精选初中数学七年级下册第六章《实数》单元综合练习题(解析版)
- 格式:docx
- 大小:188.97 KB
- 文档页数:14
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级下册数学单元检测卷:第六章实数一、填空题1. (1) 若 a<- 1,化简 a+ |a + 1| = ____________;(2) 将,,这三个数按从小到大的次序用”<”连结起来: ____________ ;(3) 如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为____________;(4) 已知- 1<x<0,请把- x,-,,x2按从大到小的次序用”>”连结起来:____________.答案: (1)- 1(2)(3) 2(4)2.5- 1与 0.5的大小关系:5- 1预计________0.5( 填“ >”“ <”或“=” ) .22答案:>3. 若=0,则 x+ y= _____0_______ .4.如图,数轴上 A, B 两点表示的数分别为和5.1 ,则 A, B 两点之间表示整数的点共有___________ 个.答案: 45. 假如 4 是 5m+ 1 的算术平方根,那么2- 10m= __________.答案: -28二、选择题6. 立方根是- 0.2的数是 (D)A. 0.8B.0.08C.- 0.8D.- 0.0087.与最靠近的整数是(B)A.0B.2C.4D.58. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0B.1C.0或 1 D .0或±19.假如是实数,则以下必定存心义的是(D )A.B.C.D.10.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个11. 若x- 3 是 4 的平方根,则x 的值为( C )A. 2B.± 2C.1或 5D. 1612.以下说法正确的选项是 ( D )A.- 1 没有立方根B. 0 没有平方根C. 1 的平方根是1D. 1 的算术平方根是113.一个底面是正方形的水池,容积是11.52m3,池深 2m,则水池底边长是( C ) A. 9.25m B. 13.52mC. 2.4mD.4.2m14. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C. 6.70 D .± 6.7015. 假如,,则人教版七年级下册第六章实数尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.如图,在数轴上表示无理数的点落在()A. 线段 AB 上B线.段 BC上C线.段 CD上D线.段 DE 上2.在-,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A.2个B.个3C.个4D5个3.一个自然数的算术平方根是x,则它后边一个数的算术平方根是()2A. x+1B. x+1C.+1D.4.以下命题:①负数没有立方根;② 一个实数的立方根不是正数就是负数;③ 一个正数或负数的立方根与这个数的符号一致;④ 假如一个数的立方根等于它自己,那么它必定是1或0.此中正确有()个.A. 1B. 2C. 3D. 45.以下说法中,不正确的选项是 ( ).A. 3 是(﹣ 3)2的算术平方根B.是(﹣ 3)2的平方±3根C. ﹣ 3 是(﹣ 3)2的算术平方根D﹣.3 是(﹣ 3)3的立方根6.的算术平方根是()A.4B.C.2D.7.如图,数轴上A, B 两点分别对应实数a、 b,则以下结论中正确的选项是()A. a+b> 0B. ab> 0C.D. a+ab-<b 08.已知一个正数的两个平方根分别是a+3 和 2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个对于实数运算的程序:输入一个数后,输出的数老是比该数的平方小1,晓影依据此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则 a 与 b 的关系是()A. B. a与 b 相等 C. a与 b 互为相反数D无.法判定二、填空题(共 6 题;共 24 分)11.的平方根是 ________,的算术平方根是________,-216的立方根是________.12.是 9 的算术平方根,而的算术平方根是 4,则= ________.13.已知:( x2+y2+1)2﹣ 4=0,则 x2+y2 =________.14.实数 a 在数轴上的地点如图,则 |a ﹣3|=________ .15.若四个有理数同时知足:,,,则这四个数从小到大的次序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共 1 题;共 6 分)17.计算:四、解答题(共 6 题;共 40 分)18.一个数的算术平方根为2M -6,平方根为± (M- 2),求这个数.19.某公路规定行驶汽车速度不得超出80 千米 / 时,当发生交通事故时,交通警察往常依据刹车后车轮滑过的距离预计车辆的行驶速度,所用的经验公式是,此中v 表示车速(单位:千米/ 时),d 表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经丈量 d=32 米,f=2.请你判断一下,闯事汽车当时能否高出了规定的速度?20. a, b,c 在数轴上的对应点如下图,化简+|c ﹣b| ﹣()3.21.阅读以下资料:∵,即,∴的整数部分为2,小数部分为.请你察看上述的规律后试解下边的问题:假如的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△ b=ab﹣ a+1,如3△ 4=3 ×4﹣ 3+1,请比较与的大小.23.求以下 x 的值.(1) 2x3=﹣ 16(2)(x﹣1)2=4.答案一、单项选择题1.C2.B3.D4.A5.C6.C7.C8.D9.B 10.C 二、填空题11. ±;;-612.19 13.1 14.3﹣ a 15.16.﹣5三、计算题17. 解:原式 =5+3-6=2四、解答题18.解:应分两种状况: ① 2M -6= M -2,解得 M= 4,2∴2M - 6=8- 6= 2,2 = 4,② 2M -6=- (M- 2),解得 M=,∴ 2M - 6=-6=(不合题意 ,舍去 ),故这个数是 4.19.解:把 d=32, f=2 代入 v=16,v=16=128(km/h )∵128> 80,∴闯事汽车当时的速度高出了规定的速度20.解:依据数轴上点的地点得:a< b< 0<c,且|a|>|b|>|c|,∴a﹣ b< 0, c﹣ b> 0, a+c< 0,则原式 =|a ﹣ b|+|c ﹣ b| ﹣( a+c) =b﹣ a+c﹣ b﹣ a﹣ c=﹣2a21.解:∵<,<,∴ a=﹣2,b=﹣3,∴=﹣2+﹣ 3﹣=﹣ 522.解:∵ a△ b=a ×b﹣ a+b+1,∴(﹣ 3)△=(﹣ 3)×﹣(﹣ 3)++1=4﹣ 2,△(﹣ 3)=×(﹣ 3)﹣+(﹣ 3) +1=﹣4﹣ 2,∵4﹣ 2>﹣ 4﹣ 2,∴﹣ 3△>△(﹣ 3).23.解:( 1)∵ 2x3=﹣ 16,2∴x =﹣ 8,∴x=﹣ 2.(2)∵(x﹣1)2=4,∴x﹣ 1=±2,∴x=﹣ 1 或 3.人教版数学七年级下册第六章实数单元复习卷人教版七年级数学下册第六章实数单元检测卷一、选择题1. 假如 | x| = 4,那么 5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或32.27 的立方根与 81 的平方根之和是()A. 0B. 6C.-12或6D.0或-63.预计的值在()A.0和1之间B.1和 2之间C.2和 3之间D. 3和 4之间4.若与的整数部分分别为,,则的立方根是()A. B. C. 3 D.75.一个数的算术平方根的相反数是-3,则这个数是 ()949349A. 7B.3C.49D. 96.若一个数的一个平方根是8,则这个数的立方根是()A.2B.4C. 2D. 47.在实数:﹣,0,π,,,, 3.142中,无理数有()A.2 个 B.3个 C.4 个 D.5 个8.实数 a,b, c, d 在数轴上的对应点的地点如下图,则正确的结论是()A. a>﹣ 4B. bd> 0C. |a| > |d| D . b+c> 09. 以下计算正确的选项是()30.012 5= 0.5 B.3273-A.=644331D 3-82C. 3 = 1.-125=-82510. 假如一个正数的两个平方根为x+1和 x-3,那么 x 的值是() A.4 B.2 C.1 D.±2二、填空题11.16的算术平方根是12.- 64 的立方根是1,-3是的立方根.13.大于- 18而小于13的全部整数的和为 __ .14.17的整数部分是 __________ ,小数部分是 ________.15.若3 (4 k) 3k 4 ,则 k 的值为.16.如图,在数轴上有O, A,B, C, D五点,依据图中各点所表示的数,判断18 在数轴上的地点会落在线段上.三、解答题17. 计算:;18.计算:19.求以下各式的值:(1)1+24;(2) 252- 242;(3) (- 3)2.2520.求 x 的值(1) 8x3+125=0( 2) (x+3) 3+27=021. 已知,是 a 的小数部分,求的值.22.已知 1- 3a与b- 27互为相反数,求ab的算术平方根.23.解答以下应用题:⑴某房间的面积为17.6 m 2,房间地面恰巧由110 块同样的正方形地砖铺成,每块地砖的边长是多少?⑵已知第一个正方体水箱的棱长是60 cm,第二个正方体水箱的体积比第一个水箱的体积的 3 倍还多81 000 cm3,则第二个水箱需要铁皮多少平方米?24. 对于实数a,我们规定:用符号表示不大于的最大整数,称为 a 的根整数,。
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。
