高斯证明正十七边形与拓扑学
- 格式:docx
- 大小:3.32 KB
- 文档页数:2
高斯与正十七边形数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。
许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。
被誉为“数学王子”的伟大数学家高斯就是其中之一。
高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。
其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。
小学毕业后,高斯考了文科学校。
由于他古典文学成绩突出,入学后直接上了二年级。
两年以后高斯又升入了高中哲学班。
15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。
在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。
语言学和数学是他最喜爱的两门课程。
18岁时,高斯进入了哥廷根大学深造。
这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。
后来,一次数学研究上的突破改变了两个引力场的均衡。
高斯终于下定决心,飞向了数学之星。
事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问题。
到高斯的时代,人们已经解决了边数是n 23•、n 24•、n 25•、n 253••(=n 0,1,2,3……)的正多边形的尺规作图问题。
但是,还没有人能作出正7边形、正11边形、正17边形等等。
很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。
高斯一直对正多边形尺规作图问题非常着迷。
经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。
并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。
他证明了一切边数形如122+t(=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。
正17边形的高斯做法做正17边形等于求方程x^17-1=0的根即(x-1)(x^16+x^15+.....+x+1)=f(x)(x-1)=0的根注意f(x)=0有16个根e1~e16,令其中的单位原根为e1并令ei=e^i根据韦达定理,16个根的和为x^15项的系数乘-1第一步,把16个根分成两组∑1和∑2∑1=(e1+e2+e4+e8)+(e1+e2+e4+e8)∑2=(e3+e5+e6+e7)+(e3+e5+e6+e7)(这里用下划线表示共扼根)注意∑1+∑2=-1(韦达定理)而∑1*∑2=-4(有兴趣的朋友可以验算一下)于是根据韦达定理,∑1和∑2分别是方程x^2+x-4=0的根,可解出;第二步,把∑1分成两组,∑11=(e1+e8)+(e1+e8)∑12=(e2+e4)+(e2+e4)注意∑11+∑12=∑1而∑11*∑12=∑2(有兴趣的朋友可以验算一下)因为∑1和∑2在前面已经解出所以∑11、∑12可以从方程x^2-(∑1)x+(∑2)=0解出(韦达定理)下面的步骤相似,可继续把∑11分解为∑111=e1+e1 和∑112=e8+e8∑111+∑112=∑11∑111*∑112=∑12同样可用韦达定理解出;最后就简单了∑111=e1+e1 而e1*e1 =1所以就可利用韦达定理解出e1来了!将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R)正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
解读“数学王子”高斯正十七边形的作法(上)江苏省泰州市朱庄中学曹开清 225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
高斯仅用没有刻度的尺子与圆规便构造出了正17边形解法一:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R)正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
1、先画一个R半径的圆;2、用圆规支脚支在圆周的一个点上,取d为半径,交圆周于一点,然后把这两点连起来,就是17边形的一条边了;3、如此类推,把17条边画完就是一个正17边形了解法二:在与圆O的直径AB垂直的半径OC上,作出OC的中点D,在OB上作一点E,使OE等于半径的1/8;以E为圆心,ED长为半径作弧,与OA、OB分别交于F、G;以F为圆心,FD 长为半径作弧,交OA延长线于H,以G为圆心,GD长为半径作弧,交OA于I;作OB中点J,以线段IJ为直径作圆,交OC于K;过K作AB的平行线,与以线段OH为直径的圆交于远端L,过L作OC的平行线,与圆O交于M。
