七年级下册数学公式汇总
- 格式:docx
- 大小:2.10 MB
- 文档页数:10
第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。
方程一般形式是 ax+by=c(a ≠0,b ≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
七年级下册数学整册公式七年级下册数学整册公式包括但不限于:1. 每份数×份数=总数。
2. 总数÷每份数=份数。
3. 总数÷份数=每份数。
4. 1倍数×倍数=几倍数。
5. 几倍数÷1倍数=倍数。
6. 几倍数÷倍数=1倍数。
7. 速度×时间=路程。
8. 路程÷速度=时间。
9. 路程÷时间=速度。
10. 单价×数量=总价。
11. 总价÷单价=数量。
12. 总价÷数量=单价。
13. 工作效率×工作时间=工作总量。
14. 工作总量÷工作效率=工作时间。
15. 工作总量÷工作时间=工作效率。
16. 加数+加数=和。
17. 和-一个加数=另一个加数。
18. 被减数-减数=差。
19. 被减数-差=减数。
20. 差+减数=被减数。
21. 因数×因数=积。
22. 积÷一个因数=另一个因数。
23. 被除数÷除数=商。
24. 被除数÷商=除数。
25. 商×除数=被除数。
26. 正方形体积公式:V=a³。
(a为边长)。
27. 正方形面积公式:S=a²。
(a为边长)。
28. 正方体表面积公式:S=6a²。
(a为棱长)。
29. 长方体体积公式:V=abc。
(长宽高分别为abc)。
30. 长方体表面积公式:S=2ab+2bc+2ac。
(abc分别为长宽高)。
31. 圆柱体体积公式:V=πr²h。
(r为底面半径,h为高)。
32. 圆柱体侧面积公式:S=2πrh。
(r为底面半径,h为高)。
33. 圆锥体体积公式:V=1/3πr²h。
(r为底面半径,h为高)。
七年级数学(下)知识点1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
注意:坐标轴上的点不在任何一个象限内。
第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
七年级下册数学公式汇总
数学公式是数学中重要的工具,能够帮助我们解决各种数学问题。
以下是七年级下册数学中的常见公式汇总:
1. 直角三角形的勾股定理
直角三角形的勾股定理是解决直角三角形问题的基本公式,定义如下:
对于一个直角三角形,边长分别为a、b、c,其中c为斜边,a 和b为两条直角边,则成立以下关系式:
c² = a² + b²
2. 两点间的距离公式
计算平面上两点之间的距离,可以使用以下公式:
d = √((x₂ - x₁)² + (y₂ - y₁)²)
其中,(x₁, y₁)和(x₂, y₂)分别是两点的坐标,d为两点间的距离。
3. 面积公式
求解不同图形的面积时,可以使用以下公式:
矩形的面积公式为:
A = 长 ×宽
三角形的面积公式为:
A = 1/2 ×底 ×高
圆的面积公式为:
A = π × r²
其中,A为面积,π取近似值3.14,r为圆的半径。
4. 百分比公式
计算百分比时,可以使用以下公式:
百分数 = (部分 / 全部) × 100%
其中,百分数表示部分所占的百分比,部分表示某个部分的数量,全部表示整体的数量。
以上是七年级下册数学中的一些常见公式汇总,掌握这些公式能够帮助你更好地解决各种数学问题。
祝你学习进步!。
七年级下册数学定义公式
以下是七年级下册数学中常见的一些定义和公式:
1. 定义:
- 因数:一个数能整除另一个数,我们称这个数是另一个数的因数。
- 整数:不带小数点和分数线的数。
- 分数:带有分数线的数,分子除以分母得到的数。
- 常数:不含未知数的数字。
- 变量:在数学中,代表未知数的字母或符号。
- 平方数:一个数的平方根是整数的数。
- 二次根式:形如√a的表达式,其中a为正数。
- 等差数列:数列中相邻两项之差都相等的数列。
- 等比数列:数列中相邻两项之比都相等的数列。
- 多项式:一个含有字母的代数式。
2. 公式:
- 面积公式:
- 矩形的面积:长 ×宽
- 正方形的面积:边长 ×边长
- 三角形的面积:底边 ×高 ÷ 2
- 梯形的面积:长边 ×短边之和 ÷ 2 ×高
- 周长公式:
- 矩形的周长:(长 + 宽) × 2
- 正方形的周长:边长 × 4
- 三角形的周长:边1 + 边2 + 边3
- 圆的周长:直径 ×π (π取近似值3.14)
- 体积公式:
- 立方体的体积:边长 ×边长 ×边长
- 长方体的体积:长 ×宽 ×高
- 圆柱体的体积:底面积 ×高
- 平均值公式:
- 平均值 = 总和 ÷数据个数
以上仅列举了一部分常见的定义和公式,七年级下册数学中还包括更多的概念和公式,具体内容可以参考教材。
七年级下册数学一二章笔记一、整式的乘除(一)运用公式法:我们知道整式乘法与因式分解互为逆变形.如果把乘法公式反过来就是把多项式分解因式.于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积.这个公式就是平方差公式.(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解.2.因式分解,必须进行到每一个多项式因式不能再分解为止.(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式.上面两个公式叫完全平方公式.(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同.③有一项是这两个数的积的两倍.(3)当多项式中有公因式时,应该先提出公因式,再用公式分解.(4)完全平方公式中的a、b可表示单项式,也可以表示多项式.这里只要将多项式看成一个整体就可以了.(5)分解因式,必须分解到每一个多项式因式都不能再分解为止.(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减.同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算.8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.12.作为最后结果,如果是分式则应该是最简分式.(九)含有字母系数的一元一次方程1.含有字母系数的一元一次方程引例:一数的a倍(a≠0)等于b,求这个数.用x表示这个数,根据题意,可得方程ax=b(a≠0)在这个方程中,x是未知数,a和b是用字母表示的已知数.对x来说,字母a是x的系数,b是常数项.这个方程就是一个含有字母系数的一元一次方程.含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.二、相交线与平行线1.同一平面内,两直线不平行就相交。