一,隐函数的求导法则
- 格式:ppt
- 大小:1.64 MB
- 文档页数:1
第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。
大一隐函数的导数知识点总结一、引言在微积分学中,隐函数是指由两个或多个变量之间的方程所确定的函数。
在求解隐函数的导数时,我们需要运用一些特定的方法和规则。
本文将对大一隐函数的导数知识点进行总结和归纳。
二、隐函数的导数定义隐函数的导数表示了函数在某一点处的变化率。
设函数 y=f(x)在点 (x,y) 处满足方程 F(x,y)=0,则 y 是 x 的隐函数,并且可以看作自变量 y 和函数 y=f(x) 的函数关系。
隐函数的导数可以通过求导来计算。
三、常用求导法则1. 隐函数的导数:设 y 是 x 的隐函数,可以通过求导求得 y 对x 的导数,即 dy/dx。
2. 利用链式法则求导:通过将隐函数的方程两边同时对x 求导,然后解方程得到 dy/dx。
3. 隐函数的高阶导数:通过多次使用链式法则,可以求得隐函数的高阶导数。
四、常见的隐函数求导方法1. 参数方程法:将隐函数表示为参数方程,对参数方程中的参数求导,然后根据参数与自变量之间的关系求得隐函数的导数。
2. 对数导数法:将隐函数两边同时取对数,然后对取对数后的方程两边求导。
3. 微分形式法:将隐函数的微分形式表示为等式形式,然后对等式两边求导。
4. Laplace公式法:对于特定的隐函数形式,如 y=f(x)^{g(x)},可以使用 Laplace 公式来求导。
5. 特殊函数求导法:对于一些特殊的隐函数,如反函数、对数函数、指数函数等,可以利用已知的导数性质求导。
五、隐函数的应用举例1. 切线与法线:通过求解隐函数的导数,我们可以得到曲线上某一点处的切线斜率,进而求得切线和法线的方程。
2. 最值问题:利用隐函数的导数求得极值点的横坐标,进而求得隐函数在该点的最值。
3. 隐函数图像绘制:通过求解隐函数的导数,我们可以了解到隐函数在不同区间的单调性和凹凸性,有助于绘制函数图像。
六、结论隐函数的导数是微积分学中的重要概念,它帮助我们理解和解决具有复杂关系的函数问题。
隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。
具有x和y两个自变量的方程通常也称为隐函数。
在这种情况下,求导的方法与单变量函数的情况有所不同。
假设我们有一个方程f(x,y)=0代表一个隐函数。
如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。
我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。
现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。
现在我们来看几个例子。
例子1:考虑方程x^2+y^2 = 1,代表一个圆形。
假设我们需要求通过点(0.5,0.866)的圆的斜率。
我们可以通过对方程隐式地求导来解决这个问题。
从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。
假设要求通过点(0.5, 0.866, 0)的球的切平面。
我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。
我们可以通过隐函数求导的方法来找到它的方向。
从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。
我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。
隐函数求导法则公式隐函数求导法则是微积分中的一个重要概念,它用于求解含有隐式变量的函数的导数。
隐函数求导法则公式可以帮助我们更方便地求解这类函数的导数,从而在实际问题中更加灵活地应用微积分知识。
下面我们将详细介绍隐函数求导法则公式及其应用。
隐函数求导法则公式的表述如下:设有方程 F(x, y) = 0,其中 y 是 x 的函数,即 y = f(x),则 y 对 x 的导数可以通过以下公式求得:dy/dx = - (∂F/∂x) / (∂F/∂y)其中∂F/∂x 表示对 F 进行偏导数运算,∂F/∂y 也是类似的意思。
这个公式是隐函数求导法则的核心,通过它我们可以求解含有隐式变量的函数的导数。
接下来我们将通过一个具体的例子来说明隐函数求导法则公式的应用。
假设有方程 x^2 + y^2 = 1,我们需要求解 y 对 x 的导数。
首先,我们将这个方程表示为 F(x, y) = 0 的形式,即 F(x, y) = x^2 + y^2 - 1 = 0。
然后,我们对 F(x, y) 分别对 x 和 y 求偏导数,得到∂F/∂x = 2x,∂F/∂y = 2y。
最后,代入隐函数求导法则公式,得到 dy/dx = - (2x) / (2y) = -x/y。
通过这个例子,我们可以看到隐函数求导法则公式的应用过程,它可以帮助我们求解含有隐式变量的函数的导数,从而更加灵活地应用微积分知识。
除了上述的基本公式,隐函数求导法则还有一些特殊情况的应用,比如当方程 F(x, y) = 0 不易直接求导时,我们可以先对 x或 y 求导,然后再应用隐函数求导法则公式。
此外,隐函数求导法则还可以应用于求解高阶导数、求解参数方程等问题。
总之,隐函数求导法则公式是微积分中的一个重要工具,它可以帮助我们更方便地求解含有隐式变量的函数的导数,从而在实际问题中更加灵活地应用微积分知识。
希望通过本文的介绍,读者能对隐函数求导法则有更加深入的理解,并能够灵活运用到实际问题中。
1、隐函数的定义
明显地给出了因变量与自变量之间的关系,叫做显函数
隐函数的求导法则
以前所接触到的函数通常是y =f (x )的形式, 特点:如ln sin , y x x =+左边只有因变量y ,而右边是一个不含y 的表达式.1tan x y e x
+=−
根据函数的概念,一个函数也可以不以显函
数的形式出现.
比如,给二元方程
y3+2x2−1=0
任给一个x,都可根据上面的方程,解出唯一的一个y来.即,任给一个x都有唯一的一个y与之
对应,因此, y是x的函数.称y为由方程
y3+2x2−1=0 所确定的隐函数.
没有明显地给出了因变量与自变量之间的关系称为隐函数.
(,)0F x y =()y f x =隐函数的显化.
显函数形式的函数称为)(x f y =)(0),F(称为隐函数.所确定的函数由方程x y y y x ==有些隐函数很容易表成显函数的形式.如,由y 3+2x 2−1=0,解得.2132
x y −=有些隐函数不一定能显化或者很难显化.如y −x −εsin y =0 (0< ε<1), y
e xy =
问题:隐函数不易显化或不能显化时如何求导?
2、隐函数的求导
先进行隐函数的显化,然后再求导
方法
直接求导√
隐式求导法的基本思想:
方程两端同时对x求导,在求导过程中视y为x的函数,即把y视为中间变量.
()y x ′()y x ′=一般可以写作y +⋅+()y x ′⋅)
+=解出y y e y ′⋅xy y ′⋅y
−e y +。
隐函数的三种求导方法如下:一、隐函数求导法则隐函数求导法则和复合函数求导相同。
由xy²-e^xy+2=0,y²+2xyy′-e^xy(y+xy′)=0,y²+2xyy′-ye^xy-xy′e^xy=0,(2xy-xe^xy)y′=ye^xy-y²,所以y′=dy/dx=y(e^xy-y0/x(2ye^xy)。
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。
在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。
二、隐函数导数的求解一般可以采用以下方法方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z=f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
三、显函数与隐函数1、显函数解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。
显函数可以y=f(x)来表示。
2、隐函数如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。
3、隐函数与显函数的区别1.隐函数不一定能写为y=f(x)的形式,如x²+y²=0。
2.显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。
比如:y=2x+1。
隐函数是x和y都混在一起的,比如2x-y+1=0。
3.有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。