弧AM就是圆O的1/17,依次连结各点就行了解法三:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R) 正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R) 最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
解读“数学王子”高斯正十七边形的作法江苏省泰州市朱庄中学曹开清225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
正十七边形的画法及证明1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。
前两道题在两个小时内就顺利完成了。
第三道题写在另一张小纸条上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。
他感到非常吃力。
时间一分一秒的过去了,第三道题竟毫无进展。
这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。
见到导师时,青年有些内疚和自责。
他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。
他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。
但是,我花了整整一个通宵。
”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。
青年很快做出了一个正17边形。
导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。
你是一个真正的天才!” 原来,导师也一直想解开这道难题。
那天,他是因为失误,才将写有这道题目的纸条交给了学生。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。
”这位青年就是数学王子高斯。
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
关于正十七边形的高斯画法有一个定理在这里要用到的:若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,其中c是方程x^2+ax+b=0的实根。
实用标准文档解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯 (Carl Friedrich Gauss1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工的父算工人的周薪。
父算了好一会儿,于将果算出来了。
可是万万没想到,他身来幼嫩的童音:“爸爸,你算了,数是⋯⋯”父感到很惊异,赶忙再算一遍,果高斯的答案是的。
的高斯只有 3 !高斯上小学了,教他数学的老布特勒(Buttner)是一个度劣的人,他从不考学生的接受能力,有用鞭子学生。
有一天,布德勒全班学生算1+2+3+4+5+⋯⋯+98+99+100=?的和,并且威:“ 算不出来,就不准回家吃!”布德勒完,就坐在一旁独自看起小来,因他,做一道目是需要些的。
小朋友开始算:“ 1 + 2=3,3+3=6,6+4=10,⋯⋯”数越来越大,算越来越困。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身。
高斯:“老,我做完了,你看不?“做完了?么快就做完了?肯定是胡乱做的!”布德勒都没抬,手:“ 了,了!回去再算!”高斯站着不走,把小石板往前伸了伸:“我个答案是的。
”布德勒抬一看,大吃一惊。
小石板上写着5050 ,一点也没有!高斯的算法是1+ 2 + 3+⋯⋯+ 98 +99 + 100100+99 +98+⋯⋯+3+ 2+1101+ 101 + 101 +⋯⋯+101 +101 + 101 =101 ×100 =1010010100 ÷2= 5050高斯并不知道,他用的种方法,其就是古代数学家期努力才找出来的求等差数列和的方法,那他才八!1796 年的一天,德国哥廷根大学。
高斯吃完晚,开始做他独布置的三道数学。
前两道他不吹灰之力就做了出来了。
第三道写在另一小条上:要求只用和没有刻度的直尺,作出一个正十七形。
道把他住了——所学的数学知竟然解出道没有任何帮助。
一分一秒的去了,第三道竟毫无展。
正十七边形的画法及证明1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。
前两道题在两个小时内就顺利完成了。
第三道题写在另一张小纸条上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。
他感到非常吃力。
时间一分一秒的过去了,第三道题竟毫无进展。
