an为第n项,n为项数。
3. 概率与统计应用题:事件的概率公式,P(A) = 事件A发生的次数 / 总次数。
互斥事件的概率公式,P(A或B) = P(A) + P(B)。
独立事件的概率公式,P(A且B) = P(A) × P(B)。
正态分布的概率计算,根据正态分布的性质,可以使用标准正态分布表或计算器进行计算。
以上仅是一些常见的应用题公式,实际问题可能更加复杂,需要根据具体情况选择合适的公式和解题方法。
下面我将给出一个应用题的题解示例:示例题目,一个长方形的长是5cm,宽是3cm,求其面积和周长。
解题过程:面积 = 长× 宽= 5cm × 3cm = 15cm²。
周长= 2 × (长 + 宽) = 2 × (5cm + 3cm) = 2 × 8cm =16cm.所以,该长方形的面积是15cm²,周长是16cm。
初中应用题知识点归纳与整理初中数学的应用题是对所学知识的综合运用和实际应用的体现,能够提高学生的数学运算能力和解决问题的能力。
在学习初中数学应用题时,我们需要了解各个知识点的应用方法和解题思路。
本文将对初中应用题中常见的知识点进行归纳与整理,帮助同学们更好地掌握数学知识。
一、百分数与利润问题百分数是初中数学中常见的知识点,它可以表示比例关系,常常与问题中的利润联系在一起。
在解决利润问题时,我们需要了解以下知识点:1. 百分数的含义和计算方法:百分数表示比例关系,可以通过百分数=部分/整体×100%来计算。
2. 利润的计算方法:利润是指销售价格减去成本价格得到的差额,利润率是利润与成本价格的比值。
二、比例与图形相关问题比例是初中数学中的重要概念之一,它与图形相关问题的解决密切相关。
在解决比例与图形相关问题时,需要掌握以下知识点:1. 比例的性质和计算方法:比例是指两个或多个数之间的相对关系,可以通过比例等式进行计算。
2. 图形的面积计算方法:不同图形的面积计算公式不同,如矩形的面积=长×宽,三角形的面积=底边长×高/2等。
三、速度与距离的关系问题速度与距离的关系是初中数学中较为常见的应用题类型之一。
在解决速度与距离的关系问题时,需要了解以下知识点:1. 速度的定义和计算方法:速度是指单位时间内运动的距离,可以通过距离/时间来计算。
2. 平均速度和相对速度:平均速度是指总路程与总时间的比值,相对速度是指两个运动物体之间的相对速度。
四、几何问题几何是初中数学中的重要内容,涉及到平面几何和立体几何两个方面。
在解决几何问题时,需要掌握以下知识点:1. 几何图形的性质:不同几何图形有不同的性质,如矩形的对角线相等,三角形的内角和为180°等。
2. 图形的分类与判断:通过对图形的特征和性质进行判断和分类,可以更好地解决几何问题。
五、函数问题函数是初中数学中的重要内容,涉及到函数的定义、性质和应用等方面。
初中数学应用题解法的关键知识点汇总数学是一门应用广泛的学科,它运用数学理论和方法解决实际问题。
初中数学应用题是数学学习的重要组成部分,通过解答这些题目,学生能够培养逻辑思维、推理能力和问题解决能力。
下面是初中数学应用题解法的关键知识点汇总。
一、代数应用题代数应用题是指通过代数符号与运算解决实际问题的题目。
解决代数应用题的关键知识点包括:1. 代数式的建立:根据题目中的条件,用代数符号表示未知数,并建立代数式。
2. 方程的解法:通过解方程来求解未知数的值。
常见的解方程方法包括等式法、因式分解法、配方法、代入法等。
需要注意的是,在解方程的过程中,要注意化简、整理方程,将方程化为最简形式,得出准确的解。
3. 消元法:通过加减乘除等运算,根据已知条件将方程中的未知数相互消去,得到与未知数有关的简单等式,从而求解未知数。
4. 比例与相似:代数应用题中经常涉及比例和相似的概念,需要掌握比例关系、比例的性质和比例运算方法,以及相似三角形的判定条件和性质。
5. 不等式:在一些问题中,需用不等式表示条件,解不等式方程组或不等式,并判断解的范围。
二、几何应用题几何应用题是指通过几何图形和几何性质解决实际问题的题目。
解决几何应用题的关键知识点包括:1. 图形的性质:了解各种几何图形的性质,包括平行线的性质、垂直线的性质、同位角与内错角的关系等。
2. 直角三角形应用:根据直角三角形的性质,应用勾股定理、正弦定理和余弦定理解决问题。
3. 相似三角形应用:根据相似三角形的性质,应用相似比例、相似三角形的面积关系等解决问题。
4. 圆的性质与应用:掌握圆的周长、面积的计算方法,应用圆的性质解决问题,如相切、相交问题等。
5. 空间几何体应用:了解各种空间几何体的性质,包括立体图形的表面积和体积的计算方法,应用这些知识解决空间几何体的问题。
三、统计与概率应用题统计与概率应用题是指通过统计数据和概率理论解决实际问题的题目。
解决统计与概率应用题的关键知识点包括:1. 数据的收集和整理:学会通过调查、观察等方式收集数据,并进行整理、分类和汇总。
初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。
在初中阶段,学生们学习了许多数学知识,包括各种应用题。
应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。
在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。
一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。
它们涉及到两个或多个变量之间的比例关系。
在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。
常见的比例问题包括物品的价格比例,速度的比例等。
2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。
例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。
解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。
这种类型的应用题在生活中非常常见。
二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。
例如,求解一个商品的打折率,或者计算考试成绩的百分比。
当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。
