2019人教版 高中数学【选修 2-1】综合素质检测1
- 格式:doc
- 大小:85.50 KB
- 文档页数:7
(时间:120分钟;满分:150分)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( )A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32答案:C2.向量a ,b 与任何向量都不能构成空间的一个基底,则( ) A .a 与b 共线 B .a 与b 同向 C .a 与b 反向 D .a 与b 共面解析:选A.∵a ,b 不能与任何向量构成空间基底,故a 与b 一定共线. 3.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为( ) A .0° B .45° C .90° D .180°解析:选C.已知a =(0,2,1),b =(-1,1,-2), 则cos 〈a ,b 〉=0,从而得出a 与b 的夹角为90°.4.已知A (1,2,1),B (-1,3,4),C (1,1,1),AP →=2PB →,则|PC →|为( )A.773B. 5C.779D.779解析:选A.设P (x ,y ,z ),由AP →=2PB →得: (x -1,y -2,z -1)=2(-1-x ,3-y ,4-z ),∴x =-13,y =83,z =3,即P ⎝⎛⎭⎫-13,83,3,∴PC →=⎝⎛⎭⎫43,-53,-2, ∴|PC →|=773.故选A.5.如图,已知空间四边形OABC 中,M 、N 分别是对边OA 、BC 的中点,点G 在MN 上,且MG =2GN ,设OA →=a ,OB →=b ,OC →=c ,现用基底{a ,b ,c }表示向量OG →,OG →=x a +y b +z c ,则x ,y ,z 的值分别为( )A .x =13,y =13,z =13B .x =13,y =13,z =16C .x =13,y =16,z =13D .x =16,y =13,z =13解析:选D.由线段中点的向量表达式,得OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →)=12a +23⎣⎡⎦⎤-12a +c +12(b -c ) =12a -13a +23c +13b -13c =16a +13b +13c ,∴x =16,y =13,z =13. 6.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4 D .5解析:选C.①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知正确;⑤由向量的数量积的性质知,不正确,故选C.7.如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 与BC 1所成的角是( )A .45°B .60°C .90°D .120°解析:选B.以点B 为坐标原点,建立如图所示的空间直角坐标系,设各棱长为2,则E (0,1,0),F (0,0,1),C 1(2,0,2),B (0,0,0)则EF →=(0,-1,1),BC 1→=(2,0,2),∴cos 〈EF →,BC 1→〉=22×22=12,∴〈EF →,BC 1→〉=60°,所以直线EF 与BC 1所成的角为60°.8.已知ABCD 是一个四面体,O 为△BCD 内一点,则“AO →=13(AB →+AC →+AD →)”是“O为△BCD 的重心”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.设BC 中点为E ,若O 为△BCD 的重心,则AO →=AE →+13ED →,AE →=12(AB →+AC →),又∵ED →=AD →-AE →,∴AO →=AE →+13(AD →-AE →)=23AE →+13AD →=13(AB →+AC →+AD →).故选C.9.已知A (-4,6,-1)、B (4,3,2),则下列各向量中是平面AOB 的一个法向量的是( ) A .(0,1,6)B .(-1,2,-1)C .(-15,4,36)D .(15,4,-36)解析:选D.设法向量为(x ,y ,z ),则⎩⎪⎨⎪⎧-4x +6y -z =0,4x +3y +2z =0,解得⎩⎪⎨⎪⎧x =154y ,z =-9y .令y =4,则得法向量(15,4,-36). 10.四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1),则P A 与底面ABCD 的关系是( )A .相交B .垂直C .不垂直D .成60°角解析:选B.∵AP →·AB →=0,AP →·AD →=0,∴PA ⊥AB ,PA ⊥AD ,又AB ∩AD =A .∴PA ⊥平面ABCD .11.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与平面SBC 所成的角的余弦值为( )A.223B.13C.33D.23解析:选B.设AE 与平面SBC 所成的角为θ,以底面中心O 为原点,以射线OA 为x 轴,以射线OB 为y 轴,以射线OS 为z 轴,建立空间直角坐标系,设底面边长为2,则A (1,0,0),B (0,1,0),C (-1,0,0),S (0,0,1),E ⎝⎛⎭⎫0,12,12,所以BC →=(-1,-1,0),SB→=(0,1,-1),EA →=⎝⎛⎭⎫1,-12,-12,设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC →=0,n ·SB →=0,即⎩⎪⎨⎪⎧-x -y =0,y -z =0,令x =1,所以n =(1,-1,-1),因为cos ⎝⎛⎭⎫π2-θ=EA →·n |EA →||n |=223,所以cos θ=13.故选B.12.如图所示,在四面体PABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C的余弦值为( )A.22B.33 C.77 D.57解析:选C.如图所示,作BD ⊥AP 于D ,作CE ⊥AP 于E . 设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24,因为BC →=BD →+DE →+EC →,所以BC 2=BD 2+DE 2+EC 2+2BD →·DE →+2DE →·EC →+2EC →·BD →,所以EC →·BD →=-14,所以cos 〈BD →,EC →〉=-77,由图知,二面角B -AP -C 的余弦值为77.故选C.二、填空题(本大题共4小题.把答案填在题中横线上)13.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=________. 解析:∵a -2b =(8,-5,13),∴|a -2b |= 82+(-5)2+132=258. 答案:25814.已知a =(1,2,-2),若|b |=2|a |,且a ∥b ,则b =________. 解析:∵a ∥b ,∴b =λa =(λ,2λ,-2λ)(λ∈R ), 又|b |=2|a |,∴λ=±2,∴b =(2,4,-4)或b =(-2,-4,4). 答案:(2,4,-4)或(-2,-4,4)15.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD上一点,BE =3ED ,以{AB →,AC →,AD →}为基底,则GE →=________.解析:GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14→-13(AB →+AC →)=AD →+14→-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.答案:-112AB →-13AC →+34AD →16.如图,在长方体ABCD -A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为________.解析:利用空间直角坐标系转化为求向量B 1C →与C 1D →的夹角.建立如图所示的空间直角坐标系,可知∠CB 1C 1=60°,∠DC 1D 1=45°. 设B 1C 1=1,则CC 1=3=DD 1, ∴C 1D 1=3,可知B 1(3,0,0),C (3,1,3),C 1(3,1,0),D (0,1,3), ∴B 1C →=(0,1,3),C 1D →=(-3,0,3),∴cos 〈B 1C →,C 1D →〉=B 1C →·C 1D →|B 1C →||C 1D →|=326=64.答案:64三、解答题(本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤) 17.设a =(1,5,-1),b =(-2,3,5). (1)当(λa +b )∥(a -3b )时,求λ的值; (2)当(a -3b )⊥(λa +b )时,求λ的值.解:(1)∵a =(1,5,-1),b =(-2,3,5), ∴a -3b =(1,5,-1)-3(-2,3,5)=(1,5,-1)-(-6,9,15)=(7,-4,-16).λa +b =λ(1,5,-1)+(-2,3,5)=(λ,5λ,-λ)+(-2,3,5)=(λ-2,5λ+3,-λ+5).∵(λa +b )∥(a -3b ),∴λ-27=5λ+3-4=-λ+5-16,解得λ=-13.(2)由(a -3b )⊥(λa +b ) ⇔(7,-4,-16)·(λ-2,5λ+3,-λ+5)=0⇔7(λ-2)-4(5λ+3)-16(-λ+5)=0,解得λ=1063.18.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 为PD 的中点,求满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解:法一:如图所示,取PC 的中点E ,连接NE ,则EN →=12CD →=12BA →=-12AB →.EM →=PM →-PE →=23PC →-12PC →=16PC →. 连接AC ,则PC →=AC →-AP →=AB →+AD →-AP →,∴MN →=EN →-EM →=-12AB →-16(AB →+AD →-AP →)=-23AB →-16AD →+16AP →.∵AB →、AD →、AP →不共面,∴x =-23,y =-16,z =16.法二:MN →=PN →-PM →=12PD →-23PC →=12(PA →+AD →)-23(PA →+AC →) =-12AP →+12AD →-23(-AP →+AB →+AD →)=-23AB →-16AD →+16AP →,∵AB →、AD →、AP →不共面,∴x =-23,y =-16,z =16.19.在平行六面体ABCD -A 1B 1C 1D 1中,以A 为端点的三条棱长均为1,且两两夹角为π3.(1)求AC 1的长;(2)求AC 1与面ABCD 所成角的余弦值.解:(1)AC 1→=AA 1→+AB →+AD →, AC 1→2=(AA 1→+AB →+AD →)2,∵〈AA 1→,AD →〉=〈AB →,AD →〉=〈AA 1→,AB →〉=π3,∴(AC 1→)2=6,∴|AC 1→|= 6.(2)∵∠A 1AD =∠A 1AB ,∴AC 1在底面的射影为AC , 则∠C 1AC 即为AC 1与面ABCD 所成的角.cos ∠C 1AC =cos 〈AC 1→,AC →〉=AC 1→·AC →|AC 1→||AC →|=(AA 1→+AB →+AD →)·(AB →+AD →)6·|AC →|,AC 2→=(AB →+AD →)2=3,∴cos ∠C 1AC =223.20.如图,四面体ABCD 中,O 是BD 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值. 