2013届高三数学一轮复习练习及详细解析第十一章《概率的应用》
- 格式:doc
- 大小:157.00 KB
- 文档页数:4
课时作业55 事件与概率 一、选择题1.下列说法正确的是( ).A .某事件发生的频率为P (A )=1.1B .不可能事件的概率为0,必然事件的概率为1C .小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D .某事件发生的概率是随着试验次数的变化而变化的2.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ).A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( ).A .0.3B .0.5C .0.8D .0.74.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( ).A .一定出现“6点朝上”B .出现“6点朝上”的概率大于16C .出现“6点朝上”的概率等于16D .无法预测“6点朝上”的概率5.给出以下三个命题:(1)将一枚硬币抛掷两次,记事件A :“两次都出现正面”,事件B :“两次都出现反面”,则事件A 与事件B 是对立事件;(2)在命题(1)中,事件A 与事件B 是互斥事件;(3)在10件产品中有3件是次品,从中任取3件,记事件A :“所取3件中最多有2件是次品”,事件B :“所取3件中至少有2件是次品”,则事件A 与事件B 是互斥事件. 其中真命题的个数是( ).A .0B .1C .2D .36.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a ,b ,则满足条件的三角形有两个解的概率是( ).A .16B .13C .12D .347.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据样本频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为( ).A .0.25B .0.20C .0.35D .0.45二、填空题8.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为__________.9.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是__________.10.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是__________,他属于不超过2个小组的概率是__________.三、解答题11.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x ,y 分别表示英语成绩和数学成绩.(1)x =4的概率是多少?x =4且y =3的概率是多少?x ≥3的概率是多少?(2)x =2的概率是多少?a +b 的值是多少?12.(2012北京高考)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱厨余垃圾 400 100 100可回收物 30 240 30其他垃圾 20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)参考答案一、选择题1.B 解析:概率、频率的值不能大于1,故A 错;小概率事件不一定不发生,大概率事件也不一定发生,故C 错;概率是频率的稳定值,不会随试验次数的变化而变化,故D 错.2.B 解析:由互斥事件、对立事件的含义知选B.3.D4.C 解析:随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以它出现哪一个面朝上的可能性都是相等的.5.B 解析:(1)中A 与B 互斥但不对立;(2)是真命题;(3)事件A 与事件B 不互斥.6.A 解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧ a >b sin A ,b >a .因为A =30°,所以⎩⎪⎨⎪⎧ b <2a ,b >a ,满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b=5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16. 7.A 解析:袋装食盐质量在497.5~501.5 g 之间的有5袋,故所求概率P ≈520=0.25. 二、填空题8.359.5.7% 解析:所抽取的990户普通家庭中有50户拥有3套或3套以上住房,所抽取的100户高收入家庭中有70户拥有3套或3套以上住房,那么99 000户普通家庭中就约有5 000户拥有3套或3套以上住房,1 000户高收入家庭中就约有700户拥有3套或3套以上住房.那么该地100 000户居民中拥有3套或3套以上住房的家庭占的比例约为5 000+700100 000×100%=5 700100 000×100%=5.7%. 