2. 利率问题利率问题涉及到利息的计算和相关问题。
例如,计算存款利息、贷款利率等。
在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。
三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。
例如,求解一组考试成绩的平均分。
在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。
平均数在生活中应用广泛,有助于我们对数据进行整体把握。
2. 中位数问题中位数问题要求我们找到一组数据的中间值。
例如,找到一组数中位于中间位置的值。
在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。
中位数在统计和排序等领域有重要的应用。
四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。
1. 路程=速度×时间时间=路程÷速度速度=路程÷时间追击问题追击者所走的路程=前者所走的路程+两者之间的距离相遇问题总路程=甲所走的路程+乙所走的路程环形跑道问题甲乙两人在环形跑道上同时同地同向出发,快的必须多跑一圈才能追上慢的甲乙两人在环形跑道上同时同地反向出发,两人相遇的总路程为环形跑道一圈长度2. 工作总量=工作效率×工作时间合作:效率相加,即每天的工作量相加3、 溶质质量(酒精)=溶液质量(酒精加水)×浓度溶液质量=溶质质量÷浓度浓度=溶质质量÷溶液质量4、航行问题顺水速度=静水速度+水速逆水速度=静水速度-水速静水速度=21(顺水速度+逆水速度) 水流速度=21(顺水速度-逆水速度)5.商品销售问题利润=售价-进价利润率=(商品利润÷商品成本)×100%6、打折打几折:即十分之几或百分之几十例如:打八打即108或80%7、储蓄问题 利率=(利息÷本金)×100%利 息=本金×利率×期数时间本息和=本金+利息税后利息=本金×利率×时间×(1-20%)8、电的问题应缴电费=1度电的费用×灯的功率(千瓦)×照明时间总费用=灯价+电费9、增长率问题N次(N年)连续上升a%=底数×(1+ a%)nN次(N年)连续下降a%=底数×(1- a%)n10、出租车问题乘车费用=起步价+超出钱数×(总路程-起步路程)11、用水(用气、用电)费用=标准价+超出钱数×(总水量-标准水量)12、等体积变形中“形变,体不变”变形前后体积相等13、一个三位数,个位是c.十位上b,百位上a,这个三位数的表示为100a+10b+c如果是数字之间对调位置,要找出新数与原数之间关系分式方程应用题的常见类型类型1 工程问题工作总量=工作效率×时间合作是效率相加类型2 行程问题路程=时间×速度类型3 销售问题总价=单价×数量方法就是有两个过程列表格找各自对应。
初中数学应用题例题总结在初中数学学习过程中,应用题是不可或缺的一部分。
通过解决应用题,学生不仅可以将所学的数学知识应用于实际问题中,还可以培养解决问题的能力。
本文将总结几个常见的初中数学应用题例题,帮助同学们更好地理解和掌握解题方法。
一、含义类应用题1. “个旗子排成一列,若每个旗子上都涂上一个不同的数字,使得左右两边的数字之和相等。
”请问,若共有5个旗子,应涂写哪几个数字?解答:根据题目要求,我们可以列出方程式:第一个数字 + 第五个数字 = 第二个数字 + 第四个数字。
由于共有5个旗子,我们可以设第一个数字为1,第五个数字为n(n为正整数)。
将方程代入数字后,可得出以下结果:1 + n = 2 + (n-1),整理方程后得 n=3。
因此,应涂写的数字为1、2、3、2、1。
2. “甲、乙两人年龄之和为30岁,甲比乙大5岁。
请问他们的年龄是多少?”解答:设甲的年龄为x岁,那么乙的年龄就是x-5岁。
根据题目给出的条件,我们可以列出方程式:x + (x-5) = 30。
整理方程后,得到2x - 5 = 30。
继续整理,得到2x = 35,最后得到x = 17.5。
因为年龄是整数,所以17.5岁不符合实际生活情况。
因此,我们应该找到符合实际情况的整数解。
结合题目条件,我们可以得到甲的年龄为22岁,乙的年龄为27岁。
二、几何类应用题1. “一个矩形的长是宽的4倍,矩形的长和宽的和为40。
请问这个矩形的长和宽分别是多少?”解答:设矩形的宽为x,则矩形的长为4x。
根据题目给出的条件,我们可以列出方程式:x + 4x = 40。
整理方程后,得到5x = 40。
解方程可以得到x = 8。
因此,这个矩形的宽为8,长为32。
2. “小明想在一块正方形的花坛周围种植玫瑰花,已知花坛的周长为40米。
请问小明最多能种植多少株玫瑰花?”解答:设正方形的边长为x,则花坛的周长为4x。
根据题目给出的条件,我们可以列出方程式:4x = 40。
初中数学应用题归纳列出方程(组)解应用题的一般步骤是:1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;7作答:包括单位名称在内进行完整的答语。
一,行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 二、利润问题现价=原价*折扣率折扣价=现价/原价*100%每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价三、计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100% 本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。
2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。
3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。
4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。
5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。
6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。
