九年级下册数学知识点总结
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。
通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。
希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。
九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准进行学习和复习。
九年级数学每章知识点总结数学是一门重要的学科,它对于培养逻辑思维、解决问题的能力非常关键。
九年级是数学学习的关键时期,掌握好每章的知识点对于学生的学习成绩至关重要。
本文将为你详细总结九年级数学每章的知识点。
第一章:函数1. 函数的概念:自变量与因变量的关系。
2. 线性函数:y = kx + b。
3. 一次函数:y = ax + b。
4. 反比例函数:y = k/x。
5. 幂函数:y = x^a。
6. 复合函数:f(g(x))。
7. 函数的图像与性质。
第二章:方程与不等式1. 一元一次方程:ax + b = 0。
2. 一元二次方程:ax^2 + bx + c = 0。
3. 方程的解与性质。
4. 不等式的概念与性质。
5. 一元一次不等式的解法。
6. 一元二次不等式的解法。
第三章:图形的性质及应用1. 二维图形的基本概念:点、线、线段、射线、角、多边形等。
2. 二维图形的相似性与全等性。
3. 三角形的性质与分类。
4. 三角形的面积与周长计算。
5. 四边形的性质与分类。
6. 圆的性质与计算。
第四章:几何变换1. 平移:图形在平面上沿着平行方向移动。
2. 旋转:图形围绕某个点旋转一定角度。
3. 对称:图形以某条线为对称轴对称。
4. 直线的平移与旋转性质。
5. 平移、旋转对图形的影响。
第五章:统计与概率1. 数据的收集与整理。
2. 统计量的计算与应用。
3. 概率的概念与计算。
4. 实际问题中的统计与概率应用。
第六章:三角函数1. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等。
2. 三角函数的图像与周期性。
3. 角度制与弧度制的转换。
4. 三角函数的运算与应用。
第七章:数列与数学归纳法1. 数列的概念与性质。
2. 等差数列与等比数列的计算与应用。
3. 数学归纳法的基本原理与应用。
第八章:立体几何1. 空间图形的基本概念与性质。
2. 空间图形的体积与表面积计算。
3. 空间几何相关问题的解决方法。
每章的知识点都是数学学习的基础,掌握好这些知识对于九年级的学生来说非常重要。
数学九年级必背知识点一、代数与函数1. 一次函数- 定义:形如y = kx + b的函数,其中k和b为常数,且k不为0。
- 性质:图像为一条直线,斜率为k。
- 常用公式:斜率公式:k = (y₂ - y₁) / (x₂ - x₁)。
2. 二次函数- 定义:形如y = ax²+ bx + c的函数,其中a、b和c为常数,且a不为0。
- 性质:图像为抛物线,开口方向由a的正负决定。
- 常用公式:顶点坐标公式:(h, k),其中h = -b / (2a),k = f(h) = -Δ / (4a),其中Δ表示判别式。
3. 平方根- 定义:对于非负实数x,其平方根是一个非负实数y,记作y = √x。
- 性质:平方根的平方是原来的数,即(√x)² = x,x ≥ 0。
4. 等比数列- 定义:数列中任意两个相邻项的比值相等的数列。
- 性质:公比q ≠ 0时,首项a₁与公比q确定一个等比数列。
- 常用公式:通项公式:aₙ = a₁ * q^(n-1)。
二、几何1. 平面几何基础知识- 垂直:两条线段、直线或线段与直线的夹角为90度。
- 平行:两条线段、直线或线段与直线的夹角为0度。
- 三角形内角和定理:三角形内角的和为180度。
- 相似三角形:对应角相等,对应边成比例的三角形。
2. 三角形- 三条边的关系:- 两边之和大于第三边。
- 两边之差小于第三边。
- 三角形分类:- 等边三角形:三条边相等。
- 等腰三角形:两条边相等。
- 直角三角形:存在一个角为直角(90度)。
3. 圆- 圆周率π:定义为圆的周长与直径的比值,约等于3.14。
- 弧长与扇形面积:- 弧长:圆周上的一段弧的长度。
- 扇形面积:以弧为弧边、半径为半径的部分所围成的区域的面积。
- 圆柱体的体积和表面积:- 体积:V = πr²h,其中r为底面半径,h为高度。
- 表面积:S = 2πr² + 2πrh,其中r为底面半径,h为高度。
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级所有数学详细知识点一、代数与函数
1. 整式的加减运算
2. 整式的乘法运算
3. 因式分解
4. 比例与比例方程
5. 一元一次方程与一元一次不等式
6. 二次根式
7. 二次根式与二次方程
8. 图像与函数
9. 直角坐标系与函数
10. 平移与函数图像
11. 对称与函数图像
12. 函数的性质
13. 函数与方程
14. 一元二次方程
15. 实数与实数运算
16. 线性规划
二、几何
1. 基本图形初步认识
2. 直线、射线、线段与角
3. 三角形初步认识
4. 三角形中的周与面
5. 三角形中的诱导性质
6. 三角形中的全等
7. 三角形中的相似
8. 点、线、面的位置关系初步认识
9. 关于点、线对称
10. 直角三角形初步认识
11. 近似计算和绝对误差
12. 圆的初步认识
13. 二次曲线的平移与缩放
三、数据与统计
1. 数据调查与数据整理
2. 统计量
3. 表格和图形的应用
4. 均数与图表
5. 概率初步认识
6. 事件与概率、集合的应用
7. 研究性问题初步认识
以上是九年级数学的所有详细知识点,希望对你的学习有所帮助。
记住,不仅要掌握这些知识点的内容,还要注重实际运用和问题解决能力的培养。
加油!。
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的加减法:通分后相加减。
4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。
5. 有理数的乘方:正数与负数的幂的性质。
第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。
2. 代数式的运算:常数与变量的运算、代数式的合并与展开。
3. 简单方程的解法:等式的转化与解方程。
4. 一元一次方程:含有一个未知数的一次方程的解法与应用。
5. 实际问题中的应用:运用方程进行实际问题的解答。
第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。
2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。
3. 线性函数:函数图像为直线的函数。
4. 平方函数:函数图像为抛物线的函数。
5. 函数的最值:函数图像的最大值和最小值。
第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。
2. 直线、射线、线段的比较:长度比较和角度比较。
3. 全等三角形:全等三角形的判定条件与性质。
4. 相似三角形:相似三角形的判定条件与性质。
5. 相似三角形的应用:运用相似三角形进行实际问题的解答。
第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。
2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。
3. 圆的性质:圆心角、圆内外切等与圆相关的性质。
4. 圆的应用:运用圆的性质解答实际问题。
5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。
第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。
2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。
3. 概率的概念:事件发生的可能性。
4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。
图1九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
九年级下册数学知识点总结
【篇一:直线与圆的位置关系】
①直线和圆无公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB 与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
AB与⊙O相切,d=r。
(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入
x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
【篇二:旋转变换】
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个
角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
【篇三:圆周角】
1、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)
2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;
②找圆心的方法:作两个900圆周角所对两弦交点)
4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)
补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。