10.35 1315解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35. “不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315. 三、解答题11.解:(1)P (x =4)=1+0+7+5+150=725; P (x =4,y =3)=750, P (x ≥3)=P (x =3)+P (x =4)+P (x =5)=2+1+0+9+350+725+1+3+1+0+150=710. (2)P (x =2)=1-P (x =1)-P (x ≥3)=1-110-710=15. 又∵P (x =2)=1+b +6+0+a 50=15, ∴a +b =3.12.解:(1)厨余垃圾投放正确的概率约为 “厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7, 所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200,所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.。
课时规范练53《素养分级练》P331基础巩固组1.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了40次,那么出现正面朝上的频率和概率分别为( )A.0.4,0.4B.0.5,0.5C.0.4,0.5D.0.5,0.4答案:C=0.4.因解析:100次试验中有40次正面朝上,所以正面朝上的频率为40100为硬币质地均匀,所以正面朝上和反面朝上的概率都是0.5.故选C.2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率是( )A.60%B.50%C.10%D.30%答案:B解析:“甲获胜”与“甲、乙下成和棋”是互斥事件,“甲不输”即“甲获胜或甲、乙下成和棋”,设甲不输为事件A,甲胜为事件B,甲、乙下成和棋为事件C,故P(A)=P(B)+P(C),∴P(C)=P(A)-P(B)=90%-40%=50%.3.(全国甲,文6)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A.15B.13C.25D.23答案:C解析:从6张卡片中无放回随机抽取2张,所有可能的结果是(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3, 5),(3,6),(4,5),(4,6),(5,6),共15种,其中数字之积是4的倍数的结果是(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种,故所求概率为615=25,故选C.4.(多选)(江苏苏州外国语学校模拟)某校高一年级开设了甲、乙两个课外兴趣班,供学生们选择,记事件Ω1=“只选择甲兴趣班”,Ω2=“至少选择一个兴趣班”,Ω3=“至多选择一个兴趣班”,Ω4=“一个兴趣班都不选”,则( )A.Ω1与Ω3是互斥事件B.Ω2与Ω4既是互斥事件也是对立事件C.Ω2与Ω3不是互斥事件D.Ω3与Ω4是互斥事件答案:BC解析:事件Ω2包含选择甲兴趣班,选择乙兴趣班,选择甲乙两种兴趣班;Ω3包含选择甲兴趣班,选择乙兴趣班,两种兴趣班都不选择.所以Ω1与Ω3不是互斥事件,故A错误;Ω2与Ω4既是互斥事件也是对立事件,故B正确;Ω2与Ω3不是互斥事件,故C正确;Ω3与Ω4不是互斥事件,故D错误.故选BC.5.(四川攀枝花三模)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五;梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.如图,在十位档拨一颗上珠和两颗下珠,个位档拨四颗下珠,则表示数字74.若在个、十、百、千位四档中随机选择一档拨一颗下珠,再从这四档中随机选择两个不同档位各拨一颗上珠,则所表示的数字小于560的概率为( )A.18B.524C.14D.724答案:C解析:在个、十、百、千位四档中随机选择一档拨一颗下珠,再从这四档中随机选择两个不同档位各拨一颗上珠,共有C41C42=4×4×32×1=24种不同情况. 表示的数字小于560包括56,65,155,506,516,551,共6种情况,所以所表示的数字小于560的概率为624=14.6.(河北张家口三模)用0,1,2,3组成无重复数字的三位数,这个三位数是偶数的概率为.答案:59解析:组成无重复数字的三位数共有C31A32=18个,当0做个位时有A32=6个,当2做个位时有C21C21=4个,故三位数是偶数的概率等于6+418=59.综合提升组7.(广东广州三模)春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满80元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有5名顾客都领取一件礼品,则他们中恰有3人领取的礼品种类相同的概率是( )A.140243B.40243C.2081D.4081答案:D解析:先考虑恰有3人领取的礼品种类相同,先从5人中选取3人有C 53=10种,再从三类礼品中领取一件有C 31=3,另外2人从剩下的2类礼品中任意选择有2×2=4种,按照分步乘法计数原理可得10×3×4=120种,又总情况有35=243种,故恰有3人领取的礼品种类相同的概率是120243=4081.8.