解:(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD . ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO = 3.而AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC .∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为原点,如图建立空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1),BA →=(-1,0,1),CD →=(-1,-3,0),∴cos 〈BA →,CD →〉=BA →·CD →|BA →||CD →|=24,∴异面直线AB 与CD 所成角的余弦值为24.21.如图,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1B 1的正弦值.解:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →||A 1B 1→|=43×22=23, 所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5).设平面AA 1C 1的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0,即⎩⎨⎧-2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2).同样地,设平面A 1B 1C 1的法向量n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0,即⎩⎨⎧-2x 1-2y 1+5z 1=0,-22x 1=0.不妨令y 1=5,可得n =(0,5,2),于是cos 〈m ,n 〉=m ·n |m ||n |=27×7=27,从而sin 〈m ,n 〉=357 所以二面角A -A 1C 1B 1的正弦值为357.22.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥底面ABCD ,PA =AB =6,点E是棱PB 的中点.(1)求直线AD 与平面PBC 的距离; (2)若AD =3,求二面角A -EC -D 的平面角的余弦值.解:(1)如图,以A 为坐标原点,射线AB 、AD ,AP 分别为x 轴、y 轴,z 轴正半轴,建立空间直角坐标系Axyz .设D (0,a ,0),则B (6,0,0),C (6,a ,0),P (0,0,6),E ⎝⎛⎭⎫62,0,62.因此,AE →=⎝⎛⎭⎫62,0,62,BC →=(0,a ,0),PC →=(6,a ,-6). 则AE →·BC →=0,AE →·PC →=0,所以AE ⊥平面PBC .又由AD ∥BC 知AD ∥平面PBC ,故直线AD 与平面PBC 的距离为点A 到平面PBC 的距离,即为|AE →|= 3.(2)设平面AEC 的法向量为n 1=(x 1,y 1,z 1), ∵AE →=⎝⎛⎭⎫62,0,62,AC →=(6,3,0),∴⎩⎪⎨⎪⎧62x 1+62z 1=0,6x 1+3y 1=0.令x 1=-1,得y 1=2,z 1=1,∴n 1=(-1,2,1).设平面EDC 的法向量为n 2=(x 2,y 2,z 2), ∵EC →=⎝⎛⎭⎫62,3,-62,CD →=(-6,0,0),∴⎩⎪⎨⎪⎧62x 2+3y 2-62z 2=0,-6x 2=0,令z 2=2,得y 2=1.∴n 2=(0,1,2).故cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=63.所以二面角A -EC -D 的平面角的余弦值为63.。
高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。
一、选择题1.下列命题中,真命题是( )A .命题“若a b >,则22ac bc >”B .命题“若a b =,则a b =”的逆命题C .命题“当2x =-时,2560x x ++=”的否命题D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”的逆否命题 2.下列命题错误的是( )A .命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题B .命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”C .∀ 0x >且1x ≠,都有12x x+> D .“若22am bm <,则a b <”的逆命题为真3.设a ,b ,c +∈R ,则“1abc =”是a b c+≤++”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要的条件 4.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <5.9k >是方程22194x y k k +=--表示双曲线的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6B .()2,6C .(][),26,-∞+∞D .()(),26,-∞+∞7.下列命题中正确的是( )A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 8.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( )A .a b >B .a b <C .a b >D .22a b > 9.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( )A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞ 10.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.条件甲:关于x 的不等式 sincos 1a x b x +>的解集为空集,条件乙:1a b +≤,则甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 12.已知2:11x p x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( )A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞ 二、填空题13.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 14.已知命题p :任意[1,2]x ∈,20x a -≥,命题q :存在x ∈R ,2220x ax ++=.若命题p 与q 都是真命题,求实数a 的取值范围________.15.已知集合261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,3{|log ()}1B x x a ≥=+,若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________.16.已知命题:p x R ∀∈,210x mx ++≥;命题()0:0,q x ∃∈+∞,000x e mx -=,若p q ∨为假命题,则实数m 的取值范围是_______________;17.设2:8120x x α-+>,2:x m m β-≤,若β是α的充分非必要条件,则实数m 的取值范围是_______________.18.若命题“[]01,1x ∃∈-,20030x x a ++>”为假命题,则实数a 的取值范围是______. 19.已知a R ∈ ,则“16a =”是“两直线1:210l x ay +-=与()2:3110l a x ay ---=平行”的___________条件(填“充分非必要”、“必要非充分”、“充要”、“既不充分也不必要”). 20.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________.三、解答题21.已知:46p x -≤,2:2240q x x --≤,若p q ∨为真,p q ∧为假,求实数x 的取值范围.22.已知p :27100x x -+<,q :22430x mx m -+<,其中0m >.(1)若4m =且p q ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足|3|1x -<. (1)若1a =,且p q ∨为真,求实数x 的取值范围;(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.已和知集合()(){}20A x x a x a=--<,集合211x B x x ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈,命题:q x B ∈.(1)当实数a 为何值时,p 是q 的充要条件;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.25.已知条件:p 对任意[3,4]x ∈,不等式2223x m m -≥-恒成立;条件:q 当[0,1]x ∈时,函数221m x x a =-++.(1)若p 是真命题,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.26.已知条件4:11p x ≤--,条件22:q x x a a +<-,且q ⌝的一个充分不必要条件是p ⌝,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据不等式的性质和四种命题的关系判断各选项.【详解】A .当0c 时,22ac bc >不成立,A 错;B .命题“若a b =,则a b =”的逆命题是若a b =,则a b =,错误,也可能是=-a b ;C .命题“当2x =-时,2560x x ++=”的否命题是若2x ≠-,则2560x x ++≠,错误,3x =-时,也有2560x x ++=;D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”是真命题,逆否命题也故选:D .【点睛】关键点点睛:本题考查命题真假的判断,四种命题之间互为逆否的命题同真假,因此原命题的为真只能判断逆否命题为真,而逆命题和否命题的真假不确定,需写出逆命题,否命题进行判断.这也告诉我们当一个命题难以判断真假时可考虑判断其逆否命题的真假. 2.D解析:D【分析】对给出的四个选项分别进行判断可得结果.【详解】对于选项A ,由逆否命题的定义可得,命题“若p 则q ”的逆否命题为“若q ⌝,则p ⌝”,所以A 正确.对于选项B ,由含量词的命题的否定可得,命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”,所以B 正确.对于选项C ,当0x >且1x ≠时,由基本不等式可得12x x+>.所以C 正确. 对于选项D ,命题“若a b <,则22am bm <”当0m =时不成立,所以D 不正确. 故选D .【点睛】由于类似问题考查的内容较多,解题的关键是根据每个命题对应的知识解决,要求对相关知识要有一个整体性的掌握,本题考查综合运用知识解决问题的能力.3.A解析:A【分析】证充分性时,利用“1”的代换,通过基本不等式论证,必要性时,取特殊值即可.【详解】因为1abc =,所以222c b a c a b a b c +++++=≤++=++,当且仅当1a b c ===,取等号,故充分,当4a b c ===a b c≤++,故不必要, 故选:A.【点睛】本题主要考查逻辑条件涉及了基本不等式,还考查了运算求解的能力,属于中档题. 