一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.2 )A .8B .±8C .D . C解析:C【分析】【详解】,8的算术平方根是,.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列实数220.0100100017;; (相邻两个1之依次多一个0);2,其中无理数有( )A.2个B.3个C.4个D.5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B.【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.1的值()A.在7和8之间B.在6和7之间C.在5和6之间D.在4和5之间C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 8.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .解析:C【分析】将两个多项式相加,根据相加后不含x 的二次和一次项,求得m 、n 的值,再进行计算.【详解】 32711159x mx x --++22257x nx --=()()32722111552x m x n x +--++ 由题意知,2211=0m -, 155=0n +,∴=2m ,=3n -,∴()()=323=9mn n -+--⨯-,9的平方根是3±,∴()mn n -+平方根为3±,故选:C .【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键,同时考查了平方根的定义,熟练掌握正数有两个平方根,0的平方根是0,负数没有平方根.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227分数,是有理数,选项不符合题意; B 、1.2012001是有理数,选项不符合题意; C 、2π是无理数,选项符合题意;D ,9是整数是有理数,,选项不符合题意.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.12.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 13.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭ =33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14.规定一种新的定义:a ★b -a 2,若a =3,b =49,则(a ★b )★b =_________.【分析】根据题中给到的新运算先计算a ★b 然后直接代入数据计算(a ★b)★b 即可【详解】因为a ★b =-a2=所以(a ★b)★b==7-4=3故答案为:3【点睛】本题考查定义新运算解题关键在于熟练掌握运解析:3【分析】根据题中给到的新运算,先计算a ★b 然后直接代入数据计算(a ★b )★b 即可.【详解】因为a ★b -a 2,=23792=-=-所以 (a ★b )★b=2(2)- =7-4=3故答案为:3.【点睛】本题考查定义新运算,解题关键在于熟练掌握运算法则.15. ________0.5.(填“>”“<”或“=”)<【分析】将05变形为将两数作差后借助<2即可得出﹣05<0进而即可得出<05【详解】解:∵05=∴﹣05=∵()2=322=43<4∴<2∴<0∴﹣05<0即<05故答案为:<【点睛】本题考查了实解析:<【分析】将0.5变形为12<2﹣0.5<0,进而即可得出<0.5. 【详解】解:∵0.5=12,∴﹣0.5 ∵2=3,22=4,3<4, ∴2,∴22<0,∴﹣0.5<0,<0.5. 故答案为:<.【点睛】﹣0.5<0是解题的关键.16.<x 的所有整数x 的和是_____.2【分析】首先通过对和大小的估算可得满足﹣<x <的所有整数进而对其求和可得答案【详解】解:∵﹣2<﹣<﹣12<<3∴满足﹣<x <的所有整数有﹣1012∴﹣1+0+1+2=2故答案为:2【点睛】本题主解析:2【分析】x 的所有整数,进而对其求和可得答案.【详解】解:∵﹣21,2 <3,∴<x 的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【点睛】本题主要考查无理数大小的估算,比较简单,正确理解是解题的关键.17.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>32<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.18的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.19.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.(1)3;;(2)21;;(3)23;(4)【分析】(1)先找到可找到即可找出的整数部分与小数部分(2)根据因为即可找出的整数部分与小数部分(3)找到在哪两个整数之间再加10即可(4)先确定找到由是解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<<∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.20_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.求下列各式中的x :(1)29(1)25x -=(2)3548x +=解析:(1)x=83或x=-23;(2)x =32-. 【分析】 (1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53, 即x-1=53或x-1=-53, 解得x=83或x=-23; (2)3548x += 3548x =- 3278x =-x =32-.【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.23.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a (M•N)=log a M+log a N.(1)解方程:log x4=2;(2)求值:log48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.24.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值. 解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 25.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.26.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键.27.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,28.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.。
第六章实数单元检测卷人教版七年级数学下册一、选择题1.64的平方根是( )A.4B.±4C.8D.±8 2.16的平方根是( )A.4B.2C.±4D.±2 3.下列运算正确的是( )A.9=±3B.|−3|=−3C.−9=−3D.−32=9 4.式子x−2中,x的取值范围是( )A.x≥2B.x>2C.x≥0D.x>0 5.下列各式中正确的是( )A.9=±3B.−4=2C.3−64=−4D.279=5 96.面积为2 的正方形的边长是( )A.2的平方根B.2的算术平方根C.2开平方的结果D.2的立方根7.下列说法错误的是( )A.−1的立方根是−1B.算术平方根等于本身的数是±1,0C.0.09=0.3D.3的平方根是±38.下列各数中的无理数是( )A.4B.πC.0D.−2279.比较2,5,37的大小,正确的是( )A.2< 5< 37B.2< 37< 5C.37<2< 5D.5< 37<2 10.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.2B.3C.2D.3二、填空题11.一个自然数的算术平方根是a ,则相邻的下一个自然数的算术平方根是 .12.在等式[()+5]2=49中,( )内的数等于 .13.依据图中呈现的运算关系,可知m +n = .14.已知 a 、b 为两个连续的整数,且 a <11<b ,则 a +b = .三、计算题15.计算: −12+(−2)3×18−3−27×(−19)16.解方程:(1)(x−1)2−9=0;(2)2(2x−1)3+16=0四、解答题17.已知实数a +9的一个平方根是-5,2b−a 的立方根是-2,求2a +b 的算术平方根.18.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm 2和32dm 2的正方形木板.(1)截出的两块正方形木料的边长分别为 .(2)求剩余木料的面积.(3)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出多少块这样的木条.19.如图,依次连结2×2方格四条边的中点A ,B ,C ,D ,得到一个阴影正方形.设每一方格的边长为1个单位,请讨论下面的问题:(1)阴影正方形的面积是多少?(2)阴影正方形的边长是多少?应怎样表示?(3)阴影正方形的边长介于哪两个相邻整数之间?20.已知3a+2的立方根是2,3a+b−1的算术平方根是4,c是8的整数部分.(1)求a、b、c的值;(2)求a+b−c的平方根.21.如果要制作一个立方体,使它的体积是已知立方体体积的27倍,那么它的棱长应是已知立方体的棱长的几倍?22.比较6−5和7−6的大小.23.把下列各有理数:﹣(+4),|﹣3|,0,﹣5,1.5(1)分别在数轴上表示出来:(2)将上述有理数填入图中相应的圈内.24.如图1,这是由8个同样大小的正方体组成的魔方,其体积为64.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD,求出阴影部分的边长及其面积;(3)如图2,把正方形ABCD放到数轴上,使点A与﹣1重合,那么点B表示的数为a,请计算(a﹣1)(a+1)﹣|2﹣a|的值.答案解析部分1.【答案】D【解析】【解答】解:∵(±8)2=64,∴64的平方根是±8,故答案为:D.【分析】直接根据平方根的定义即可求解.2.【答案】D【解析】【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】∵16=4∵±2的平方等于4,∴4的平方根是:±2.故选D.【点评】此题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键.3.【答案】C【解析】【解答】根据算术平方根,平方,绝对值的定义,得:A. 9=3 B. |−3|=3 C. −9 =−3 D. −32=−9.故答案为:C.【分析】根据算术平方根,绝对值的定义及有理数的乘方分别求出结果,然后判断即可.4.【答案】A【解析】【解答】解:根据题意得:x-2≥0,解得x≥2.故答案为:A.【分析】根据算数平方根有意义的条件,被开方数是非负数即可求解.5.【答案】C【解析】【解答】解:A、9=3,故选项A错误;B、负数没有平方根,故选项B错误;C、3−64=−4,故选项C正确;D、279=259=53,故选项D错误.故答案为:C.【分析】正数的正平方根叫做算术平方根,据此可判断A选项;负数没有平方根,据此可判断B选项;如果一个数的立方等于a,那么这个数叫做a的立方根,据此可判断C选项;求一个带分数的算术平方根,需要将这个带分数化为假分数,进而将分子分母分别开方,据此可判断D选项.6.【答案】B【解析】【解答】解:面积为2的正方形的边长是2的算术平方根.故答案为:B .【分析】由于正方形的面积等于边长的平方,且正方形的边长是一个正数,故可以根据算术平方根的定义求解.7.【答案】B【解析】【解答】A、∵−1的立方根是−1,∴A正确,不符合题意;B、∵-1没有算术平方根,∴B不正确,符合题意;C、∵0.09=0.3,∴C正确,不符合题意;D、∵3的平方根是±3,∴D正确,不符合题意;故答案为:B.【分析】利用立方根、平方根的性质及计算方法逐项判断即可.8.【答案】B【解析】【解答】解:A.4=2是有理数,故不符合题意;B.π是无理数,故符合题意;C.0是有理数,故不符合题意;D.−22是有理数,故不符合题意;7故答案为:B.【分析】根据无理数的定义逐项判断即可。