这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。
见到导师时,青年有些内疚和自责。
他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。
他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。
但是,我花了整整一个通宵。
”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。
青年很快做出了一上正17边形。
导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。
你是一个真正的天才!”原来,导师也一直想解开这道难题。
那天,他是因为失误,才将写有这道题目的纸条交给了学生。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。
”这位青年就是数学王子高斯。
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
关于正十七边形的高斯画法有一个定理在这里要用到的:若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,其中c是方程x^2+ax+b=0的实根。
最早的十七边形画法创造人是高斯。
高斯(1777─1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因运用等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.下附正十七边形作法先计算或作出cos(360°/17)设正17边形中心角为a,则17a=360°,即16a=360°-a故sin16a=-sina,而sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a 因sina不等于0,两边除之有:16cosacos2acos4acos8a=-1又由2cosacos2a=cosa+cos3a(三角函数积化和差公式)等注意到cos15a=cos2a,cos12a=cos5a(诱导公式)等,有2(cosa+cos2a+…+cos8a)=-1令x=cosa+cos2a+cos4a+cos8ay=cos3a+cos5a+cos6a+cos7a有:x+y=-1/2又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)经计算知xy=-1因而x=(-1+√17)/4,y=(-1-√17)/4其次再设:x1=cosa+cos4a,x2=cos2a+cos8ay1=cos3a+cos5a,y2=cos6a+cos7a故有x1+x2=(-1+√17)/4y1+y2=(-1-√17)/4最后,由cosa+cos4a=x1,cosacos4a=(y1)/2可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出编辑本段步骤一给一圆O,作两垂直的半径OA、OB,在OB上作C点使OC=1/4OB,在OA上作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度正十七边形尺规作图[1]编辑本段步骤二作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。
正十七边形尺规作法(无刻度)步骤一:给一圆O,作两垂直的半径OA、OB,作C点使OC=1/4OB,作D点使∠OCD=1/4∠OCA,作AO延长线上E点使得∠DCE=45度。
步骤二:作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。
步骤三:过G4作OA垂直线交圆O于P4,过G6作OA垂直线交圆O于P6,则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。
连接P4P6,以1/2弧P4P6为半径,在圆上不断截取,即可在此圆上截出正十七边形的所有顶点。
历史最早的十七边形画法创造人为高斯。
高斯(1777~1855年),德国数学家、物理学家和天文学家。
在童年时代就表现出非凡的数学天才。
三岁学会算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩。
1799年以代数基本定理的四个漂亮证明获得博士学位。
高斯的数学成就遍及各个领域,其中许多都有着划时代的意义。
同时,高斯在天文学、大地测量学和磁学的研究中也都有杰出的贡献。
1801年,高斯证明:如果k是质数的费马数,那么就可以用直尺和圆规将圆周k 等分。
高斯本人就是根据这个定理作出了正十七边形,解决了两千年来悬而未决的难题。
道理当时,如果高斯的老师告诉了高斯这是道2000多年没人解答出来的题目,高斯就不会画出这个正十七边形。