4.B解析:B举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项.【详解】 因为311123112ln12ln 2,2ln 2ln ,ee e e -<--<-所以CD 不成立; 因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.5.B解析:B【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->,∴方程22194x y k k +=--表示双曲线, 反之,若已知方程22194x y k k +=--表示双曲线, (9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件. 故选:B .【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用6.A解析:A【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围.【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题,故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题,故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤,故实数m 的取值范围是[2,6].故选:A【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想. 7.D解析:D【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案.【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得52m ±=,故可得:“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误; a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确;故选:D.【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.8.D解析:D【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解.【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增, 所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>.故选:D.【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.9.A解析:A【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围.【详解】 由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤,由条件:q x a >得q ⌝:x a ≤,∵p ⌝是q ⌝的充分不必要条件,∴1a ≥,故选:A .【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.10.A解析:A【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可.【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立.故选:A .【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.11.A解析:A【分析】分别求出条件甲、乙所对应的,a b 的关系式,比较两个关系式所表示的图形,可得出结论.【详解】由题意,当0a b 时,不等式 sincos 1a x b x +>的解集为空集,当,a b 不都为0时,()sin cos a x b x x ϕ+=+,sin ϕ=,22cos a a b ϕ=+.因为()22sin 1a b x ϕ++>的解集为空集,所以221a b +≤,即221a b +≤.如下图,221a b +≤表示以原点为圆心,半径为1的圆及其内部,1a b +≤表示为圆内接正方形及其内部,所以甲是乙的必要不充分条件. 故答案为:A.【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档题.12.A解析:A【分析】由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案.【详解】解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<,∴:11p x -<<,由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件;当3a >时,解得:q x a >或3x <,满足条件;当3a <时,解得:3q x >或x a <,∴13a ≤<,综上:1a ≥,故选:A .【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断.【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③.【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.14.【分析】分别根据命题为真命题得到和或再计算得到答案【详解】即恒成立即;存在即解得或综上所述:故答案为:【点睛】本题考查了根据命题的真假确定参数范围意在考查学生的计算能力和转化能力属于常考题型解析:(,-∞【分析】分别根据命题为真命题得到1a ≤和a ≥a ≤. 【详解】[1,2]x ∈,20x a -≥,即2a x ≤恒成立,即{}2min 1a x ≤=;存在x ∈R ,2220x ax ++=,即2480a ∆=-≥,解得a ≥a ≤综上所述:a ≤故答案为:(,-∞.【点睛】 本题考查了根据命题的真假确定参数范围,意在考查学生的计算能力和转化能力,属于常考题型.15.(-∞0【分析】由集合AB 得到元素的范围根据x ∈A 是x ∈B 的必要不充分条件知即可求得a 的范围【详解】由得x2-x -6≥0即x≤-2或x≥3∴A ={x|x≤-2或x≥3}由得x +a≥3即x≥3-a 则B解析:(-∞,0]【分析】由集合A 、B 得到元素的范围,根据“x ∈A ”是“x ∈B ”的必要不充分条件知B A ,即可求得a 的范围【详解】 由261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,得x 2-x -6 ≥ 0 即x ≤-2或x ≥ 3∴ A ={x |x ≤-2或x ≥ 3}由31log ()x a ≥+,得x +a ≥ 3,即x ≥ 3-a ,则B ={x |x ≥ 3-a }由题意知:B A∴ 3-a ≥ 3,得a ≤ 0.故答案为:(-∞,0]【点睛】本题考查了必要条件,应用必要条件与对应集合间的包含关系解不等式,求参数范围 16.【分析】先求出命题为真命题时的取值范围以及当命题为真命题时的取值范围由为假命题可知两个命题均为假命题由此可求得实数的取值范围【详解】若命题为真命题则解得;若命题为真命题则关于的方程在上有解则令其中则 解析:()(),22,e -∞-【分析】先求出命题p 为真命题时m 的取值范围,以及当命题q 为真命题时m 的取值范围,由p q ∨为假命题可知两个命题均为假命题,由此可求得实数m 的取值范围.【详解】若命题p 为真命题,则240m ∆=-≤,解得22m -≤≤;若命题q 为真命题,则关于x 的方程0x e mx -=在()0,∞+上有解,则x e m x =. 令()x e f x x =,其中0x >,则()()21x x e f x x-'=. 当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()1f x f e ≥=,则m e ≥.因为命题p q ∨为假命题,则命题p 、q 均为假命题,则22m m m e ⎧-⎨<⎩或, 所以,2m <-或2m e <<.因此,实数m 的取值范围是()(),22,e -∞-. 故答案为:()(),22,e -∞-.【点睛】 本题考查利用复合命题的真假求参数,同时也考查了利用导数研究函数的零点问题,考查计算能力,属于中等题.17.【分析】根据是的充分非必要条件可知集合是集合的真子集由集合之间的包含关系再求参数范围即可【详解】对集合:解得;对集合:解得;因为是的充分非必要条件可知集合是集合的真子集故可得或解得或故故答案为:【点 解析:21m -<<【分析】根据β是α的充分非必要条件,可知集合β是集合α的真子集,由集合之间的包含关系,再求参数范围即可.【详解】对集合α:28120x x -+>,解得()(),26,x ∈-∞⋂+∞;对集合β:2x m m -≤,解得22,x m m m m ⎡⎤∈-++⎣⎦;因为β是α的充分非必要条件,可知集合β是集合α的真子集,故可得22m m +<,或26m m -+>,解得()2,1m ∈-或m ∈∅,故()2,1m ∈-.故答案为:21m -<<.【点睛】本题考查由充分非必要条件,推出集合之间的关系,以及根据集合关系求参数范围的问题,属综合基础题.18.【分析】由原命题为假命题则命题的否定为真命题再根据一元二次不等式恒成立求出参数的取值范围【详解】解:由题意命题为假命题则为真命题令则对恒成立因为的对称轴为则在上单调递增则只需即可即解得即故答案为:【 解析:(],4-∞-【分析】由原命题为假命题,则命题的否定为真命题,再根据一元二次不等式恒成立求出参数的取值范围.【详解】解:由题意,命题“[]01,1x ∃∈-,20030x x a ++>”为假命题, 则[]1,1x ∀∈-,230x x a ++≤为真命题,令()23g x x x a ++=,则对[]1,1x ∀∈-,()0g x ≤恒成立,因为()23g x x x a ++=的对称轴为32x =-,则()g x 在[]1,1x ∈-上单调递增, 则只需()10g ≤即可,即40a +≤,解得4a ≤-,即(],4a ∈-∞-.故答案为:(],4-∞-.【点睛】本题考查一元二次不等式恒成立问题,属于中档题.19._充分非必要【解析】【分析】由两直线l1:x+2ay ﹣1=0与l2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值再由充分必要条件的判定得答案【详解】解:由两直线l1:x+2ay ﹣1=0与l2:(3a解析:_充分非必要【解析】【分析】由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值,再由充分必要条件的判定得答案.【详解】解:由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行,可得()23101310a a a a ⎧---=⎨-+-≠⎩ ,即a =0或a =16 . ∴“a =16”是“两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行”的充分非必要条件.故答案为充分非必要.【点睛】本题考查充分必要条件的判定,考查两直线平行与系数的关系,是基础题.20.【分析】根据题意转化为利用可将函数进行换元利用对勾函数求函数的最大值【详解】当时又设设当时取得最大值若为真命题即的最大值是5故填:5【点睛】本题考查了根据全称命题的真假求参数取值范围的问题考查了转化 解析:5【分析】根据题意转化为()2max log 4log 2x m x ≤+,利用21log 2log x x =,可将函数进行换元,利用对勾函数求函数的最大值.【详解】当[]2,8x ∈时,[]2log 1,3x ∈ 又21log 2log x x = ,设[]2log 1,3x t =∈ ,设24log 4log 2x y x t t=+=+ 当1t =时,取得最大值max 5y =.