七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。
初中数学七年级下册 第六章实数综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是( )A .0B .﹣2C .2D 2、下列各数是无理数的是( )A .-3B .23 C .2.121121112 D .4π 3、下列说法正确的是( )A .2π是分数 B .0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数C .﹣3x 2y +4x ﹣1是三次三项式,常数项是1D .单项式﹣232ab 的次数是2,系数为﹣92 4、4的平方根是( )A .2B .﹣2C .±2D .没有平方根5、下列各数:3.14,0,1π,-2,0.1010010001…(1之间的0逐次增加1个),其中无理数有( )A .1个B .2个C .3个D .4个6、下列各数中,最小的数是( )A .0BC .π-D .﹣37、下列各数中,无理数是( )A .227B .πCD 8、下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何数的立方根都只有一个D .如果一个数有立方根,那么这个数也一定有平方根9、下列说法中,正确的是( )A .无限小数都是无理数B .数轴上的点表示的数都是有理数C .任何数的绝对值都是正数D .和为0的两个数互为相反数1040b -=,那么a b -=( )A .1B .-1C .-3D .-5二、填空题(5小题,每小题4分,共计20分)1、一个正方形的面积为5,则它的边长为_____.2=____________;3、若一个正数的两个不同的平方根为2a +1和3a ﹣11,则a =___.4、已知x 、y 2(2)y -=0,则xy 的算术平方根为______.5、绝对值不大于4且不小于π的整数分别有______.三、解答题(5小题,每小题10分,共计50分)1、求下列各式中x 的值.(1)12(x -3)3=4(2)9(x +2)2=162、一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水池的底边长.3、已知24a +的立方根是2,31a b +-算术平方根是4,求4a b +的算术平方根.42=-,求x +17的算术平方根.5、把下列各数序号..填入相应的集合中:①﹣3.14,②﹣2π,③13-,④0.618,⑤227,⑥0,⑦﹣1,2+.负分数集合{_________……};正整数集合{___________……};无理数集合{___________……}.---------参考答案-----------一、单选题1、C【分析】先根据正数大于0,0大于负数,排除A ,B ,然后再用平方法比较2【详解】 解:正数0>,0>负数,∴排除A ,B ,224=,23=,43∴>,2∴>∴最大的数是2,故选:C .【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.2、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A 、-3是整数,属于有理数.B 、23是分数,属于有理数.C 、2.121121112是有限小数,属于有理数.D 、4π是无限不循环小数,属于无理数. 故选:D .【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:π,3π等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.3、D【分析】 根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.【详解】解:A 、2π是无限不循环小数,不是分数,故此选项不符合题意; B 、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C 、﹣3x 2y +4x ﹣1是三次三项式,常数项是-1,故此选项不符合题意;D 、单项式﹣232ab 的次数是2,系数为﹣92,故此选项符合题意; 故选D .【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.4、C【分析】根据平方根的定义(如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:2=±,故选:C .【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.5、C【分析】根据无理数的定义求解即可【详解】解:在所列实数中,无理数有:1π,1之间的0逐次增加1个),共3个, 故选:C【点睛】本题考查了无理数的定义,注意常见的无理数有:开方开不尽的数,含π的数,有规律但不循环的数.6、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-< ∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2=是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D 选项说法不正确.综上,说法正确的是C 选项,故选:C .【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.9、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A 错误.B.∵数轴上的点也可以表示无理数.∴B 错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C 错误.D.∵和为0的两个数互为相反数.∴D 正确.故选:D .【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.10、D【分析】由非负数之和为0,可得10a +=且40b -=,解方程求得a ,b ,代入-a b 问题得解.【详解】解:40b -=,∴10b-=,a+=且40解得,14=-=,,a ba b∴-=--=-,145故选:D【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.二、填空题1【解析】【分析】根据正方形面积根式求出边长,即可得出答案.【详解】【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.2、-3【解析】【分析】根据立方根、算术平方根可直接进行求解.【详解】解:原式=2673-+-=-;故答案为-3.【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键. 3、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可.【详解】解:∵一个正数的两个不同的平方根分别是2a +1和3a ﹣11,∴213110a a ++-=,解得2a =.故答案为: 2.【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程.4、4【解析】【分析】直接利用算术平方根以及偶次方的性质得出x ,y 的值,进而得出答案.【详解】2(2)0y -=,∴x+4=0,y-2=0,解得:x=-4,y=2,故xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.5、4和-4或-4和4【解析】【分析】根据绝对值的意义及实数的大小比较可直接进行求解.【详解】解:由绝对值不大于4且不小于π的整数分别有4和4-;故答案为4和4-.【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.三、解答题1、(1)x=5;(2)x=-23或x=103-.【解析】【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1)12 (x −3)3=4,(x -3)3=8, x -3=2,∴x =5;(2)9(x +2)2=16,(x +2)2=169, x +2=43±,∴x =-23或x =103-. 【点睛】 本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2、这个水池的底边长为18m .【解析】【分析】根据“柱体体积=底面积×高”列式,解方程即可.【详解】解:设水池的底边长为x ,由题意得21.5486x =2324x =解得121818x x ==-,∵水池的底边长为正数,∴ x=18答:这个水池的底边长为18m.【点睛】本题考查了利用平方根解方程的应用,根据题目条件寻找等量关系,建模列式是解决本题的关键.3【解析】【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a+4=8,3a+b-1=16.∴a=2,b=11.∴4a+b=8+11=19.∴4a+b【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.4、3【解析】【分析】2-,求出x的值,然后代入x+17求解算术平方根即可.【详解】2-,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.5、见解析.【解析】【分析】根据负分数,正整数,无理数的定义进行分类即可得到答案.【详解】解:①﹣3.14是负分数,②﹣2π,是无理数,③13-是负分数,④0.618是正分数,⑤227是正分数,⑥0是整数,⑦﹣1是负整数,⑧6%是正分数,⑨+32+是无理数.负分数集合{①③……};正整数集合{⑨……};无理数集合{②⑩……}.【点睛】本题主要考查了实数的分类,解题的关键在于能够熟练掌握负分数所有小于0的分数组成的数集,正整数所有大于0的整数组成的数集,无理数无限不循环的小数组成的数集.。