这说明了你不怕困难,困难就会被攻克,当你惧怕困难,你就不会胜利。
正十七边形的证明方法正十七边形的尺规作图存在之证明:设正17边形中心角为a,则17a=360度,即16a=360度-a故sin16a=-sina,而sin16a=2sin8acos8a=4sin4acos4acos8a=16sinaco sacos2acos4acos8a因sina不等于0,两边除之有:16cosacos2acos4acos8a=-1又由2cosacos2a=cosa+cos3a等,有2(cosa+cos2a+…+cos8a)=-1注意到cos15a=cos2a,cos12a=cos5a,令x=cosa+cos2a+cos4a+cos8№ay=cos3a+cos5a+cos6a+cos7a有:x+y=-1/2又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+co s6a+cos7a)=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)经计算知xy=-1又有x=(-1+根号17)/4,y=(-1-根号17)/4其次再设:x1=cosa+cos4a,x2=cos2a+cos8ay1=cos3a+cos5a,y2=cos6a+cos7a故有x1+x2=(-1+根号17)/4y1+y2=(-1-根号17)/4最后,由cosa+cos4a=x1,cosacos4a=(y1)/2可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出数学未解之谜一数学基础问题。
高斯发现谷神星写一篇论说文高斯的正十七边形的故事。
1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。
前两道题在两个小时内就顺利完成了。
第三道题写在另一张小纸条上:要求只用贺规和一把没有刻度的直尺,画出一个正17边形。
他感到非常吃力。
时间一分一秒的过去了,第三道题竟毫无进展。
这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。
见到导师时,青年有些内疚和自责。
他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。
他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。
但是,我花了整整一个通宵。
”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。
青年很快做出了一上正17边形。
导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。
你是一个真正的天才!”原来,导师也一直想解开这道难题。
那天,他是因为失误,才将写有这道题目的纸条交给了学生。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。
”这位青年就是数学王子高斯。
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
到底是谁最早作出正⼗七边形?是⾼斯还是约翰尼斯·厄钦格前⼏天,超模君po了各种动图让⼤家了解不⼀样的数学(传送门),最后⼀张⾼斯尺规作图正17边形引起了各位模友的激烈讨论:有模友说看不明⽩有好奇他是怎么想出来的有说正17边形⾼斯并没有画出来甚⾄在超模君讲根号2的故事时(传送门),也留⾔说希望讲讲正17边形的故事。
既然如此,那今天超模君就将这些问题⼀并解决了吧。
---------------------------------------------相传,在1976年的⼀天,德国哥廷根⼤学,19岁的⾼斯像往常⼀样,吃完晚饭,开始做导师每天单独布置给他的数学题。
然后,轻松完成了⽼师布置的前两道题。
第三道题是另外写在⼀张⼩纸条上的,是要求只⽤圆规和⼀把没有刻度的直尺作出正17边形。
⾼斯并没有在意,像做前两道题⼀样开始做起来。
虽然感觉这道题做起来有点吃⼒,他还是坚持想要做出来。
他拿起圆规和直尺,在草稿纸上写写画画,也尝试着⽤⼀些超常规的思路去解这道题。
经过通宵的演算,他终于解出了这道难题。
当导师得知⾃⼰的学⽣竟然⼀个晚上就解开了这道有两千多年历史的数学悬案时,万分惊讶,连连夸赞⾼斯是天才。
原来,导师也⼀直想解开这道难题。
那天,他只是不⼩⼼才将写有这道题⽬的纸条交给了⾼斯。
多年以后,当⾼斯回忆起这⼀幕时,总是说:如果有⼈告诉我,这是⼀道有两千多年历史的数学难题,我不可能在⼀个晚上解决它。
这可能就是⼈们常说的⽆知者⽆畏吧。
------------------------------------------------通过这个故事,⼤家都认为正17边形最早是⾼斯画出来的了。
然⽽,关于尺规作图正17边形的故事还有另⼀个版本。
事实上,⾼斯在哥廷根⼤学就读时,在⼀次偶然的阅读中,他知道了⽤直尺和圆规作出圆内接正七边形的难题。