有5个形状大小相同的球,其中3个红色、2个蓝色,从中一次性随机取2个球,则下列说法正确的是( )A.“恰好取到1个红球”与“至少取到1个蓝球”是互斥事件B.“恰好取到1个红球”与“至多取到1个蓝球”是互斥事件C.“至少取到1个红球”的概率大于“至少取到1个蓝球”的概率D.“至多取到1个红球”的概率大于“至多取到1个蓝球”的概率 答案:C解析:当取出的两球为一红一蓝时,可得“恰好取到1个红球”与“至少取到1个蓝球”均发生,即A 错误;当取出的两球为一红一蓝时,可得“恰好取到1个红球”与“至多取到1个蓝球”均发生,即B 错误;记“至少取到1个红球”为事件A,“至少取到1个蓝球”为事件B,“至多取到1个红球”为事件C,“至多取到1个蓝球”为事件D,故P(A)=C 32+C 31C 21C 52=910,P(B)=C 22+C 31C 21C 52=710,P(C)=C 22+C 31C 21C 52=710,P(D)=C 32+C 31C 21C 52=910,显然P(A)>P(B),P(C)<P(D),即C 正确,D 错误.9.致敬百年,读书筑梦,某学校组织全校学生参加“学党史颂党恩,党史网络知识竞赛”活动,并从中抽取100位学生的竞赛成绩作为样本进行统计,得到如图所示的频率分布直方图.规定:成绩在[80,100]内为优秀,成绩低于60分为不及格.(1)求a的值,并用样本估算总体,能否认为该校参加本活动的学生成绩符合“不及格的人数低于20%”的要求;(2)若样本中成绩优秀的男生为5人,现从样本的优秀答卷中随机选取3份作进一步分析,求其中至少有1份是男生的概率.解:(1)由频率分布直方图得(0.004+a+0.011+0.036+0.023+0.014+a)×10=1,解得a=0.006,成绩不及格的频率为(0.004+0.006+0.011)×10=0.21,∴“成绩不及格”的概率估计值为21%,∵21%>20%,∴不能认为该校参加本活动的学生成绩符合“不及格的人数低于20%”的要求.(2)(方法1)由(1)可知样本中成绩优秀有20人,其中男生5人,故女生15人,记事件A=“从样本的优秀答卷中随机选取3份作进一步分析,其中至少有1份是男生”,则P(A)=C 51C 152+C 52C 151+C 53C 203=137228,∴所求概率为137228.(方法2)由(1)可知样本中成绩优秀的有20人,其中男生5人,故女生15人,记事件A=“从样本的优秀答卷中随机选取3份,其中至少有1份是男生”,则A =“从样本的优秀答卷中随机选取3份,全是女生”,则P(A )=C 153C 203=91228,∴P(A)=1-P(A )=137228,∴所求概率为137228.创新应用组10.(湖南湘潭三模)写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算89×61,将被乘数89计入上行,乘数61计入右行,然后以乘数61的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5 429.类比此法画出354×472的表格,若从表内的18个数字(含相同的数字,表周边数据不算在内)中任取2个数字,则它们之和大于10的概率为( )A.251B.8153C.10153D.451答案:D解析:画出354×472的表格,如图所示,则从18个数字中任取2个,共有C182种不同的取法,其中6与8各2个,3与5各1个,从中任取2个,它们之和大于10的取法为(3,8),(5,6),(5,8),(6,8),(6,6),(8,8),故所求概率为1×2+1×2+1×2+2×2+2C182=12153=451.。
课时规范练52《素养分级练》P383基础巩固组1.(江苏苏锡常镇一模)在x-1x4的二项展开式中,第二项的系数为( ) A.4 B.-4 C.6 D.-6答案:B解析:x-1x 4的二项展开式的第二项为T2=T1+1=C41x4-1-1x1=-C41x2=-4x2,所以第二项的系数为-4.2.(山东烟台二模)在(x2-2x+y)6的展开式中,含x5y2项的系数为( )A.-480B.480C.-240D.240答案:A解析:(x2-2x+y)6可看成是6个(x2-2x+y)相乘,要得到x5y2,分以下情况: 6个因式中,2个因式取y,1个因式取x2,3个因式取-2x,此时x5y2的系数C62C41C33·(-2)3=-480,所以x5y2的系数为-480.3.(山东临沂二模)已知(ax2+1)x-2x5的展开式中各项系数的和为-3,则该展开式中x的系数为( )A.-120B.-40C.40D.120答案:A解析:在二项式(ax 2+1)x-2x5中,令x=1,可得(a+1)·(-1)5=-3,解得a=2.x-2x5的展开式通项为T k+1=C 5k·x 5-k ·-2xk=C 5k·(-2)k ·x 5-2k ,因为(2x 2+1)x-2x5=2x 2x-2x5+x-2x5,2x 2T r+1=2x 2C 5r ·(-2)r ·x 5-2r =2C 5r·(-2)r ·x 7-2r ,令7-2r=1,可得r=3,在T k+1=C 5k·(-2)k ·x 5-2k 中,令5-2k=1,可得k=2,因此,展开式中x 的系数为2C 53·(-2)3+C 52·(-2)2=-120.4.