人教版七年级数学下册 第六章《实数》综合练习一、单选题1.9的平方根是( )A .±√3B .3C .±81D .±322 ,则a 的值为( )A .-4B .4C .-2 D3)A .±2B .±4C .4D .2 4.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 55.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或7 6.下列实数中,无理数是( )A .3.14B .2.12122CD .2277.实数a b c d ,,,在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d8.下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数9.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在实际生活中,八点五十五通常说成九点差五分,受此启发,我们设计了一种新的加减计数法,比如:7写成13,即13=10-3=7;191写成209,即209=200-9=191,按这个方法计算2019等于( )A.2020B.2001C.1991D.1981二、填空题11.一个正数的两个平方根分别是3a+2和a-4.则a的值是.12-125的立方根的和为______.13的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为_____.14.====,…,则第8个等式是__________.三、解答题15.求出下列x的值.(1)16x2﹣49=0;(2)24(x﹣1)3+3=0.16.已知一个正数的平方根分别是32x +和49x -,求这个数.17.观察下列计算过程,猜想立方根.13=123=833=2743=6453=12563=21673=34383=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为______,又由203<19000<303,猜想19683的立方根的十位数为_____,验证得19683的立方根是______.(2)请你根据(1)中小明的方法,求﹣373248的立方根.18.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________;你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321①由①式左右两边分别减去①式左右两边,得3S -S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程. 19.阅读下面文字,然后回答问题.的小数部分我们不可能全部的整数部分是1 减去它的整数部分,差就是它的小数部分,因此﹣1表示.由此我们得到一个真命题:=x +y ,其中x 是整数,且0<y <1,那么x =1,y ﹣1.请解答下列问题:(1a +b ,其中a 是整数,且0<b <1,那么a = ,b = ;(2c +d ,其中c 是整数,且0<d <1,那么c = ,d = ;(3)已知m+n ,其中m 是整數,且0<n <1,求|m ﹣n |的值答案1.D 2.B 3.D 4.C 5.D 6.C 7.D 8.A 9. B 10.D11.-12.12.-3或-713.5-14=15.(1)x=±74;(2)x=12.16.2517.(1)7,2,27;(2)-72.18.(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-.19.(1)a =2,b 2;(2)c =﹣3,d =3(3)6。
七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。
人教版七年级数学下册【单元测试】第六章实数(综合能力拔高卷)(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
a-是16的平方根,则a的值为()1.(2021·全国·七年级期末)若3A.4B.4±C.256D.1-或7【答案】D【分析】根据平方根的定义得到a-3=4,或a-3=-4,即可求出a的值.a-是16的平方根,【详解】解:∵3∴a-3=4或a-3=-4,∴a=7或a=-1.故选:D【点睛】本题考查了平方根的定义,熟知16的平方根是±4是解题关键.2.(2020·江苏昆山·七年级期中)下列各数:1,π3数的个数为()A.2B.3C.4D.5【答案】A【分析】根据无理数的定义:“无限不循环的小数是无理数”逐个分析判断即可.【详解】解:1,3p ==13,是有理数,,p 2个,故选A【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有p 的数.3.(2022·江苏无锡·七年级期末)下列各式中,正确的是( )A .4=±B 3=±C 3=D 4=-【答案】A【分析】根据平方根、算术平方根、立方根的定义逐项分析即可.【详解】解:A.4±,正确;3=,故不正确;3=-,故不正确;4=,故不正确;故选A .【点睛】本题考查了平方根、算术平方根、立方根的定义,熟练掌握定义是解答本题的关键.4.(2021·广西三江·七年级期中)若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数【答案】B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B .【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.5.(2021·广东·深圳市沙井中学七年级期中)下列判断中,你认为正确的是( )A .0的倒数是0B .2p是分数C .34D 3【答案】C【分析】根据倒数的概念即可判断A 选项,根据分数的概念即可判断B 选项,根据无理数的估算方法即可判断C 选项,根据算术平方根的概念即可判断D 选项.【详解】解:A 、0不能作分母,所以0没有倒数,故本选项错误;B 、2p属于无理数,故本选项错误;C 、因为 9<15<16,所以 34,故本选项正确;D 3,故本选项错误.故选:C .【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.6.(2021·福建福安·七年级期中)点A 在数轴上的位置如图所示,则点A 表示的数可能是( )A B C D 【答案】A 【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A 、∵16<18<20.25,∴,故该选项符合题意;B 、∵9<10<16,∴,故该选项不符合题意;C 、∵20.25<24<25,∴,故该选项不符合题意;D 、∵25<30<36,∴,故该选项不符合题意;故选:A .【点睛】本题考查实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7.(2021·广西港口·七年级期中)﹣π,﹣3A .3p -<-<<B .3p -<-<<C .3p -<-<<D .3p -<-<<【答案】B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430p -»-<-<,1.5<=,1.5>=,则3p -<-<<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.8.(2021·吉林珲春· )A .3与4B .4与5C .5与6D .12与13【答案】B【分析】估算即可得到结果.【详解】解:162225<<Q ,\45<<,故选:B .【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.9.(2021·河南伊川·七年级期中)有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A B.2C D.【答案】C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2,即y=.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.10.(2022·北京·七年级期末)我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a的值是()A.5B.4C.3D.2【答案】A【分析】根据“铺地锦”的定义计算即可.【详解】解:设3下面的数字为x根据“铺地锦”的定义310a x a =+,解得5a x =∵5ax =必须是正整数,且a 为十位上的数字∴5a =故选:A【点睛】本题考查新定义;能够理解新定义,3a 的结果用各位数字正确表示出来是解题的关键.二、填空题:本题共8个小题,每题3分,共24分。
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
2019-2020学年人教版七年级数学下册第六章实数单元测试题一.选择题(共10小题)1.若一个数的平方等于4,则这个数等于()A.±2B.2C.±16D.162.36的算术平方根是()A.±6B.6C.﹣6D.±183.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.14.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.5.下列四个数中,无理数是()A.﹣3.1415926B.C.3.3030030003…D.06.代数式=()A.2B.4C.D.7.下列各数中,最小的是()A.0B.2C.﹣D.﹣8.设的整数部分用a表示,小数部分用b表示,4﹣的整数部分用c表示,小数部分用d表示,则值为()A.B.C.D.9.下列说法中错误的是()A.实数分为有理数和无理数B.﹣8的立方根为﹣2C.两个无理数的积还是无理数D.0的平方根是010.已知实数a,b,c在数轴上对应点的位置如图所示,|a+b|+|a+c|﹣|b﹣c|的值是()A.0B.2a+2b C.2b﹣2c D.2a+2c二.填空题(共8小题)11.|3﹣|﹣=.12.若实数x<,则x可取的最大整数是.13.比较大小:3.(填“>”、“<“、“=“)14.已知实数a在数轴上对应的点的位置如图所示:则化简|a﹣1|的结果为.15.使为整数的x的值可以是(只需填一个).16.在﹣4,0,π,1.010010001,﹣,1.这6个数中,无理数有个.17.若的整数部分为2,则满足条件的奇数a有个.18.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是.三.解答题(共8小题)19.计算:(1)(2)20.求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=21.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.22.把下列各数填入相应的集合内7.5,,6,,,,﹣π,﹣0.(1)有理数集合{}(2)无理数集合{}(3)正实数集合{}(4)负实数集合{}23.在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接:﹣1.5,﹣22,﹣(﹣4),0,﹣|﹣3|,.24.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.25.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A,B,C在一条直线上,若AB=8,BC=3则AC长为多少?通过分析我们发现,满足题意的情况有两种情况当点C在点B的右侧时,如图1,此时,AC=11;情况②当点C在点B的左侧时,如图2此时,AC=5.