7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。
8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。
9.方程问题:通过列方程或方程组,求解未知量的问题。
10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。
11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。
12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。
13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。
14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。
15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。
16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。
以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。
初中数学应用题归纳整理相信同学们在学习初中数学的时候最担心的就是解应用题了吧,不用担心,以下是店铺分享给大家的初中数学应用题归纳以及解题技巧,希望可以帮到你!初中数学应用题归纳1 方程应用题方程应用题是通过列代数方程来解决实际问题的一类题型,它几乎贯穿于初中代数的全部。
初中代数的方程应用题包括列一元一次方程、一次方程组、一元二次方程、分式方程来解的应用题。
方程应用题的解题步骤可用六个字概括,即审(审题)、设(设未知数)、列(列方程)、解(解方程)、检(检验)、答。
考试内容多结合当前一些热点话题,如储蓄问题、人均收入问题、环保问题、商品打折问题等。
例1、为了鼓励节约用水,某地按以下规定收取每月水费:如果每月每户用水不超过25 吨,那么每吨水费按1.25 元收费;如果每月每户用水超过25 吨,那么超过部分每吨水费按1.65 元收费。
若某用户五月份的水费平均每吨1.40 元,问该用户五月份应交水费多少元?例2、国家规定个人发表文章或出书获得稿费的纳税计算方法是:①稿费不高于800 元的不纳税;②稿费高于800 元又不高于4000 元的应交超过800 元那一部分稿费的14%的税;③稿费高于4000 元的应交全部稿费的11%的税。
一人曾获得一笔稿费,并交个人所得税280元,算一算此人获得这笔稿费是多少元?2 不等式应用题列不等式或不等式组解决实际问题,是近年来中考命题的新热点,我们把这类试题称为不等式应用题。
这个问题中通常带有“不少于”、“不多于”、“不超过”、“最多”、“至少”等关键词,还常常用到求不等式整数解问题。
例:某市为了改善投资环境和居民生活环境,对旧城区进行改造。
现需要A、B 两种花砖共50 万块,全部由某砖瓦厂完成。
该厂现有甲种原料180 万千克,乙种原料145 万千克,已知生产1 万块A 砖,用甲种原料4.5 万千克,乙种原料1.5 万千克,造价1.2 万元;生产1 万块B砖,用甲种原料2 万千克,乙种原料5 万千克,造价1.8 万元。
初中数学各种公式整理篇路程、速度、浓度、盈亏问题相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3其它公式:平均数问题公式(一个数+另一个数)÷2 反向行程问题公式路程÷(大速+小速同向行程问题公式路程÷(大速-小速)行船问题公式同上列车过桥问题公式(车长+桥长)÷车速工程问题公式1÷速度和盈亏问题公式(盈+亏)÷两次的相差数利率问题公式总利润÷成本×100%1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数平面几何公式:1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间商品的利润=售价-进价利润率=售价-进价/进价售价=进价(1+利润率)进价=商价-商品的利润。
初中数学应用题归纳
列出方程(组)
解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;
2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系
3设未知数:据找出的相等关系选择直接或间接设置未知数
4列方程(组):根据确立的等量关系列出方程
5解方程(或方程组),求出未知数的值;
6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式
路程=速度×时间;
路程÷时间=速度;
路程÷速度=时间
关键问题:确定行程过程中的位置.
相遇问题:速度和×相遇时间=相遇路程
追击问题:追击时间=路程差÷速度差
流水问题:
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 二、利润问题
现价=原价*折扣率折扣价=现价/原价*100%
每件商品的利润=售价-进货价=利润率*进价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
标价=售价=现价
进价=售价-利润售价=利润+进价
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:
利息=本金×存期×利率
税率=应纳数额/总收入*100% 本息和=本金+利息
税后利息=本金*存期*利率*(1- 税率)
税后利息=利息*税率利率-利息/存期/本金/*100%
利率的换算:年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实价×100%(折扣<1=利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)次后的量是b,则它们的数量关系可表示为:a(1+x)n =b或a(1-x) =bn
六工程问题
工作效率=总工作量/工作时间
工作时间=总工作量/工作效率
七赛事,票价问题
赛事单循环赛:n(n-1)/2 淘汰赛:n个球队,比赛场数为n-1场次
票价则对应的不一样的赛制乘以对应的单价。