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,()2max log 4log 2x m x ≤+ ,即5m ≤,m ∴的最大值是5.故填:5.【点睛】本题考查了根据全称命题的真假,求参数取值范围的问题,考查了转化与化归的思想,若存在0x ,使()0m f x ≤,即()()max m f x ≤,若0x ∀,使()0m f x ≤恒成立,所以()()min m f x ≤,需注意时任意还是存在问题.三、解答题21.(][)6,104,2--【分析】 解不等式46x -≤和22240x x --≤,由题意得出p 、q 一真一假,然后分情况讨论,进而可求得实数x 的取值范围.【详解】 解不等式46x -≤,即646x -≤-≤,解得210x -≤≤;解不等式22240x x --≤,解得46x -≤≤. :210p x ∴-≤≤,:46q x -≤≤,因为p q ∨为真,p q ∧为假,所以p 、q 一真一假,若p 真q 假,则(]6,10x ∈;若q 真p 假,则[)4,2x ∈--.综上所述,实数x 的取值范围是(][)6,104,2--. 【点睛】本题考查利用复合命题的真假求参数的取值范围,同时也考查了绝对值不等式和一元二次不等式的求解,考查运算求解能力,属于中等题.22.(1)45x <<;(2)523m ≤≤ 【分析】(1)由p q ∧为真,可知,p q 都为真,进而求出命题,p q ,可得到答案;(2)先求出命题,p q ,由q ⌝是p ⌝的充分不必要条件,可得p 是q 的充分不必要条件,进而可列出不等式,求出实数m 的取值范围.【详解】由27100x x -+<,解得25x <<,所以p :25x <<,又22430x mx m -+<,且0m >,解得3m x m <<,所以q :3m x m <<.(1)当4m =时,q :412x <<,因为p q ∧为真,所以,p q 都为真,所以45x <<.(2)因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,因为p :25x <<,q :3m x m <<,所以2350m m m ≤⎧⎪≥⎨⎪>⎩,解得523m ≤≤. 【点睛】本题考查一元二次不等式的解法,考查利用复合命题的真假求参数的范围,考查充分不必要条件的应用,考查学生的计算求解能力与推理能力,属于中档题.23.(1)(1,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】(1)分别求解当命题p 命题q 为真时x 的取值范围,在分“p 真q 假”和“q 真p 假”两种情况求对应的实数x 的取值范围即可.(2)根据0a >再因式分解求得命题p :3a x a <<,再根据p ⌝是q ⌝的充分不必要条件可知p ⌝对应的集合是q ⌝对应的集合的子集,再根据集合区间端点的位置关系求出实数a 的取值范围即可.【详解】(1)由22430x ax a -+<得()(3)0x a x a --<,当1a =时,13x <<,即p 为真时,(1,3)x ∈.由|3|1x -<,得131x -<-<,得24x <<,即q 为真时,(2,4)x ∈.若p q ∨为真,则p 真或q 真,所以实数的取值范围是(1,4).(2)由22430x ax a -+<得()(3)0x a x a --<,0,a >3a x a ∴<<.由|3|1x -<,得131x -<-<,得24x <<.设{|3},A x x a x a =≤≥或{|24}B x x x =≤≥或,若p ⌝是q ⌝的充分不必要条件,则A 是B 的真子集,故0234a a <≤⎧⎨≥⎩, 所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了根据充分与必要条件求解参数的范围问题.需要根据参数的范围求解对应的集合区间,再根据区间端点的位置关系列式求出参数的范围.属于中档题.24.(1)1a =-;(2)(]1,1-.【分析】(1)化简B ,根据p 是q 的充要条件可得A B =,根据A B =列式可得结果; (2)将p 是q 的充分不必要条件转化为A 是B 的真子集,然后按照a 与2a 的大小关系分类讨论得到A ,根据真子集关系列式可得结果.【详解】(1)211x x <-,即211011x x x x +-=<--,有()()110x x -+<,解得11x -<<, 故{}11B x x =-<<,因为p 是q 的充要条件,所以A B =,故()()20x a x a --<的解集也为()1,1-,所以211a a =-⎧⎨=⎩,即1a =-; (2)因为p 是q 的充分不必要条件,所以A 是B 的真子集,当2a a <,即0a <或1a >时,{}2A x a x a =<<,由A 是B 的真子集可得211a a >-⎧⎨<⎩,解得10a -<<;当2a a =,即1a =或0时,A =∅,符合题意;当2a a >,即01a <<时,{}2A x a x a =<<,由A 是B 的真子集可得211a a ⎧-<⎨<⎩,解得01a <<,综上所述:实数a 的取值范围是11a -<≤.、【点睛】结论点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.(1)[]1,4-;(2)[]1,3-.【分析】(1)把命题p 转化为当[3,4]x ∈时,2min (22)3x m m -≥-,即可求解;(2)根据二次函数的性质,求得[1,4],[,1]A B a a =-=+,根据p 是q 的必要不充分条件,得到B 是A 的真子集,列出不等式组,即可求解.【详解】(1)由题意,对任意[3,4]x ∈,不等式2223x m m -≥-恒成立,即当[3,4]x ∈时,2min (22)3x m m -≥-,又由3x =时,min (22)4x -=,即243m m ≥-,解得14m -≤≤,即实数m 的取值范围[]1,4-.(2)对于命题q :当[0,1]x ∈时,函数221m x x a =-++,当[0,1]x ∈时,函数2221(1)[,1]m x x a x a a a =-++=-+∈+,记[1,4],[,1]A B a a =-=+,因为p 是q 的必要不充分条件,所以B 是A 的真子集,可得114a a ≥-⎧⎨+≤⎩且“=”不能同时成立,解得13a -≤≤, 经验证,当1,3a =-时满足题意,所以实数a 的取值范围[]1,3-.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.26.[1,2]-【分析】先求出条件,p q 对应的x 取值范围,再根据题意可得p 是q 的一个必要不充分条件,由集合关系即可求出.【详解】 由411x ≤--,得:31p x -≤<, 由22x x a a +<-,得[]()(1)0x a x a +--<, 当12a =时,:q ∅;当12a <时,:(1,)q a a --;当12a >时,:(,1)q a a --. 由题意得,p 是q 的一个必要不充分条件, 当12a =时,满足条件; 当12a <时,则[)(1,)3,1a a ---,得11,2a ⎡⎫∈-⎪⎢⎣⎭; 当12a >时,[)(,1)3,1a a ---得1,22a ⎛⎤∈ ⎥⎝⎦. 综上,[1,2]a ∈-.【点睛】本题考查根据条件的关系求参数,属于基础题.。
第一章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件[答案] A[解析]y=cos2ax-sin2ax=cos2ax,周期T=2π|2a|=π|a|=π,则a=±1.故选A.2.若条件p:|x+1|≤4,条件q:x2<5x-6,则綈p是綈q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件[答案] B[解析]綈p:{x|x<-5或x>3},綈q:{x|x≤2或x≥3},∴綈p⇒綈q,綈q綈p.故选B.3.已知m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中真命题的序号是()A.①③B.①④C.②③D.②④[答案] A[解析]①正确,排除C、D;m⊥α,m∥β,∴β内存在直线n∥m,∴n⊥α,∴α⊥β,③正确,排除B.故选A.4.下列命题中,真命题是()A.∀x∈R,x>0B .如果x <2,那么x <1C .∃x ∈R ,x 2≤-1D .∀x ∈R ,使x 2+1≠0[答案] D[解析] A 显然是假命题,B 中若x ∈[1,2)虽然x <2但x 不小于1.C 中不存在x ,使得x 2≤-1,D 中对∀x ∈R 总有x 2+1≥1,∴x 2+1≠0,故D 是真命题,选D.5.(2009·山东烟台3月考)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中正确命题的个数为( )A .1B .2C .3D .4[答案] B[解析] ①④正确,②③不正确.故选B.6.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[答案] B[解析] 直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直的充要条件是:(m +2)(m -2)+3m (m +2)=0,解得m =12或m =-2,故应选B. 7.(2010·广东文,8)“x >0”是“3x 2>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 [答案] A[解析] 本题考查了充要条件的判定问题,这类问题的判断一般分两个方向进行,x >0显然能推出3x 2>0,而3x 2>0⇔|x |>0⇔x ≠0,不能推出x >0,故选A.8.已知命题p :∀x ∈R ,sin x ≥0,则下面说法正确的是( )A .綈p 是存在性命题,且是真命题B .綈p 是全称命题,且是真命题C .綈p 是全称命题,且是假命题D .綈p 是存在性命题,且是假命题[答案] A[解析] 綈p :∃x ∈R ,sin x <0,所以是存在性命题也是真命题.故选A.9.给出命题p :“若AB →·BC →>0,则△ABC 为锐角三角形”;命题q :“实数a 、b 、c 满足b 2=ac ,则a 、b 、c 成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假而p 或q 为真[答案] C[解析] p :若AB →·BC →>0,则∠B >90°所以△ABC 为钝角三角形,故p 为假命题.q :a 、b 、c 均为零时b 2=ac 但a 、b 、c 不成等比数列,故q 为假命题,所以p 且q 为假,p 或q 也为假,故选C.10.下列有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0B .x =1是x 2-3x +2=0的充分不必要条件C .若p ∧q 为假命题,则p ,q 均为假命题D .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0[答案] C[解析] p ∧q 为假,则p ,q 至少一个为假.故选C.11.(2009·天津高考)设x ∈R ,则“x =1”是“x 3=x ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] x =1⇒x 3=x ,但x 3=x x =1,故选A. 12.用反证法证明命题:若系数为整数的一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个是偶数D .假设a 、b 、c 至多有两个是偶数[答案] B[解析] a 、b 、c 中至少有一个是偶数的否定是a 、b 、c 都不是偶数,故选B.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.