仿照上面的解题思路,完成下列问题:问题(1):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是.问题(2):若|x|=2,|y|=3,求x+y的值.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC⊥OD,求∠BOD的度数(画出图形,直接写出结果).26.折叠纸面,若在数轴上﹣1表示的点与5表示的点重合,回答以下问题:(1)数轴上10表示的点与表示的点重合.(2)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经折叠后重合,求M、N两点表示的数是多少?(3)如图,边长为2的正方形有一顶点A落在数轴上表示﹣1的点处,将正方形在数轴上向右滚动(无滑动),正方形的一边与数轴重合记为滚动一次,求正方形滚动2019次后,数轴上表示点A的数与折叠后的哪个数重合?参考答案与试题解析一.选择题(共10小题)1.解:∵一个数的平方等于4,∴这个数等于:±2.故选:A.2.解:36的平方根是±6,36的算术平方根是6,故选:B.3.解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.4.解:当输入x的值为64时,=8,是有理数,=2,是有理数,是无理数,输出,即y=,故选:C.5.解:A.﹣3.1415926,是有理数;B.是分数,属于有理数;C.3.3030030003…是无限不循环小数,所以是无理数;D.0是有理数;故选:C.6.解:=2++﹣2=2,故选:D.7.解:∵﹣<﹣<0<2,∴所给的各数中,最小的数是﹣.故选:D.8.解:∵1<2<4,∴1<<2.∴a=1,b=﹣1,∵2<4﹣<3∴c=2,d=4﹣﹣2=2﹣.∴b+d=1,ac=2.∴=.故选:A.9.解:两个无理数,比如与2,它们的乘积为4,∴两个无理数的积不一定是无理数,故选:C.10.解:由数轴可得:a+c<0,b﹣c>0,a+b>0,则|a+b|+|a+c|﹣|b﹣c|,=a+b﹣a﹣c﹣b+c,=0;故选:A.二.填空题(共8小题)11.解:|3﹣|﹣=3﹣﹣(﹣3)=6﹣12.解:∵2<<3,∴x可取的最大整数是2,故答案为2.13.解:∵<<,∴2<<3,∴3>.故答案是:>.14.解:由数轴可得0<a<1,∴|a﹣1|=1﹣a,故答案为1﹣a.15.解:使为整数的x的值可以是2,故答案为:2.16.解:在﹣4,0,π,1.010010001,﹣,1.这6个数中,无理数有π共1个.故答案为:117.解:因为=2,=3,而的整数部分为2,所以8<a<27,则满足条件的奇数a有:9,11,13,15,17,19,21,23,25,共有9个.故答案为:9.18.解:由题意可知:a+3+2a﹣9=0,∴a=2,∴a+3=5,∴这个是数为25,故答案为:25.三.解答题(共8小题)19.解:(1)==﹣(2)=﹣1+2×=﹣1+1=020.解:(1)∵(x﹣1)2=25∴x﹣1=±5,即x﹣1=5或x﹣1=﹣5,解得x=6或x=﹣4;(2)x3+4=,.21.解:∵2x﹣1的算术平方根为3,∴2x﹣1=9,解得:x=5,∵y+3的立方根是﹣1,∴y+3=﹣1,解得:y=﹣8,∴2x+y=2×5﹣8=2,∴2x+y的平方根是±.22.解:(1)有理数集合{7.5,6,,,﹣0.}(2)无理数集合{,,﹣π}(3)正实数集合{7.5,,6,,,}(4)负实数集合{﹣π,﹣0.}故答案为:7.5,6,,,﹣0.;,,﹣π;7.5,,6,,,;﹣π,﹣0..23.解:﹣1.5,﹣22=﹣4,﹣(﹣4)=4,0,﹣|﹣3|=﹣3,=3,则﹣22<﹣|﹣3|<﹣1.5<0<<﹣(﹣4).24.解:(1)∵1﹣1≠1×1+4,因此一对实数(1,1)不是“相关数”,∵﹣2﹣(﹣6)≠(﹣2)×(﹣6)+4,因此一对实数(﹣2,﹣6)不是“相关数”,∵0﹣(﹣4)=0×(﹣4)+4,因此一对实数(0,﹣4)是“相关数”,故答案为:(0,﹣4);(2)由“相关数”的意义得,x﹣(﹣3)=﹣3x+4解得,x=答:x=;(3)不存在.若(m,n)是“相关数”,则,m﹣n=mn+4,若(n,m)是“相关数”,则,n﹣m=nm+4,若(m,n)和(n,m)都是“相关数”,则有m=n,而m=n时,m﹣n=0≠mn+4,因此不存在.25.解:问题(1)∵点A和点B表示的数分别是﹣1和2∴AB=3,当C在AB右侧时,BC=2AB,则有BC=6,∴C点表示的数8;当C在AB左侧时,BC=6,∴C点表示﹣4;故答案为8或﹣4;问题(2)∵|x|=2,|y|=3,∴x=±2,y=±3当x=2,y=3时,x+y=5,当x=2,y=﹣3时,x+y=﹣1,当x=﹣2,y=3时,x+y=1,当x=﹣2,y=﹣3时,x+y=﹣5,所以,x+y的值为1,﹣1,5,﹣5;问题(3)如图:∠BOD=30°或∠BOD=50°.26.解:(1)∵在数轴上﹣1表示的点与5表示的点重合,∴=2∴数轴上﹣1表示的点与5表示的点的中点是2表示的点.∴数轴上10表示的点与﹣6表示的点重合.故答案为﹣6;(2)∵数轴上M、N两点之间的距离为2018,∴MN=2018=1009,∴2+1009=1011,2﹣1009=﹣1007∴点M表示的数为﹣1007,点N表示的数为1011.答:M、N两点表示的数是﹣1007、1011;(3)∵边长为2的正方形有一顶点A落在数轴上表示﹣1的点处,∴正方形滚动一次后一个顶点落在表示3的点处,正方形滚动2次后一个顶点落在表示5的点处,正方形滚动3次后一个顶点落在表示7的点处,∴正方形滚动2019次后一个顶点落在表示2×2019+1=4039的点处,∴正方形滚动2019次后,数轴上表示点A的数与折叠后的4039重合.。
七下数学 第六章 实数 综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A .6cmB .12cmC .18cmD .24cm2.4的平方根是( ) A .2B .2-C .16D .2±3.对于数字- ) A .它不能用数轴上的点表示出来 B .它比0小C .它是一个无理数D .它的相反数为4.若12211112a =++,22211123a =++,32211134a =++,42211145a =++⋯,则) A .202120212022B .202220232023C .202220222023D .2021202220225.如图,数轴上点E 对应的实数是( )A .2-B .1-C .1D .26.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是( )A B .2 C .1.5 D .17.若实数m ,n 满足2(12)|15|0m n -++=,则n m -的立方根为( ) A .-3B .3C .±3D .8.如图,M 、N 、P 、Q( )A .点AB .点NC .点PD .点Q9.下列说法中正确的是( ).A .0.09的平方根是0.3B 4±C .0的立方根是0D .1的立方根是1±10.下列计算正确的是( ).A .9-B 4±C 3=D 2=-二、填空题11_____12.125=x ,则x =___________.13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a b =※,如32==※34=※______.14 1.2645≈ 2.7243≈_______.152(.16.一个数的平方根是4a 和25a +,则=a _________,这个正数是_________. 17.可以作为“两个无理数的和仍为无理数”的反例的是_________________.18小的整数 _____.19=0,则(b ﹣a )2009=___.20.根据图中呈现的运算关系,可知=a ______,b =______.三、解答题21.对于结论:当0a b +=时.330a b +=也成立.若将a 看成3a 的立方根,b 看成3b 的立方根.由此得出结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数” (1)举一个具体的例子进行验证;(2)3x -的平方根是它本身,求x y +的立方根. 22.计算3|(;(2)2(2)|-. 23.数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a ,b 是有理数,且满足3=-a ab 的值.解:由题意得(3)(0-++=a b , ※a ,b 都是有理数, ※3,2a b -+也是有理数,是无理数, ※30,20a b -=+=, ※3,2a b ==-, ※(2)36ab =-=-解决问题:设x ,y 都是有理数,且满足228x y -=+x y +的值. 24.求下列各式中x 的值: (1)()32727x +=- 225.如图,已知实数14,其在数轴上所对应的点分别为点B,A,D,C.(1)点C与点D之间的距离为______;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a-b的值.参考答案:1.D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长6cm==,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:※每个小立方体的体积为216cm3,※小立方体的棱长6cm==,由三视图可知,最高处有四个小立方体,※该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.2.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.±【详解】※()22=4※4的平方根为2±.故选:D.【点睛】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.3.C【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.【详解】A.数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B.20->,故该说法错误,不符合题意;C.2-+D.2-2-故选:C.【点睛】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键.4.C【分析】先计算1a ,2a ,3a ,⋅⋅⋅,2022a 的算术平方根,并进行化简即可.【详解】解:1331212a ==⨯77623==⨯,⋅⋅⋅,20222023120222023⨯+⨯,12123134120222023112233420222023⨯+⨯+⨯+⨯+=+++⋅⋅⋅+⨯⨯⨯⨯ 1111111112233420222023=++++++⋅⋅⋅++⨯⨯⨯⨯ 1111111202212233420222023=+-+-+-+⋅⋅⋅+-1202212023=+- 202220222023=. 故选C【点睛】本题考查了算术平方根和数字的变化类规律问题,分别计算出1a ,2a ,3a ,⋅⋅⋅,2022a 的算术平方根是解本题的关键. 