(多选)(广东茂名二模)已知2x+1√x3n的展开式共有13项,则下列说法中正确的有( )A.所有奇数项的二项式系数和为212B.所有项的系数和为312C.二项式系数最大的项为第6项或第7项D.有理项共5项 答案:BD解析:因为n+1=13,所以n=12,所有奇数项的二项式系数和为211,故A 错误.令x=1,得所有项的系数和为312,故B 正确.由二项式系数的性质可知二项式系数最大的项为第7项,故C 错误.因为2x+1√x312展开式通项为T r+1=C 12r ·(2x)12-r ·(x -13)r =212-r C 12r x 12-43r ,当12-43r 为整数时,r=0,3,6,9,12,共有5项,故D 正确.故选BD.5.(江苏苏州高三检测)若C n 0+C n 1+…+C n n=256,则x+12√xn的展开式中含x 5项的系数为 .(用数字作答) 答案:7解析:C n 0+C n 1+…+C n n =2n =256,故n=8,则x+12√x8的展开式通项公式T r+1=C 8r x 8-r 2-r x-12r =C 8r 2-r x 8-32r,令8-32r=5,解得r=2,所以T 3=C 822-2x 5=28×14x 5=7x 5.所以系数为7.6.设a=C 190+C 1917+C 19272+…+C 1919719,则a 除以9所得的余数为 . 答案:8解析:因为a=C 190+C 1917+C 19272+…+C 1919719,所以a=(1+7)19=(9-1)19=C 190919+C 191918(-1)+…+C 191891(-1)18+C 1919(-1)19=9k-1=9(k-1)+8,k ∈N +,所以a 除以9所得的余数为8.7.(湖南长郡中学一模)已知(1-4x)2 022=a 0+a 1x+…+a 2 022x 2 022,则a12+a 222+a 323+…+a2= . 答案:0解析:根据题意,令x=0,得a 0=(1-0)=1,令x=12,得(1-2)=a 0+a121+a 222+…+a2,因此a12+a 222+a 323+…+a2=1-a 0=0. 综合提升组8.(湖南永州三模)若x8=a0+a1(x+1)+…+a7(x+1)7+a8(x+1)8,则a3=( )A.56B.28C.-28D.-56答案:D解析:因为x8=[(x+1)-1]8,所以[(x+1)-1]8=a0+a1(x+1)+…+a7(x+1)7+a8(x+1)8,所以a3(x+1)3=C85(x+1)3·(-1)5=-56(x+1)3,即a3=-56.9.(多选)(广东深圳二模)已知(2-x)8=a0+a1x+a2x2+…+a8x8,则( )A.a0=28B.a1+a2+…+a8=1C.|a1|+|a2|+|a3|+…+|a8|=38D.a1+2a2+3a3+…+8a8=-8答案:AD解析:因为(2-x)8=a0+a1x+a2x2+…+a8x8,令x=0,则a0=28,故A正确;令x=1,则a0+a1+a2+…+a8=(2-1)8=1,所以a1+a2+…+a8=1-28,故B错误;令x=-1,则a0-a1+a2-a3+…+a8=38,又a1,a3,a5,a7为负数,所以|a1|+|a2|+|a3|+…+|a8|=38-28,故C错误;对(2-x)8=a0+a1x+a2x2+…+a8x8两边对x取导得-8(2-x)7=a1+2a2x+3a3x2+…+8a8x7,再令x=1得a1+2a2+3a3+…+8a8=-8,故D正确.故选AD.10.(河北邢台高三检测)√24−√3x6的展开式中系数为有理数的各项系数之和为 . 答案:117 解析:因为√24−√3x6展开式的通项为T r+1=C 6r (√24)6-r ·-√3xr=C 6r 26-r43r2-1xr(r=0,1,…,6),则当6-r 4,r 2均为整数,即r=2或6时,展开式中的系数为有理数,故所求系数之和为C 62×2×3+C 66×33=117.创新应用组11.(多选)(广东韶关一模)如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列说法中正确的有( )A.在“杨辉三角”第9行中,从左到右第7个数是84B.在“杨辉三角”中,当n=12时,从第1行起,每一行的第2列的数字之和为66C.在“杨辉三角”中,第n 行所有数字的平方和恰好是第2n 行的中间一项的数字D.记“杨辉三角”第n 行的第i 个数为a i ,则∑i=1n+12i-1·a i =2n答案:AC解析:对于A,在杨辉三角中,第9行第7个数是C 96=84,所以A 正确.对于B,当n=12时,S=1+2+ (12)12×132=78,所以B 错误.对于C,用数学符号语言可表示为(C n 0)2+(C n 1)2+…+(C n n )2=C 2n n , 证明如下:(1+x)2x =(1+x)n (1+x)n =(C n 0+C n 1x+C n 2x 2+…+C n n x n )·(C n n x n +C n n -1x n-1+C n n -2x n-2+…+C n 0).对应相乘,恰好得到x n 这一项的系数为(C n 0)2+(C n 1)2+…+(C n n )2=C 2n n . 而C 2n n 是二项式(1+x)2n 的展开式中第n+1项的二项式系数(即x n 的系数). 故(C n 0)2+(C n 1)2+(C n 2)2+…+(C n n )2=C 2n n ,所以C 正确.对于D,第n 行的第i个数为a i =C n i -1,所以∑i=1n+12i-1a i =20a 1+21a 2+22a 3+…+2n a n+1,即∑i=1n+12i-1a i =C n 0·20+C n 1·21+C n 2·22+…+C n n·2n =(1+2)n =3n ,所以D 错误.故选AC.。