“|x -2|<2成立”是“x (x -3)<0成立”的________条件.[答案] 必要不充分[解析] 由|x -2|<2得-2<x -2<2⇔-1<x <3.由x (x -3)<0⇔0<x <3,显然-1<x <3⇐0<x <3.14.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根,则使p ∨q 为真,p ∧q 为假的实数m 的取值范围是________.[答案] (-∞,-2]∪[-1,3)[解析] 对于方程x 2+2mx +1=0有两个不等正根,∴⎩⎪⎨⎪⎧Δ=4m 2-4>0,-2m >0.∴m <-1, 方程x 2+2(m -2)x -3m +10=0无实根,Δ=4(m -2)2-4(-3m +10)<0,∴-2<m <3,若p 真q 假,则m ≤-2;若p 假q 真,则-1≤m <3.15.函数y =ax 2+bx +c (a ≠0)的图象过原点的充要条件是________________.[答案] c =016.设A 、B 为两个集合,下列四个命题:①AB ⇔对∀x ∈A ,有x ∉B ; ②AB ⇔A ∩B =∅; ③AB ⇔A ⊉B ; ④A B ⇔∃x ∈A ,使得x ∉B ,其中真命题的序号是________________. [答案] ④[解析] 通过举反例说明:若A ={1,2,3},B ={1,2,4},满足A B ,但1∈A 且1∈B ,A ∩B ={1,2},所以①,②是假命题;若A ={1,2,4},B ={1} 满足A B ,但B ⊆A ,所以③是假命题;只有④为真命题.三、解答题(本大题共6个大题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若x =2且y =-1,则x -2+(y +1)2=0;(真) 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;(真)逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0(真)18.(本题满分12分)已知a >0设命题p :函数y =(1ax 为增函数. 命题q :当x ∈[12,2]时函数f (x )=x +1x >1a恒成立. 如果p ∨q 为真命题,p ∧q 为假命题,求a 的范围.[解析] 当y =(1a)x 为增函数,得0<a <1. 当x ∈[12,2]时,因为f (x )在[12,1]上为减函数,在[1,2]上为增函数. ∴f (x )在x ∈[12,2]上最小值为f (1)=2. 当x ∈[12,2]时,由函数f (x )=x +1x >1a恒成立. 得2>1a 解得a >12. 如果p 真且q 假,则0<a ≤12; 如果p 假且q 真,则a ≥1.所以a 的取值范围为(0,12]∪[1,+∞). 19.(本题满分12分)已知a >0,函数f (x )=ax -bx 2.(1)当b >0时,若对任意x ∈R ,都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .[证明] (1)∵f (x )=-b (x -a 2b )2+a 24b对任意x ∈R ,都有f (x )≤1,∴f (a 2b )=a 24b≤1. 又∵a >0,b >0,∴a 2≤4b ,即a ≤2b .(2)必要性:对任意x ∈[0,1],|f (x )|≤1,即-1≤f (x )≤1,∴f (1)≥-1,即a -b ≥-1,∴a ≥b -1.∵b >1,∴0<1b<1,∴f ⎝⎛⎭⎫1b ≤1. 即a ·1b -b ·(1b)2≤1, ∴ab -1≤1,∴a ≤2b .所以b -1≤a ≤2b .充分性:∵b >1,∴f (x )的图象是开口向下的抛物线.由a ≤2b ,得0<a 2b <a 2b≤1. ∴0<a 2b <1. ∴y max =f (a 2b )=a 24b =(a 2b)2≤1. ∴f (x )≤1.∵f (0)=0,∴f (0)>-1.又∵f (1)=a -b ,由b -1≤a ,即a ≥b -1,知f (1)≥b -1-b =-1.而函数f (x )在(0,a 2b)上单调递增,在⎣⎡⎭⎫a 2b ,1上单调递减,所以当x ∈[0,1]时,f (x )≥-1.综上所述,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .20.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] 要使函数f (x )的图象全在x 轴上方的充要条件是:⎩⎪⎨⎪⎧a 2+4a -5>0Δ=16(a -1)2-4(a 2+4a -5)×3<0, 或⎩⎨⎧a 2+4a -5=0y >0 解得1<a <19或a =1.所以使函数f (x )的图象全在x 轴上方的充要条件是1≤a <19.21.(本小题满分12分)已知命题p :lg (x 2-2x -2)≥0;命题q :|1-x 2|<1.若p 是真命题,q 是假命题,求实数x 的取值范围.[解析] 由lg (x 2-2x -2)≥0得x 2-2x -2≥1,即x 2-2x -3≥0,即(x -3)(x +1)≥0,∴x ≥3或x ≤-1.由|1-x2|<1,-1<1-x2<1∴0<x<4.∵命题q为假,∴x≤0或x≥4,则{x|x≥3或x≤-1}∩{x|x≤0或x≥4}={x|x≤-1或x≥4},∴满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).22.(本小题满分14分)证明二次函数f(x)=ax2+bx+c(a≠0)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.[解析]充分性:设△=b2-4ac≤0则af(x)=a2x2+abx+ac=a2(x+b2a )2-b24+ac=a2(x+b2a)2-14(b2-4ac)≥0,所以af(m)≥0,这与af(m)<0矛盾,即b2-4ac>0.故二次函数f(x)=ax2+bx+c(a≠0)有两个不等的零点,设为x1,x2,且x1<x2,从而f(x)=a(x-x1)(x-x2),af(m)=a2(m-x1)(m-x2)<0,所以x1<m<x2.必要性:设x1,x2是方程的两个零点,且x1<x2,由题意知x1<m<x2,因为f(x)=a(x-x1)(x-x2),且x1<m<x2.∴af(m)=a2(m-x1)(m-x2)<0,即af(m)<0.综上所述,二次函数f(x)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.。
数学选修模块测试样题选修2-1 (人教A 版)考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.1x >是2x >的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题0p x x ∀∈≥R :,的否定是( )A .0p x x ⌝∀∈<R :,B .0p x x ⌝∃∈≤R :,C .0p x x ⌝∃∈<R :,D .0p x x ⌝∀∈≤R :,5. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A . 22143x y -= B . 22153x y -= C . 221259x y -= D . 221169x y -= 7. 下列各组向量平行的是( )8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1B 3C .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( ) A .2B .4C .6D .812.设1k >,则关于x ,y 的方程222(1)1k x y k -+=-所表示的曲线是( )A .长轴在x 轴上的椭圆B .长轴在y 轴上的椭圆C .实轴在x 轴上的双曲线D .实轴在y 轴上的双曲线13. 一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( )A . 1.75mB . 1.85mC . 2.15mD . 2.25m14.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( )AEDCBA.椭圆B.双曲线C.抛物线D.圆二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.15.命题“若0a >,则1a >”的逆命题是_____________________.16.双曲线22194x y -=的渐近线方程是_____________________. 17.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .18. 已知椭圆12222=+b y a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分)设直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点.(1)求实数b 的取值范围; (2)当1b =时,求AB .20.(本小题满分10分)如图,正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点. (1)求1AD 与DB 所成角的大小; (2)求AE 与平面ABCD 所成角的正弦值.ABCA 1B 1C 1DDE21.(本小题满分10分)已知直线y x m =-与抛物线x y 22=相交于),(11y x A ,),(22y x B 两点,O 为坐标原点.(1)当2=m 时,证明:OB OA ⊥;(2)若m y y 221-=,是否存在实数m ,使得1-=⋅?若存在,求出m 的值;若不存在,请说明理由.数学模块测试样题参考答案数学选修2-1(人教A 版)一、选择题(每小题4分,共56分)1. B 2. B 3.D 4.C 5.C 6.D 7. A 8. C 9. B10.D11.B12.D13.A14.A二、填空题(每小题4分,共16分)15.若1a >,则0a > 16.23y x =±17. 26y x =+ 181三、解答题(解答题共28分) 19.(本小题满分8分)解:(1)将y x b =+代入2212x y +=,消去y ,整理得2234220x bx b ++-=.①因为直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点,所以2221612(22)2480b b b ∆=--=->, 解得b <<所以b 的取值范围为(. (2)设11()A x y ,,22()B x y ,, 当1b =时,方程①为2340x x +=.解得1240,3x x ==-.相应地1211,3y y ==-.所以(AB x ==.20.(本小题满分10分)解:(1) 如图建立空间直角坐标系D xyz -,则(000)D ,,,(200)A ,,,(220)B ,,,1(00D 则(2,2,0)DB =,1(2,0,2)D A =-. 故1111cos ,22DB D A DB D A DB D A⋅〈〉===⋅所以1AD 与DB 所成角的大小为60. (2) 易得(021)E ,,,所以(2,2,1)AE =-.又1(0,0,2)DD =是平面ABCD 的一个法向量,且11121cos ,323AE DD AE DD AE DD ⋅〈〉===⨯⋅. 所以AE 与平面ABCD 所成角的正弦值为13.21.(本小题满分10分)解:(1)当2=m 时,由⎩⎨⎧=-=,,x y x y 222得0462=+-x x ,解得 53,5321-=+=x x , 因此 51,5121-=+=y y .于是 )51)(51()53)(53(2121-++-+=+y y x x 0=, 即0OA OB ⋅=. 所以 OB OA ⊥.(2)假设存在实数m满足题意,由于BA,两点在抛物线上,故希望对大家有所帮助,多谢您的浏览!授课:XXX ⎪⎩⎪⎨⎧==,,22212122x y x y 因此222121)(41m y y x x ==. 所以m m y y x x OB OA 222121-=+=⋅. 由1-=⋅,即122-=-m m ,得1=m .又当1=m 时,经验证直线与抛物线有两个交点,所以存在实数1=m ,使得1-=⋅(注:可编辑下载,若有不当之处,请指正,谢谢!)。