5.A【分析】根据数轴上点E 所在位置,判断出点E 所对应的值即可;【详解】解:根据数轴上点E 所在位置可知,点E 在-1到-3之间,符合题意的只有-2; 故选:A .【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键. 6.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长. 【详解】解:根据题意得:= 故选:A .【点睛】此题考查了算术平方根,弄清题意是解本题的关键. 7.A【分析】利用平方及绝对值的非负性,可求出=12m ,=15n -,代入即可进行求解.【详解】解:由题意可知,∵2(12)0m -≥,|15|0n +≥,且2(12)|15|0m n -++=, ∴2(12)0=m -,|15|=0n +, 即=120m -,15=0n +, 解得:=12m ,=15n -,3-, 故选:A .【点睛】本题主要考查的是平方及绝对值的非负性,求一个数的立方根等知识,根据非负性的性质求得m 与n 的值是解题的关键. 8.C【分析】由12,再结合数轴即可求解.【详解】※12, ※观察数轴,点P 符合要求, 故选:C .9.C【分析】根据平方根,算术平方根和立方根的定义分别判断即可. 【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误; 故选:C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键. 10.A【分析】利用算术平方根的性质和立方根的性质依次分析即可. 【详解】A 选项正确;B 选项的计算结果为4,所以错误;C 3≠,所以错误;D 选项的计算结果为2,所以错误; 故选:A .【点睛】本题考查了算术平方根的性质和立方根的性质,解题关键是牢记概念. 11.>的大小,然后再比较无理数的大小即可.【详解】解:2>,11>,12>; 故答案为:>.【点睛】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则.12.4-或5-或6-【分析】根据立方根定义计算即可.5=x 5x +,50x 或51x +=或51x +=-,5x =-或4x =- 或6x =-,经检验:5x =-或4x =- 或6x =- 符合题意. 故答案为:4-或5-或6-.【点睛】本题主要考查了立方根,熟练掌握立方根的定义是解题的关键.13.【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得34==※故答案为:【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键. 14.0.12645-【分析】根据立方根的定义进行计算即可.【详解】解: 1.2645≈,== 1.264510≈-0.12645=-.故答案为:-0.12645.【点睛】本题考查立方根,理解立方根的定义是正确解答的前提. 15.1【分析】根据算术平方根,立方根的定义进行计算即可求解.2()2232(=-++-1=,故答案为:1.【点睛】本题考查了实数的混合运算,掌握算术平方根、立方根是解题的关键. 16. -3 1【分析】根据正数的平方根是两个互为相反数,得出方程a +4+2a +5=0,求出a 值,把a 值代回任一个式子平方即可.【详解】解:※一个正数的平方根是a +4和2a +5, ※a +4+2a +5=0, 解得:a =﹣3,即这个正数是()2341-+=, 故答案为:﹣3;1.【点睛】本题考查了平方根的应用,解一元一次方程,熟练掌握正数有两个平方根,是互为相反数,解一元一次方程的一般方法,是解决问题的关键.17(0=【分析】根据无理数的加法运算法则,如果两个无理数互为相反数时则这两个无理数的和就不是无理数,从而举出反例.【详解】解:如果两个无理数互为相反数,则这两个无理数的和就不是无理数,=,而0是有理数,(0(0=.(答案不唯一).【点睛】此题考查了举反例法,解题的关键是掌握要说明一个命题是假命题,只需举出一个反例即可.18.3(答案不唯一)【详解】解:2<3<45<,※2,3,4.故答案为:3(答案不唯一).19.1【分析】先由算术平方根的非负性求出b-a=1,再代入求解即可.【详解】解:0,※a-b+1=0,则b-a=1,※(b﹣a)2009=12009=1.故答案为:1.【点睛】本题考查代数式求值、算术平方根的非负性,利用整体代入思想求解是解答的关键.20.-2020-2020【分析】根据立方根和平方根的定义进行求解即可.【详解】解:※2020的立方根是m,a的立方根是-m,※32020m=,※()332020-=-=-,m m※2020a=-;※n 的两个平方根分别为2020、b ,※2020b =-,故答案为:-2020,-2020.【点睛】本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.21.(1)见解析(2)1【分析】(1)举例338,8a b ==-,根据立方根的性质进行验证即可得;(2)先根据题中给的结论可得7y -与25y -互为相反数,由此建立方程可得y 的值,再根据平方根的性质可得30x -=,由此可得x 的值,然后根据立方根的性质即可得.【详解】(1)解:举例:338,8a b ==-,2(2)0+-=,此吋()880+-=,即8与8-互为相反数,所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立.(2)解:※7y -与25y -互为相反数,※7250y y -+-=,解得=2y -,※3x -的平方根是它本身,※30x -=,解得3x =,※321x y +=-=,※x y +的立方根是1.【点睛】本题考查了平方根与立方根、一元一次方程的应用等知识点,熟练掌握平方根与立方根的性质是解题关键.22.(1)4(2)3【分析】(1)先化简立方根、算术平方根及绝对值,再算加减;(2)先算乘方和开方,再算乘法,最后算加减.【详解】(1)解:原式233=-+4=(2)解:原式1424=⨯+ 12=+3=【点睛】本题考查了实数的运算,解题关键是熟练掌握立方根、算术平方根的定义和去绝对值、去括号的法则.23.8或0【分析】根据题目中例题的方法,对所求式子进行变形,求出x 、y 的值,从而可以求得x +y 的值.【详解】解:※228x y -+=+※(x 2-2y -8)+(y -4,※x 2-2y -8=0,y -4=0,解得,x =±4,y =4,当x =4,y =4时,x +y =4+4=8,当x =-4,y =4时,x +y =(-4)+4=0,即x +y 的值是8或0.【点睛】本题考查实数的运算,解题的关键是明确题目中例题的解答方法,然后运用类比的思想解答所求式子的值.24.(1)x =﹣5(2)x 1=8,x 2=﹣4【分析】(1)根据立方根定义求解即可;(2)移项后,根据平方根定义求解即可.【详解】(1)解:开立方得:27x +=﹣3,解得:x =﹣5.(2)方程整理得:()2236x -=,开方得:x﹣2=±6 ,解得:x1=8,x2=﹣4.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.25.(1)45【分析】(1)根据两点之间的距离即可得出答案;(2)先得到a,b的值,代入代数式求值即可得出答案.【详解】(1)※点C表示的数为4,点D※点C与点D之间的距离为:4,故答案为:4(2)由题意得,点A表示的数为-1,点C表示的数为4,点D--所以点A和点B之间距离为a =1(5)1=点C和点D之间的距离为b=44则a-b=(--(45.-【点睛】本题考查实数与数轴,熟知数轴上的两个数a,b表示的点A,B之间的距离=a b 是解答此题的关键.。
人教版七年级下册第六章实数单元能力提高训练一、选择题1.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±12. 已知实数x,y满足-+|y+3|=0,则x+y的值为( A )A. -2B. 2C. 4D. -43.比较,,的大小,正确的是(A)A. B. C. D.4.如果是实数,则下列一定有意义的是( D )A.B.C.D.5.下列各数是无理数的是( C )A.0B.﹣1C.D.人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x 2=2,有x =±当x 3=3时,有x 想一想,从下列各式中,能得出x =±的是( )A .2x =±20B .20x =2C .±20x =20D .3x =±20 6.下列选项中正确的是( )A .27的立方根是±3B 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是( )A .B .3CD .-1.481-的相反数是( )A .1-B 1-C .1-D 1+9a ,小数部分为b ,则a-b 的值为( )A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( )A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,人教版七年级数学下册第六章实数单元测试题(含解析)一、选择题(共10小题,每小题3分,共30分)1.(-2)2的算术平方根是()A.-2 B.±2 C. 2 D.2.观察一组数据,寻找规律:0、、、、、…,那么第10个数据是()A.B.C.7 D.3.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根4.如果一个正数的平方根为2a+1和3a-11,则a=()A . ±1B . 1C . 2D . 95.下列说法正确的是( )A . -1的倒数是1B . -1的相反数是-1C . 1的立方根是±1D . 1的算术平方根是1 6.的平方根为( )A . ±8B . ±4C . ±2D . 47.在下列实数:2、、、、-1.010 010 001…中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 8.介于下列哪两个整数之间( )A . 0与1B . 1与2C . 2与3D . 3与49.实数-1的相反数是( )A . -1-B .+1C . 1-D .-110.计算|2-|+|-3|的结果为( )A . 1B . -1C . 5-2D . 2-5 二、填空题(共8小题,每小题3分,共24分) 11.当m ≤________时,有意义. 12.当的值为最小值时,a =________.13.若a 2=9,则a 3=________.14.若x 2-49=0,则x =________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,则第二个纸盒的棱长是________ cm. 17.的整数部分是________.18.数轴上点A,点B分别表示实数,-2,则A、B两点间的距离为________.三、解答题(共8小题,共66分)19.(8分)计算:(1)|-|+|-1|-|3-|;(2)-++.20. (8分)求满足下列等式的x的值:(1)25x2=36;(2)(x-1)2=4.21. (6分)我们知道:是一个无理数,它是无限不循环小数,且1<<2,则我们把1叫做的整数部分,-1叫做的小数部分.