高三数学第一轮复习第十一章概率教师用书【知识概要】1.互斥事件:若事件A 与B 不可能同时发生,则事件A 与B 为互斥事件。
AB φ=2.对立事件:其中必有一个发生的互斥事件叫对立事件。
事件A 的对立事件记作A ,A A φ=,A A U =(U 为全集); 3.互斥事件与对立事件的区别与联系,两个事件对立是这两个事件互斥的充分不必要条件; 4.互斥事件的加法公式:()()()P A B P A P B +=+;()()1P A P A +=;()1()P A P A =-; 【基础训练】1.从装有2个红球和2个白球的的口袋内任了两个球,那么下列事件中互斥的个数是(C ) ①至少有1个红球,都是白球;②至少有一个白球,至少有一个红球; ③恰有1个白球,恰有两个白球;④至少有一个白球;都是红球; A .0 B .1 C .2 D .3 2.甲、乙两人下棋,甲不输的概率是0.8,两人下成和棋的概率是0.5,则甲胜的概率为(A ) A .0.3 B .0.8 C .0.5 D .0.43.某班委会由4名男生与3名女生组成,现从中选出2人担任正、副班长,其中至少有1名女生当选的概率是574.若10把钥匙中只有2把能打开某锁,则从中任取2把能将锁打开的概率为1745【典型例题】例1.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率(1)摸出2个或3个白球;(2)至少摸出一个黑球;解(1)22315353448837C C C C P C C =+= (2)45481114C P C =-=例2.袋中有9个编号分别为1,2,…,9的小球,从中随机地取出2个,求至少有一个球的编号为奇数的概率。
解:记“从9个球中任取2个,其中恰有一个编号是奇数”为事件A ,“恰有两个球的编号是奇数”为事件B ,则1154295()9C C P A C ==,25295()18C P B C ==则555()()()9186P A B P A P B +=+=+= 例3.有4位同学,每人买一张彩票,求至少有两位同学彩票号码的末位数字相同的概率。
高考数学一轮复习 第11章 概率与统计11.1随机事件及其概率练习(含解析)苏教版一、填空题1.下列说法:①频率反映了事件发生的频繁程度,概率反映了事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率就是事件A 发生的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n 次试验的试验值,而概率是具有确定性的、不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的说法有__________.2.下列事件中,①方程x 2+2x +8=0有两个实根;②某信息台每天的某段时间收到信息咨询的请求次数超过10次;③下周六会下雨.随机事件的个数为__________.3.已知某厂的产品合格率为90%,抽出10件产品检查,则合格产品最可能是__________件.4.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是__________.5.从15个同类产品(其中有12个正品,3个次品)中,任意抽取4个的必然事件是__________.6.在第3,6,16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为__________.7.(2012浙江高考)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是__________. 8.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:①取出“两只红球和一只白球”与“取出一只红球和两只白球”;②“取出两只红球和一只白球”与“取出3只红球”;③“取出3只红球”与“取出的3只球中至少有一只白球”;④“取出3只红球”与“取出3只白球”,其中是对立事件的有__________(只填序号).9.每道选择题有4个选项,其中只有1个选项是正确的,某次考试共有12道选择题.某人说:“每个选项正确的概率是14,若每题都选择第一个选项,则一定有3道题选择的结果是正确的.”这句话对吗?__________.(填“正确”或“错误”)二、解答题10.