④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。
1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。
绝密★启用前高中数学选修2-1第一章检测题试卷副标题考试范围:XXX ;考试时间:100分钟;命题人:XXX学校:__________姓名:__________班级:__________考号:__________ 题号 一 二 三 总分 得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上评卷人 得分一、单项选择(注释)1、条件x x p =|:|,条件x x q -≥2:,则p 是q 的( )A .充分不必要条件B .必要不充分条件充要条件 D .既不充分又不必要条件2、命题“21,11x x <<<若则-”的逆否命题是( )A.21,1,1x x x ≥≥≤-若则或 B.若11<<-x ,则12<x C.若1x >或1x <-,则12>x D.若1x ≥或1x ≤-,则12≥x 3、下列命题中是全称命题的是( )A .圆有内接四边形B .23>C .23<D .若三角形的三边长分别为3、4、5,则这个三角形为直角三角形 4、在ABC ∆中,“A B =”是“sin sin A B =”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5、命题“对任意的2,310x R x x ∈-+≤”的否定是( ) 2000,310x R x x ∈-+≤2000,310x R x x ∈-+≤2000,310x R x x ∈-+>2,310x R x x ∈-+> 6、已知命题p :若(x -1)(x -2)≠0,则x≠1且x≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .⌝pB .qC .⌝p ∨qD .⌝q ∧p 7、)下列说法错误的是( )A .如果命题“⌝p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,x 02+2x 0-3<0,则?p :∀x ∈R ,x 2+2x -3≥0D .“sin θ=12”是“θ=30°”的充分不必要条件 8、“1k =-”是“两直线320kx y +-=和(2)70k x y -+-=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件9、在∆ABC 中,a B sin <bAsin 是A >B 成立的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分又不必要条件 10、有下列四个命题:①“若xy=1,则x 、y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若022=+-m x x 有实根则1≤m ”; ④“若B A B B A ⊆=则, ”的逆否命题.其中真命题个数为( ).3 D .4评卷人 得分二、填空题(注释)11、已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .12、已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________;若命题p 为假命题,则实数a 的取值范围是___________.13、已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x ∈R ,x 2+2ax +2-a =0,若“p 且q ” 为真命题,则实数a 的取值范围是______________.14、给出下列命题:(1)命题:“若b 2-4ac<0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题; (2)命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题; (3)命题“若a>b>0,则>>0”的逆否命题;(4)“若m>1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题. 其中真命题的个数为____________.评卷人 得分三、解答题(注释)15、写出下列命题的否定,并判断真假. (1)q:∀x ∈R ,x 不是5x-12=0的根; (2)r:有些质数是奇数; (3)s:∃x ∈R ,|x|>0.16、设命题p :“若0a ≥,则20x x a +-=有实根”. (1)试写出命题p 的逆否命题;(2)判断命题p 的逆否命题的真假,并写出判断过程. 17、已知全集U=R ,非空集合{23x A x x -=-<}0,{()()22B x x a x a =---<}0. (1)当12a =时,求()U C B A ⋂; (2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.18、已知命题p:(x+1)(x-5)≤0,命题q:m x m +≤≤-11(1)若p 是q 的必要条件,求实数m 的取值范围;(2)若m=5,“p q ∨ ”为真命题,“p q ∧ ”为假命题,求实数x 的取值范围。
1.中心在原点,一个焦点为F 1(0,50)的椭圆截直线23-=x y 所得弦AB 的中点横坐标为21,求椭圆的方程及弦AB 的长. 思路分析:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F 1(0,50)知,c=50,5022=-∴b a ,最后解关于a 、b 解:设椭圆的标准方程为)0(12222>>=+b a by a x ,由F 1(0,50)得 5022=-b a把直线方程23-=x y 代入椭圆方程整理得:0)4(12)9(222222=-+-+a b x b x b a设弦的两个端点为),(),,(2211y x B y x A ,则由根与系数的关系得:22221912ba b x x +=+, 又AB 的中点横坐标为21,2196222221=+=+∴b a b x x223b a =∴,与方程5022=-b a 联立可解出25,7522==b a故所求椭圆的方程为:2217525y x +=2.已知焦点在x 轴上的椭圆C 过点(0,1)Q 为椭圆C 的左顶点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知过点6(,0)5-的直线l 与椭圆C 交于A ,B 两点.(ⅰ)若直线l 垂直于x 轴,求AQB ∠的大小;(ⅱ)若直线l 与x 轴不垂直,是否存在直线l 使得QAB ∆为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.解:(Ⅰ)设椭圆C 的标准方程为22221(0)x y a b a b+=>>,且222a b c =+.由题意可知:1b =,2c a =. ………………………………………2分 所以24a =.所以,椭圆C 的标准方程为2214x y +=. ……………………………………3分 (Ⅱ)由(Ⅰ)得(2,0)Q -.设1122(,),(,)A x y B x y . (ⅰ)当直线l 垂直于x 轴时,直线l 的方程为65x =-. 由226,514x x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 解得:6,545x y ⎧=-⎪⎪⎨⎪=⎪⎩或6,54.5x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 即6464(,), (,)5555A B ---(不妨设点A 在x 轴上方).………………………………………5分则直线AQ 的斜率1AQ k =,直线BQ 的斜率1BQ k =-. 因为 1AQ BQ k k ⋅=-, 所以 AQ BQ ^.所以 2AQB π∠=. ………………………………………6分 (ⅱ)当直线l 与x 轴不垂直时,由题意可设直线AB 的方程为6()(0)5y k x k =+≠.由226(),514y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:2222(25100)2401441000k x k x k +++-=. 因为 点6(,0)5-在椭圆C 的内部,显然0∆>. 21222122240,25100144100.25100k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩………………………………………8分 因为 1122(2,), (2,)QA x y QB x y =+=+ ,116()5y k x =+,226()5y k x =+,所以 1212(2)(2)QA QB x x y y ⋅=+++121266(2)(2)()()55x x k x k x =++++⋅+2221212636(1)(2)()4525k x x k x x k =++++++ 2222222144100624036(1)(2)()402510052510025k k k k k k k -=+++-++=++. 所以 QA QB ⊥.所以 QAB ∆为直角三角形. ………………………………………11分 假设存在直线l 使得QAB ∆为等腰三角形,则QA QB =取AB 的中点M ,连接QM ,则QM AB ^.记点6(,0)5-为N .另一方面,点M 的横坐标22122212024225100520M x x k k x k k +==-=-++,所以 点M 的纵坐标266()5520M M k y k x k =+=+. 所以 222221016666(,)(,)520520520520k k k QM NMk k k k +? ++++222601320(520)k k += +. 所以 QM 与NM不垂直,矛盾.所以 当直线l 与x 轴不垂直时,不存在直线l 使得QAB ∆为等腰三角形.………………………………………13分3.在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB ∥CD ,90ABC? ,2AB PB PC BC CD ====,平面PBC ^平面ABCD .(Ⅰ)求证:AB ^平面PBC ;(Ⅱ)求平面PAD 和平面BCP 所成二面角(小于90°)的大小; (Ⅲ)在棱PB 上是否存在点M 使得CM ∥平面PAD ?若存在,求PMPB 的值;若不存在,请说明理由.PABC D(Ⅰ)证明:因为 90ABC ? ,所以 AB BC ⊥. ………………………………………1分 因为 平面PBC ^平面ABCD ,平面PBC 平面ABCD BC =,AB Ì平面ABCD ,所以 AB ^平面PBC . ………………………………………3分 (Ⅱ)解:取BC 的中点O ,连接PO . 因为PB PC =, 所以 PO BC ⊥.因为 平面PBC ^平面ABCD ,平面PBC 平面ABCD BC =,PO Ì平面PBC ,所以 PO ^平面ABCD . ………………………………………4分如图,以O 为原点,OB 所在的直线为x 轴,在平面ABCD 内过O 垂直于BC 的直 线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系O xyz -.不妨设2BC =.由 直角梯形ABCD 中2AB PB PC BC CD ====可得P ,(1,1,0)D -,(1,2,0)A .所以(1,1DP =- ,(2,1,0)DA =.设平面PAD 的法向量(,,)=x y z m .因为 0,0.DP DAìï?ïíï?ïîm m所以(,,)(1,0,(,,)(2,1,0)0,x y z x y z ìï?=ïíï?ïî即0,20.x y x y ìï-+=ïíï+=ïî 令1x =,则2, y z =-=-所以(1,2,=--m . ………………………………………7分取平面BCP 的一个法向量n ()0,1,0=. 所以cos ,⋅==m n m n m n . 所以 平面ADP 和平面BCP 所成的二面角(小于90°)的大小为4π. ………………………………………9分(Ⅲ)解:在棱PB 上存在点M 使得CM ∥平面PAD ,此时12PM PB =. 理由如 下: ………………………………………10分取AB 的中点N ,连接CM ,CN ,MN . 则 MN ∥PA ,12AN AB =. 因为 2AB CD =, 所以 AN CD =. 因为 AB ∥CD ,所以 四边形ANCD 是平行四边形. 所以 CN ∥AD .因为 , MN CN N PA AD A == ,所以 平面MNC ∥平面PAD . ………………………………………13分 因为 CM Ì平面MNC ,所以 CM ∥平面PAD . ………………………………………14分NMPABCD。
⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。
2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ≥,0y ≥,则0xy ≥",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A .1B .2C .3D .42.命题“若A B ⊆,则A B =”与其逆命题、否命题、逆否命题这四个命题中, 真命题的个数是( ) A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ∈,则b B ∈,那么命题p ⌝是( ) A .若a A ∈,则b B ∉ B .若a A ∉,则b B ∉ C .若b B ∉,则a A ∉D .若b B ∈,则a A ∈5.命题“p 且q ”与命题“p 或q ”都是假命题,则下列判断正确的是( )A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②()()22=a b ;③()2⋅=a a b ,其中可以作为=a b 的必要非充分条件的命题是( ) A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ⌝”是“B ⌝”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若向量()(),3x x =∈R a ,则“4x =”是“5=a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是( ) A .{},x y ∀∈锐角,sin sin s )n (i x y x y +>+ B .{},x y ∀∈锐角,sin cos c )s (o x y x y +>+ C .{},x y ∀∈锐角,cos sin c )s (o x y x y +<+ D .{},x y ∀∈锐角,cos cos s )n (i x y x y -<+10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“x ∀∈Z ,32x x >”的否定是“x ∃∈Z ,32x x >”C .“=2ϕπ”是“函数()sin y x ϕ=+为偶函数”的充要条件D .“0b =”是“关于x 的二次函数()2f x ax bx c ++=是偶函数”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.已知命题p :函数()log 05()3f x x =-.的定义域为(-∞,3);命题q :若k <0,则函数()kh x x=在(0,)+∞上是减函数,对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝”且“q ⌝”为假12.已知向量),(x y =a ,co ()s ,sin αα=b ,其中x y α∈R ,,,若4=a b , 则2λ⋅<a b 成立的一个必要不充分条件是( ) A .λ>3或λ<-3 B .λ>1或λ<-1 C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令()221:0p x ax x ++>,如果对x ∀∈R ,()p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21a a -->的必要不充分条件________. 16.给定下列结论:①已知命题p :∃x ∈R ,t a n x =1;命题q :∀x ∈R ,210x x -+>.则命题“p q ⌝∧”是假命题;②已知直线1l :ax +3y -1=0,2l :x +b y +1=0,则12l l ⊥的充要条件是3ab =-;③若()1sin 2αβ+=,()1sin 3αβ-=,则t a nα=5t a nβ;④圆224210x y x y ++-+=与直线12y x =,所得弦长为2. 其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :∀非零向量a 、b 、c ,若()0⋅-=a b c ,则=b c .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.19.(12分)求证:一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充分不必要条件是a <-1.20.(12分)已知p :2290x x a -+<,q :22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,且p ⌝是q ⌝的充分条件,求实数a 的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cos x+1,2cos2x +2)和Q(cos x,-1),∀x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b++--=.2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】由题得原命题“若0x ≥,0y ≥,则0xy ≥”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy ≥,则0x ≥,0y ≥”,是假命题,所以否命题也是假命题, 所以四个命题中,真命题的个数为2.故答案为B . 2.【答案】B【解析】可设{}1,2A =,{}1,2,3B =,满足A B ⊆,但A B ≠,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真. 3.【答案】C【解析】直线l 与平面α内两相交直线垂直⇔直线l 与平面α垂直,故选C . 4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ⌝”.故选A . 5.【答案】D【解析】p 且q 是假命题⇒p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题⇒p 和q 都是假命题,则非p 和非q 都是真命题.故选D . 6.【答案】D【解析】由向量的运算即可判断. 7.【答案】B【解析】由于“A ⇒B ,A /⇐B ”等价于“A B ⌝⌝⇐,A ⌝/⇒B ⌝”,故“A ⌝”是“B ⌝”的必要不充分条件.故选B . 8.【答案】A【解析】由“4x =”,得)3(4,=a ,故5=a ;反之,由5=a ,得4x =±.所以“4x =”是“5=a ”的充分而不必要条件.故选A . 9.【答案】D【解析】由于cos cos c (os sin sin )x y x y x y -+=,而当{},x y ∈锐角时,0cos 1y <<,0sin 1x <<,所以cos cos cos sin sin cos s (in )x y x y x y x y -<+=+,故选项D 正确. 10.【答案】D【解析】A 为全称命题;B 中否定应为0x ∃∈Z ,3200x x ≤;C 中应为充分不必要条件.D 选项正确. 11.【答案】D【解析】由题意知p 真,q 假.再进行判断. 12.【答案】B【解析】由已知1=b ,∴44==a b,4.又∵()()cos sin 4sin 4x y αααϕαϕ⋅=++=+≤a b ,由于2λ⋅<a b 成立,则24λ>,解得λ>2或λ<-2,这是2λ⋅<a b 成立的充要条件,因此2λ⋅<a b 成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等 若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”. 14.【答案】1a >【解析】由已知x ∀∈R ,2210ax x ++>恒成立.显然0a =不合题意, 所以0440a a ∆>⎧⎨=-<⎩⇒1a >.15.【答案】1a > (不惟一)【解析】2()(0)21a a -->的解集记为B ={1|a a >且a ≠2},所找的记为集合{}1A a a =>,则B ⇒A ,B /⇐A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q ⌝∧假,①正确; 对于②1l 与2l 垂直的充要条件应为a +3b =0; 对于③利用两角和与差的正弦公式展开整理即得;,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p ⌝:∃非零向量a 、b 、c ,若()0⋅-=a b c ,使≠b c .p ⌝为真命题. 否命题:∀非零向量a 、b 、c ,若()0⋅-≠a b c ,则≠b c .否命题为真命题. 18.【答案】()1,0,44⎛⎫-∞ ⎪⎝⎭. 【解析】命题P :对任意实数x 都有210ax ax ++>恒成立,则“a =0”,或“a >0且240a a -<”.解得0≤a <4.命题Q :关于x 的方程20x x a -+=有实数根,则140a ∆=-≥,得14a ≤. 因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题, 故P Q ⌝∧为真命题,或P Q ⌝∧为真命题,则0414a a a <≥⎧⎪⎨≤⎪⎩或或0414a a ≤<⎧⎪⎨>⎪⎩, 解得a <0或144a <<.所以实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭.19.【答案】见解析.【解析】一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充要条件是:4401a a ∆=->⇔<,并且10a<,从而a <0.有一个正根和一个负根的充分不必要条件应该是{a |a <0}的真子集,a <-1符合题意.所以结论得证. 20.【答案】a ≤9.【解析】由22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,得1324x x <<⎧⎨<<⎩,即2<x <3.∴q :2<x <3.设{}290|2A x x x a =-+<,B ={x |2<x <3},∵p q ⌝⌝⇒,∴q ⇒p .∴B ⊆A .∴2<x <3包含于集合A ,即2<x <3满足不等式2290x x a -+<.∴2<x <3满足不等式292a x x <-.∵当2<x <3时,222981819818192229,21616488x x x x x ⎛⎫⎛⎫⎛⎤-=--+-=--+∈ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎦,即2819928x x <-≤,∴a ≤9. 21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直, 得cos x (2cos x +1)-(2cos2x +2)≠0,变形得:22cos cos 0x x -≠, 所以cos x ≠0或1cos 2x ≠. 而当[]0,x ∈π时,cos2π=0,1cos 32π=, 故存在2x π=或3x π=,使向量OP OQ ⊥成立,因而p 是假命题. 22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴()()()32332232111a b ab a b a a a a a a ++--=+--+--- 323222133120a a a a a a a a a =+-+-+---+-=.充分性:∵33220a b ab a b ++--=,即()()()22220a b a ab b a ab b --+-+=+, ∴()()2210a ab b a b -+-=+,又ab≠0,即a≠0且b≠0,∴2222324b ba ab b a⎛⎫-+=-+≠⎪⎝⎭,只有1a b+=.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b++--=.。