如果的整数部分为a,小数部分为b,求代数式a+b的值.22. (6分)已知一个正数的平方根分别是3x+2和4x-9,求这个数.23. (8分)已知:|a-2|++(c-5)2=0,求:+-的值.24. (8分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求M-N的值.25. (10分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26. (12分)我们来看下面的两个例子:()2=9×4,(×)2=()2×()2=9×4,和×都是9×4的算术平方根,而9×4的算术平方根只有一个,所以=×.()2=5×7,(×)2=()2×(7)2=5×7,和×都是5×7的算术平方根,而5×7的算术平方根只有一个,所以__________.(填空)(1)猜想:一般地,当a≥0,b≥0时,与×之间的大小关系是怎样的?(2)运用以上结论,计算:的值.答案解析1.【答案】C【解析】(-2)2=4.4的算术平方根是2.2.【答案】B【解析】0=,=,=,=,=,=,…通过数据找规律可知,第n 个数为,那么第10个数据为:=. 3.【答案】B【解析】A.0.5是0.25的一个平方根,故A 错误;C .72=49,49的平方根是±7,故C 错误;D .负数没有平方根,故D 错误.4.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.5.【答案】D【解析】A.-1的倒数是-1,故错误;B .-1的相反数是1,故错误;C .1的立方根是1,故错误;D .1的算术平方根是1,正确6.【答案】C 【解析】因为=4,又因为(±2)2=4,所以的平方根是±2. 7.【答案】C 【解析】2、、-1.010 010 001…是无理数. 8.【答案】C 【解析】因为4<5<9,所以2<<3. 9.【答案】C 【解析】实数-1的相反数是-(-1)=1-.10.【答案】C【解析】原式=2-+3-=5-2. 11.【答案】3【解析】要使根式有意义,则3-m ≥0,解得m ≤3.12.【答案】2 【解析】因为≥0,所以的最小值为0,3a -6=0,解得:a =2.13.【答案】±27 【解析】因为a 2=9,所以a =±3,所以a 3=±27. 14.【答案】±7 【解析】∵x 2-49=0,∴x 2=49,∴x =±7. 15.【答案】【解析】设立方体的棱长为a ,则a 3=9,所以a =. 16.【答案】7 【解析】根据题意得:=7,则第二个纸盒的棱长是7 cm. 17.【答案】4【解析】因为16<17<25,所以4<<5,所以的整数部分是4. 18.【答案】2 【解析】-(-2)=2.19.【答案】解:(1)原式=-+-1-3+=2-4;(2)原式=-(-2)+5+2=2+5+2=9.【解析】(1)根据绝对值的意义去绝对值得到原式=-+-1-3+,然后合并即可;(2)先进行开方运算得到原式=-(-2)+5+2,然后进行加法运算.20.【答案】解:(1)把系数化为1,得x 2=,开平方得,x =±56; (2)开平方得,x -1=±2,x =±2+1,即x =3或-1.【解析】(1)先把系数化为1,再利用平方根定义解答;(2)把x -1看作整体,再利用平方根定义解答.21.【答案】解:因为27<50<64,所以3<<4, 所以的整数部分a =3,小数部分b =-3. 所以a +b =3+-3=.【解析】先依据立方根的性质估算出的大小,然后可求得a,b的值,最后代入计算即可.22.【答案】解:一个正数的平方根分别是3x+2和4x-9,则3x+2+4x-9=0,解得:x=1,故3x+2=5,即该数为25.【解析】利用平方根的定义直接得出x的值,进而求出这个数.23.【答案】解:因为|a-2|++(c-5)2=0,所以a=2,b=-8,c=5.所以原式=+-=-2+4-5=-3.【解析】首先依据非负数的性质求得a、b、c的值,然后代入求解即可.24.【答案】解:因为M=是m+3的算术平方根,N=是n-2的立方根,所以可得:m-4=2,2m-4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n-2=1,所以可得M=3,N=1,把M=3,N=1代入M-N=3-1=2.【解析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M-N的值.25.【答案】解:(1)设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.【解析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.26.【答案】解:根据题。
人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。
人教版七年级数学下册第六章实数单元练习及答案人教版七年级数学下册第六章实数单元练习1.以下实数是无理数的是 ()A.2B. 3C.0D.- 1.010 101 32.以下计算正确的选项是 ( )A. 9=±3B.|-3|=- 3 C. 9=3D.- 32=93.以下说法中错误的选项是()1A. 2是 0.25 的一个平方根B.正数 a 的两个平方根的和为093C.16的平方根是4D.当 x≠0 时,-x2没有平方根4.若m<0,则m的立方根是()3.-3.±33-mA. mB m C mD.5.对于“ 10”,下边说法不正确的选项是 ( )A.它是数轴上离原点10个单位长度的点表示的数B.它是一个无理数C.若 a<10<a+1,则整数 a 为 3D.它表示面积为 10 的正方形的边长6.实数 a,b 在数轴上的对应点的地点如图,且 a=- 2,b= 3,则化简 a2- b2-|a-b|的结果为 ( )A .-2 2B .-2 3C .0D .2 37. 若 x -3存心 , x 的取 范 是 ___________8. 如 ,将两个 3的正方形 角 剪开 ,将所得的四个三角形拼成一个大的正方形 , 个大正方形的 是 __________.9. 察剖析以下数据: 0,- 3, 6,-3, 12,- 15, 18,⋯,根 据 以 上 数 据 排 列 的 律 , 第 n 个 数 据 是_______________________.(n 正整数 )10. 以下四个数:- 3,- 3,-π,-1,此中最小的数是11. 将 数 5,π , 0, - 6 由小到大用“<” 起来 ,可表示________________.12. 己知 a ,b 两个 整数 ,且 a < 28<b , ab =____.13. 在 数2,3, ,-π,1⋯ 相 两个, ,2 8 016 3 0.101 001 000 1 (1 之 挨次多一个 0)中,有理数的个数 B ,无理数的个数 A ,A -B =____.14. 已知 5=2.236,50=7.071, 0.5=_____________, 500=___________15. 已知 3 10=2.154,3 100=4.642, 3 10 000=_______,-30.1=________.16.计算:(1)| 2-4|+2;(2)( 0.01+30.001)×144;(3)(78)2-6449-4717.一个非负数的两个平方根分别是 2a-1 和 a-5,则这个非负数是多少?18.已知 x-2 的平方根是± 1,2x+y+17 的立方根是 3,求 x2+y2的平方根和立方根.19.已知 (x-12)2=169,(y-1)3=- 0.125,求 x- 2xy-34y+x的值.20.假如 5+ 13的小数部分为 a,5- 13的小数部分为 b,求 a+b 的值.21.如图,数轴上表示 1, 3的对应点分别为 A,B,点 C 为点 B 对于点 A 的对称点,设点 C 所表示的数为 x.人教版七年级数学下册第六章《实数》水平测试一、选择题(每题 3 分,共27 分)1、如有理数 a 和 b 在数轴上所表示的点分别在原点的右侧和左侧,则 b2-︱ a-b︱等于()A、 aB、- aC、 2b+ aD、 2b- a2、以下说法不正确的选项是()A、1的平方根是1B、- 9 是 81 的一个平方根255C、 0.2的算术平方根是0.04D、- 27的立方根是- 33、以下说法正确的选项是()A、数轴上的点与有理数一一对应B、数轴上的点与无理数一一对应C、数轴上的点与整数一一对应D、数轴上的点与实数一一对应4、若 a 的算术平方根存心义,则 a 的取值范围是()A、全部数B、正数C、非负数D、非零数5、在- 2, 4 ,2, 3.14,327 ,,这 6 个数中,无理数共有 ()5A、4 个B、3 个C、2 个D、1 个6、若 x 是 9 的算术平方根,则x 是()A、3B、- 3C、9D、 817、在以下各式中正确的选项是()A、( 2)2=-2B、9 =3C、16=8D、22=28、预计76的值在哪两个整数之间()A、75 和 77B、6和7C、7和 8D、8和99、以下各组数中,互为相反数的组是()1A、-2 与( 2)2B、-2 和38C、-与 2D、︱- 2︱和 22二、填空题(每题 3 分,共 18 分)11、 81 的平方根是 __________ ,1.44 的算术平方根是 __________ 。
人教版七年级下册数学第六章实数培优试题一.选择题(共10小题)1.下列实数中,无理数是()A.-1 B.22C.16D.2)A.线段AB上B.线段BC上C.线段CD上D.线段DE上3.下列说法正确的是()A.立方根等于它本身的实数只有0和1B.平方根等于它本身的实数是0C.1的算术平方根是±1D.绝对值等于它本身的实数是正数4是2的()A.倒数B.平方根C.立方根D.算术平方根5-8的立方根之和是()A.0 B.-4 C.4 D.0或-46.已知则以下对m的估算正确的是()A.3<m<4 B.4<m<5 C.5<m<6 D.6<m<77.已知实数a在数轴上的位置如图所示,则化简|a+2|-|a-1|的结果为()A.-2a-1 B.2a+1 C.-3 D.38.数轴上A,B,C,D,E的点在()A.点A与点B之间B.点B与点C之间C.点C与点D之间D.点D与点E之间9.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( ) A .9B .8C .7D .610.最“接近1)-的整数是( ) A .0B .1C .2D .3二.填空题(共6小题)11.若一个数的立方根是-3,则这个数是 .12.9的平方根是 .13=0.102,则x= ,已知=155.8,则y= 14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= .15.如图,在数轴上点A ,B 表示的数分别是1,若点B ,C 到点A 的距离相等,则点C 所表示的数是 .16.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .三.解答题(共7小题) 17.求出下列x 的值(1)3(x-1)2(2)8(x 3+1)=-5618.计算:2018(1)|2|---19.将12--在数轴上表示,并将原数用“<”连接.20.