某市统计的2009~2012年新生婴儿数及其中男婴数(单位:人)见下表:时间 2009年 2010年 2011年 2012年新生婴儿数 21 840 23 070 20 094 19 982男婴数 11 453 12 031 10 297 10 242(1)试计算男婴各年的出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?11.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.12.一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个.若从袋子中随机取出1个球,取到红色球的概率是16. (1)求红色球的个数;(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙大的概率.参考答案一、填空题1.①④⑤2.2 解析:①方程的判别式Δ=22-4×8=-28<0,方程有两个实根是不可能事件;②和③可能发生也可能不发生,是随机事件.3.9 解析:因为产品的合格率为90%,抽出10件产品,则合格产品最可能是10×90%=9(件).这是随机的.4.0.3 解析:1-0.42-0.28=0.3.5.至少含有一个正品6.0.80 解析:令“能上车”记为事件A ,则3路或6路车有一辆路过即事件发生,故P (A )=0.20+0.60=0.80. 7.25 解析:五点中任取两点的不同取法共有10种,而两点之间距离为22的情况有4种,故概率为410=25. 8.③ 解析:从5红5白的10个球中任取3个,其所有结果为:3白,2白1红,1白2红,3红共4种情况,其中取出3球至少有一只白球包括:1白2红,2白1红,3白,故只有③为对立事件.9.错误 解析:解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14,做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证有3道题的结果选择正确,同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确,所以上述说法错误.二、解答题10.解:(1)2009年男婴出生的频率为f n (A )=n A n =11 45321 840≈0.524. 同理可求得2010年,2011年和2012年男婴出生的频率分别约为0.521,0.512,0.513.(2)由以上计算可知,各年男婴出生的频率在0.51~0.53之间,所以该市男婴出生的概率约为0.52.11.解:(1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000. 故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000. 12.解:(1)设红色球有x 个,依题意得x 24=16,解得x =4,∴红色球有4个. (2)记“甲取出的球的编号比乙的大”为事件A ,所有的基本事件有(红1,白1),(红1,蓝2),(红1,蓝3),(白1,红1),(白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,白1),(蓝2,蓝3),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个.事件A包含的基本事件有(蓝2,红1),(蓝2,白1),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共5个,所以,P(A)=5 12 .。
——教学资料参考参考范本——高考数学一轮复习第十一章计数原理概率随机变量及其分布第三节二项式定理课后作业理______年______月______日____________________部门一、选择题1.(20xx·陕西高考)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=( )A.7 B.6 C.5 D.42.在x(1+x)6的展开式中,含x3项的系数为( )A.30 B.20 C.15 D.103.设n为正整数,2n展开式中存在常数项,则n的一个可能取值为( )A.16 B.10 C.4 D.24.(1+x)8(1+y)4的展开式中x2y2的系数是( )A.56 B.84C.112 D.1685.(20xx·湖北高考)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.29 B.210 C.211 D.212二、填空题6.(20xx·天津高考)在6的展开式中,x2的系数为________.7.n的展开式中各项系数之和为729,则该展开式中x2项的系数为________.8.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3=________.三、解答题9.已知在n的展开式中,第6项为常数项.(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.10.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+…+|a7|.