这使他⾮常着迷,并决⼼要功克它。
他⾸先查找出前⼈的作图⽅法,仔细研究他们失败的原因,通过半年多的努⼒,他终于作出了正七边形;接着,正九、正⼗⼀、正⼗三边形都被他⼀⼀克服。
高斯正十七边形的故事
高斯正十七边形是一个神奇的几何形状,它由著名数学家高斯在19世纪发现。
高斯正十七边形有什么特殊之处呢?它是一个可以用尺规作图得到的几何形状,这在古希腊时期被认为是不可能的。
高斯的发现使得数学家们重新审视了尺规作图的限制,并促进了新的数学发展。
高斯花费了两年时间才证明了正十七边形可以用尺规作图,他用到了代数数论的知识,这也成为了数学史上的一段佳话。
高斯的发现也启示了其他数学家,在接下来的几十年里,人们发现了更多可以用尺规作图的几何形状。
但是,高斯的发现并不只是在几何学领域产生影响。
在代数数论方面,高斯的证明还促进了一个新的领域——域论的发展。
高斯的经典结果是他发现了一个数学公式,可以计算正十七边形的边长,这个公式也被称为高斯数。
至今,高斯正十七边形仍然是一个值得研究的数学难题。
它的发现不仅推动了几何学和代数数论的发展,也向我们证明了,在科学和数学领域,没有什么是不可能的。
- 1 -。
用作图解决问题的物理学家高斯解决的问题是用尺规作图法画出正十七边形,同样给我们一晚上的时间,很多人也画不出来,这可能就是我们与天才的距离吧。
高斯表示,正十七边形没什么难的,也就困扰了数学家们2000年,困扰他一个晚上而已。
这位传奇般的天才数学家,用他的智慧将数学推向了一个发展巅峰,谁能想到,他解决这个问题的时候,还只是一个19岁的少年。
那么高斯是如何用一个晚上解决这个千年难题的?数学的几何学上有这样一个类群,叫正多边形。
我们比较熟知的正三角形,又叫等边三角形,正四方形,又名正方形,从正五边形开始,后面的正多边形就很难在生活中看到了。
不过对数学家们来说,越到后面越是刺激。
理论上,用尺规作图的方法可以得到很多图形。
所谓尺规作图就是只用直尺和圆规将图形画出来,并且这个直尺上不能有任何刻度,圆规上也不能有任何度数表示,作图者需要熟练掌握三角函数、中位线定理等数学知识。
比如我们要画一个正三角形,这是最基础的正多边形,每条边都一样长,夹角60度。
首先我们画出一条线段,不用在意长度,反正直尺没有刻度,这条线段的长度会成为之后正三角形的边长。
然后使用圆规,先将其尖端固定在线段的一个端点,以这条线段为半径画一个圆,接着转移到另一个端点,和刚才一样,再画一个圆。
这两个圆会相交于两个点,这个时候任选一个点,将其与所画线段的两个端点相连,就能得到一个正三角形。
正多边形有个求内角和的公式,为(n-2)×180°,n是正多边形的边数。
因为每个内角的度数是一样的,因此可以用这个公式计算出每个内角的度数。
所以正十七边形,有17条相同长度的边,内角和2700°,每个内角为158.8235294117647°。
乍一看,我们会觉得永远也画不出来,可是根据正N边形的特点,是绝对可以画出来的,只不过要烧掉脑细胞而已。
阿基米德的脑细胞够多吧,他一样也没有画出来。
并且自阿基米德以后的2000年时间里,都没有一个人画出来,渐渐地,尺规画正十七边形成为了千年难题。
高斯证明正十七边形与拓扑学
高斯是一位伟大的数学家,他在数学领域做出了许多重要的贡献。
其中,他以拓扑学的角度证明了正十七边形的构造问题,这是一项非常有意义的研究。
在本文中,我们将探讨高斯是如何运用拓扑学来解决正十七边形的构造问题的。
让我们来了解一下正十七边形的构造问题。
正十七边形是一个具有十七个边且所有边相等的多边形。
在古代,人们一直在寻找一种方法来构造正十七边形,但一直没有找到。
这个问题困扰了数学家们很长时间,直到高斯的出现。
高斯通过拓扑学的研究,发现了一种巧妙的方法来解决正十七边形的构造问题。
他首先将正十七边形与一个更简单的多边形进行比较,这个多边形是正十七边形的一个子集。
通过研究这个更简单的多边形,高斯发现了一种将正十七边形分割成更小部分的方法。
高斯的方法是基于拓扑学的原理。
他将正十七边形视为一个拓扑空间,并通过分割这个空间来解决构造问题。
他发现,通过将正十七边形分割成一系列更小的多边形,可以逐步逼近所需的形状。
这种分割方法不仅使问题变得更加简单,还能够保持所需的形状的准确性。
通过高斯的方法,我们可以将正十七边形分割成多个小部分,并逐步逼近所需的形状。
这种分割方法是基于拓扑学的原理,可以确保
最终构造出的正十七边形的准确性。
高斯的研究为解决正十七边形的构造问题提供了一种新的思路,也为拓扑学的发展做出了重要贡献。
通过高斯的研究,我们可以看到拓扑学在解决几何问题中的重要性。
拓扑学不仅可以帮助我们理解空间的结构,还可以提供一种新的思维方式来解决复杂的几何问题。
高斯的工作不仅为正十七边形的构造问题提供了解决方案,还为拓扑学的研究开辟了新的方向。
高斯以拓扑学的角度证明了正十七边形的构造问题,通过分割和逼近的方法解决了这个复杂的几何问题。
他的研究不仅为解决正十七边形的构造问题提供了新的思路,还为拓扑学的发展做出了重要贡献。
通过高斯的工作,我们可以看到拓扑学在解决几何问题中的重要性,以及它对数学发展的深远影响。