2019人教版精品教学资料·高中选修数学第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设原命题:若a+b≥2,则a、b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题[答案] A[解析]因为原命题“若a+b≥2,则a、b中至少有一个不小于1”的逆否命题为“若a、b都小于1,则a+b<2”,显然为真,所以原命题为真;原命题“若a+b≥2,则a、b 中至少有一个不小于1”的逆命题为“若a、b中至少有一个不小于1,则a+b≥2”,是假命题,反例为a=1.2,b=0.3.2.已知命题p:∀x∈R,a x>0(a>0且a≠1),则()A.¬p:∀x∈R,a x≤0B.¬p:∀x∈R,a x>0C.¬p:∃x0∈R,ax0>0D.¬p:∃x0∈R,ax0≤0[答案] D[解析]∵命题p为全称命题,∴¬p为特称命题,由命题的否定只否定结论知a x>0的否定为a x≤0,∴选D.3.(2015·山东夏津一中高二期中测试)若命题“p∧q”为假,且“¬p”为假,则() A.p或q为假B.q为假C.q为真D.不能判断q的真假[答案] B[解析]∵“¬p”为假,∴p为真,又∵p∧q为假,∴q为假,p或q为真.4.(2015·北京西城区高二期末测试)“a=-3”是“圆x2+y2=1与圆(x+a)2+y2=4相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] 当a =-3时,圆(x -3)2+y 2=4的圆心为(3,0),半径r 1=2,与圆x 2+y 2=1相外切,当两圆相内切时,a =±1,故选A.5.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 [答案] A[解析] 图示法:p ⇒⇐/ r ⇒s ⇒q ,故q ⇒/ p ,否则q ⇒p ⇒r ⇒q ⇒p ,则r ⇒p ,故选A.6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 由题意得,“lg y 为lg x ,lg z 的等差中项”,则2lg y =lg x +lg z ⇒y 2=xz ,则“y 是x ,z 的等比中项”;而当y 2=xz 时,如x =z =1,y =-1时,“lg y 为lg x ,lg z 的等差中项”不成立,所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件,故选A.7.(2014·重庆理,6)已知命题 p :对任意x ∈R ,总有2x >0; q :“x >1”是“x >2”的充分不必要条件, 则下列命题为真命题的是( ) A .p ∧q B .(¬p )∧(¬q ) C .(¬p )∧q D .p ∧(¬q ) [答案] D[解析] 命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.8.命题“tan x =0”是命题“cos x =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] B[解析] x =π时,tan x =0,但cos x =-1;cos x =1时,sin x =0,故tan x =0.所以“tan x =0”是“cos x =1”的必要不充分条件.9.已知命题p :“对∀x ∈R ,∃m ∈R ,使4x +2x m +1=0”.若命题¬p 是假命题,则实数m 的取值范围是( )A .-2≤m ≤2B .m ≥2C .m ≤-2D .m ≤-2或m ≥2[答案] C[解析] 由题意可知命题p 为真,即方程4x+2xm +1=0有解,∴m =-4x +12x =-(2x +12x)≤-2. 10.下列命题中,错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .已知x ,y ∈R ,则x =y 是xy ≥(x +y 2)2成立的充要条件C .命题p :∃x ∈R ,使得x 2+x +1<0,则¬p :∀x ∈R ,则x 2+x +1≥0D .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 [答案] D[解析] 由逆否命题的定义知A 正确;当x =y 时,xy ≥(x +y 2)2成立;xy ≥(x +y 2)2成立时,有xy ≥|x +y |2,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p ∨q 为假,∴p 假且q 假,∴D 为假命题.11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③D .②③[答案] C[解析] 对于①,设球半径为R ,则V =43πR 3,r =12R ,∴V 1=43π×(12R )3=πR 36=18V ,故①正确;对于②,两组数据的平均数相等,标准差一般不相等;对于③,圆心(0,0),半径为22,圆心(0,0)到直线的距离d =22,故直线和圆相切,故①,③正确.12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2;④ab >1;⑤log a b <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( )A .②③④B .②③④⑤C .①②③⑤D .②⑤[答案] D[解析] ①a +b =2可能有a =b =1;②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾;③a +b >-2可能a <0,b <0;④ab >1,可能a <0,b <0;⑤log a b <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·江苏阜宁中学高二期中测试)命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”)[答案] 真[解析] 原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.写出命题“若方程ax 2-bx +c =0(a ≠0)的两根均大于0,则ac >0”的一个等价命题是______________________________________________.[答案] 若ac ≤0,则方程ax 2-bx +c =0(a ≠0)的两根不全大于0. [解析] 根据原命题与它的逆否命题是等价命题可直接写出.15.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围是__________________.[答案] 3≤m <8[解析] ∵p (1)是假命题,p (2)是真命题,∴⎩⎪⎨⎪⎧3-m ≤0,8-m >0.解得3≤m <8. 16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________. [答案] 逆命题[解析] 解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.[解析] 逆命题,已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0. 逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.18.(本小题满分12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程x 2+x -m =0必有实数根; (2)q :∃x ∈R ,使得x 2+x +1≤0.[解析] (1)¬p :∃m ∈R ,使方程x 2+x -m =0无实数根. 若方程x 2+x -m =0无实数根,则 Δ=1+4m <0,∴m <-14,∴¬p 为真.(2)¬q :∀x ∈R ,使得x 2+x +1>0. ∵x 2+x +1=(x +12)2+34>0,∴¬q 为真.19.(本小题满分12分)已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},且x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.[解析] P ={x |a -4<x <a +4},Q ={x |1<x <3}. ∵x ∈P 是x ∈Q 的必要条件, ∴x ∈Q ⇒x ∈P ,即Q ⊆P .∴⎩⎪⎨⎪⎧ a -4≤1a +4≥3,⎩⎪⎨⎪⎧a ≤5a ≥-1,∴-1≤a ≤5.20.(本小题满分12分)已知命题p :∀m ∈[-1,1],不等式a 2-5a -3≥m 2+8;命题q :∃x ,使不等式x 2+ax +2≤0.若p 或q 是真命题,¬q 是真命题,求a 的取值范围.[解析] 根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题. ∵m ∈[-1,1],∴m 2+8∈[22,3].因为∀m ∈[-1,1],不等式a 2-5a -3≥m 2+8, ∴a 2-5a -3≥3,∴a ≥6或a ≤-1. 故命题p 为真命题时,a ≥6或a ≤-1. 又命题q :∃x ,使不等式x 2+ax +2<0, ∴Δ=a 2-8>0,∴a >22或a <-22, 从而命题q 为假命题时,-22≤a ≤22, 所以命题p 为真命题,q 为假命题时, a 的取值范围为-22≤a ≤-1.21.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] ∵函数f (x )的图象全在x 轴上方,∴⎩⎪⎨⎪⎧ a 2+4a -5>0Δ=16(a -1)2-4(a 2+4a -5)×3<0,或⎩⎪⎨⎪⎧a 2+4a -5=0a -1=0, 解得1<a <19或a =1,故1≤a <19.所以使函数f (x )的图象全在x 轴的上方的充要条件是1≤a <19.22.(本小题满分14分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p 或q ”是假命题,求a 的取值范围.[解析] 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时|a2|≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题, ∴a >2或a <-2.即a的取值范围为{a|a>2或a<-2}.。