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.21.将一个体积为364cm 的立方体木块锯成8个同样大小的小立方体木块.求每个小立方体木块的表面积.22.对于实数a 、b 定义运算"#"a#b=ab-a-1. (1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=1,4EH M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x为何值时,原点O 恰为线段MN的三等分点.答案:1-5 BCBDD6-10 BBCCA11.-2712. ±3,213. 0.010404 , 378000014.15. 2+16.201917.解:(1)3(x-1)2=9,(x-1)2=3,x-1=±,x1=+1,x2=-+1;(2)x3+1=-7,x3=-8,x=-2.18. 解:原式=-1-(2-)+9-3=-1-2++9-3=3+.19.解:20. 解:(1)∵|a|=5,b2=4,c3=-8.∴a=±5,b=±2,c=-2,∵a<b,∴a=-5,b=±2,∴a+b=-5+2=-3或a+b=-5-2=-7,即a+b的值为-3或-7;(2)∵abc>0,c=-2,∴ab<0,∴a=5,b=-2 或 a=-5,b=2,∴当a=5,b=-2,c=-2时,a-3b-2c=5-3×(-2)-2×(-2)=15,当 a=-5,b=2,c=-2时,a-3b-2c=-5-3×2-2×(-2)=-7,∴a-3b-2c=15 或-7.21.解:根据题意知64÷8=8(cm3),=2(cm),6×22=24(cm2)或=4(cm),4÷2=2(cm),22×6=24(cm2)答:每个小立方体木块的表面积是24cm222. 解:(1)人教版七年级下册数学单元检测卷:第六章实数一、填空题1用“>”或“<”填空).2.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.3.若x+3是4的平方根,则x=-1或-5.4.计算:325≈2.92(结果精确到0.01).5.已知2x+1的平方根是±5,则5x+4的立方根是4.6.点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B二、选择题7.4的算术平方根是( B )A.4 B.2 C.-2 D.±28.一个正方形的面积为50 cm2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9.±8是64的( A )A.平方根B.相反数C.绝对值D.算术平方根10.下列说法正确的是( A )A.-5是25的平方根B.25的平方根是-5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根11.下列说法中,不正确的是( D )A .0.027的立方根是0.3B .-8的立方根是-2C .0的立方根是0D .125的立方根是±512.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( A ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间 D .7cm ~8 cm 之间13.下列实数中,是无理数的是( B ) A .1B. 2C .-3D.1314.-2的相反数是( C ) A .- 2B.22C. 2D .-2215.计算-4-|-3|的结果是( B ) A .-1 B .-5 C .1 D .516.下列说法正确的是( D )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5三、解答题17.观察:已知 5.217 (1)0.052 17≈0.228__4, (2)若x ≈0.022 84,则x≈0.000__521__7. 18.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.19.求下列各式中x 的值: (1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(人教版七年级数学下册 第六章 实数 单元测试题(含解析)一、选择题(共10小题,每小题3分,共30分) 1.(-2)2的算术平方根是( )A . -2B . ±2C . 2D .2.观察一组数据,寻找规律:0、、、、、…,那么第10个数据是( )A .B .C . 7D .3.下列说法正确的是( ) A . 0.25是0.5的一个平方根B . 正数有两个平方根,且这两个平方根之和等于0C . 72的平方根是7D . 负数有一个平方根4.如果一个正数的平方根为2a +1和3a -11,则a =( )A . ±1B . 1C . 2D . 95.下列说法正确的是( )A . -1的倒数是1B . -1的相反数是-1C . 1的立方根是±1D . 1的算术平方根是1 6.的平方根为( )A . ±8B . ±4C . ±2D . 4 7.在下列实数:2、、、、-1.010 010 001…中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 8.介于下列哪两个整数之间( )A . 0与1B . 1与2C . 2与3D . 3与4 9.实数-1的相反数是( )A . -1-B .+1 C . 1-D.-110.计算|2-|+|-3|的结果为()A. 1 B.-1 C.5-2 D.2-5二、填空题(共8小题,每小题3分,共24分)11.当m≤________时,有意义.12.当的值为最小值时,a=________.13.若a2=9,则a3=________.14.若x2-49=0,则x=________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,则第二个纸盒的棱长是________ cm.17.的整数部分是________.18.数轴上点A,点B分别表示实数,-2,则A、B两点间的距离为________.三、解答题(共8小题,共66分)19.(8分)计算:(1)|-|+|-1|-|3-|;(2)-++.20. (8分)求满足下列等式的x的值:(1)25x2=36;(2)(x-1)2=4.21. (6分)我们知道:是一个无理数,它是无限不循环小数,且1<<2,则我们把1叫做的整数部分,-1叫做的小数部分.如果的整数部分为a,小数部分为b,求代数式a+b的值.22. (6分)已知一个正数的平方根分别是3x+2和4x-9,求这个数.23. (8分)已知:|a-2|++(c-5)2=0,求:+-的值.24. (8分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求M-N的值.25. (10分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26. (12分)我们来看下面的两个例子:()2=9×4,(×)2=()2×()2=9×4,和×都是9×4的算术平方根,而9×4的算术平方根只有一个,所以=×.()2=5×7,(×)2=()2×(7)2=5×7,和×都是5×7的算术平方根,而5×7的算术平方根只有一个,所以__________.(填空)(1)猜想:一般地,当a≥0,b≥0时,与×之间的大小关系是怎样的?(2)运用以上结论,计算:的值.答案解析1.【答案】C【解析】(-2)2=4.4的算术平方根是2.2.【答案】B【解析】0=,=,=,=,=,=,…通过数据找规律可知,第n 个数为,那么第10个数据为:=. 3.【答案】B【解析】A.0.5是0.25的一个平方根,故A 错误;C .72=49,49的平方根是±7,故C 错误;D .负数没有平方根,故D 错误.4.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.5.【答案】D【解析】A.-1的倒数是-1,故错误;B .-1的相反数是1,故错误;C .1的立方根是1,故错误;D .1的算术平方根是1,正确6.【答案】C 【解析】因为=4,又因为(±2)2=4,所以的平方根是±2. 7.【答案】C 【解析】2、、-1.010 010 001…是无理数. 8.【答案】C 【解析】因为4<5<9,所以2<<3. 9.【答案】C 【解析】实数-1的相反数是-(-1)=1-.10.【答案】C【解析】原式=2-+3-=5-2. 11.【答案】3【解析】要使根式有意义,则3-m ≥0,解得m ≤3.12.【答案】2 【解析】因为≥0,所以的最小值为0,3a -6=0,解得:a =2.13.【答案】±27 【解析】因为a 2=9,所以a =±3,所以a 3=±27. 14.【答案】±7 【解析】∵x 2-49=0,∴x 2=49,∴x =±7. 15.【答案】【解析】设立方体的棱长为a ,则a 3=9,所以a =. 16.【答案】7 【解析】根据题意得:=7,则第二个纸盒的棱长是7 cm. 17.【答案】4【解析】因为16<17<25,所以4<<5,所以的整数部分是4. 18.【答案】2 【解析】-(-2)=2.19.【答案】解:(1)原式=-+-1-3+=2-4;(2)原式=-(-2)+5+2=2+5+2=9.【解析】(1)根据绝对值的意义去绝对值得到原式=-+-1-3+,然后合并即可;(2)先进行开方运算得到原式=-(-2)+5+2,然后进行加法运算.20.【答案】解:(1)把系数化为1,得x 2=,开平方得,x =±56; (2)开平方得,x -1=±2,x =±2+1,即x =3或-1.【解析】(1)先把系数化为1,再利用平方根定义解答;(2)把x -1看作整体,再利用平方根定义解答.21.【答案】解:因为27<50<64,所以3<<4, 所以的整数部分a =3,小数部分b =-3. 所以a +b =3+-3=.【解析】先依据立方根的性质估算出的大小,然后可求得a,b的值,最后代入计算即可.22.【答案】解:一个正数的平方根分别是3x+2和4x-9,则3x+2+4x-9=0,解得:x=1,故3x+2=5,即该数为25.【解析】利用平方根的定义直接得出x的值,进而求出这个数.23.【答案】解:因为|a-2|++(c-5)2=0,所以a=2,b=-8,c=5.所以原式=+-=-2+4-5=-3.【解析】首先依据非负数的性质求得a、b、c的值,然后代入求解即可.24.【答案】解:因为M=是m+3的算术平方根,N=是n-2的立方根,所以可得:m-4=2,2m-4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n-2=1,所以可得M=3,N=1,把M=3,N=1代入M-N=3-1=2.【解析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M-N的值.25.【答案】解:(1)设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.【解析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.26.【答案】解:根据题。