[冲击名校]1.6的展开式的第二项的系数为-,则x2dx的值为( )A.3 B.73C.3或 D.3或-1032.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是( )A.74 B.121 C.-74 D.-1213.(20xx·济南模拟)(x+2)2(1-x)5中x7的系数与常数项之差的绝对值为( )A.5 B.3 C.2 D.04.若(x2+ax+1)6(a>0)的展开式中x2的系数是66,则的值为________.5.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值;(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.答案[全盘巩固]一、选择题1. 解析:选B (x+1)n=(1+x)n,(1+x)n的通项为Tr+1=Cxr,令r=2,则C=15,即n(n-1)=30.又n>0,得n=6.2. 解析:选C 只需求(1+x)6的展开式中含x2项的系数即可,而含x2项的系数为C=15.3. 解析:选B 2n展开式的通项公式为Tk+1=令=0,得k=,∴n可取10.4. 解析:选D (1+x)8的展开式中x2的系数为C,(1+y)4的展开式中y2的系数为C,所以x2y2的系数为CC=168.5. 解析:选A 由C=C,得n=10,故奇数项的二项式系数和为29.二、填空题6. 解析:通项为Tr+1=Cx6-rr=Crx6-2r.令6-2r=2得r=2,∴x2的系数为C2=.答案:15167. 解析:令x =1,依题意得3n =729,n =6,二项式6的展开式的通项是Tr +1=C ·(2x)6-r ·r =.令6-=2,得r =3.因此,在该二项式的展开式中x2项的系数是C ·26-3=160.答案:1608. 解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a0+a1t +a2t2+a3t3+a4t4+a5t5,则a3=C(-1)2=10.答案:10 三、解答题9. 解:(1)通项公式为因为第6项为常数项, 所以k =5时,=0,即n =10. (2)令=2,得k =2, 故含x2的项的系数是C2=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z,0≤k≤10,k∈N,令=r(r∈Z),则10-2k =3r ,k =5-r , ∵k ∈N ,∴r 应为偶数,∴r可取2,0,-2,即k可取2,5,8,∴第3项,第6项与第9项为有理项,它们分别为C2x2,C5,C8x-2.10. 解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1.①令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.②(1)∵a0=C=1,∴a1+a2+a3+…+a7=-2.(2)(①-②)÷2,得a1+a3+a5+a7==-1 094.(3)(①+②)÷2,得a0+a2+a4+a6==1 093.(4)∵(1-2x)7展开式中a0、a2、a4、a6大于零,而a1、a3、a5、a7小于零,∴|a0|+|a1|+|a2|+…+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7)=1 093-(-1 094)=2 187.[冲击名校]1. 解析:选B 该二项展开式的第二项的系数为Ca5,由Ca5=-,解得a=-1,因此.2. 解析:选D 展开式中含x3项的系数为C(-1)3+C(-1)3+C(-1)3+C(-1)3=-121.3. 解析:选A 常数项为C×22×C=4,x7系数为C×C(-1)5=-1,因此x7系数与常数项之差的绝对值为5.4. 解析:由题意可得(x2+ax +1)6的展开式中x2的系数为C +Ca2,故C +Ca2=66,∴a =2或a =-2(舍去).故=1-cos 2.答案:1-cos 25. 解:(1)由已知得C +2C =11,∴m +2n =11,x2的系数为C +22C 2n=+2n(n -1)=+(11-m)⎝ ⎛⎭⎪⎫11-m 2-1=2+. ∵m ∈N*,∴m =5时,x2的系数取得最小值22,此时n =3. (2)由(1)知,当x2的系数取得最小值时,m =5,n =3. ∴f(x)=(1+x)5+(1+2x)3. 设这时f(x)的展开式为f(x)=a0+a1x +a2x2+…+a5x5,令x =1,a0+a1+a2+a3+a4+a5=25+33=59, 令x =-1,a0-a1+a2-a3+a4-a5=-1, 两式相减得2(a1+a3+a5)=60,故展开式中x 的奇次幂项的系数之和为30.。
课时规范练53 随机事件的概率基础巩固组1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡2.抛掷一枚质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( ) A.A 与B 互斥 B.A 与B 对立 C.P(A+B)=23D.P(A+B)=133.(上海交大附中模拟二)设A,B 为随机事件,P 为事件出现的概率.下列阴影部分中能够表示P(A ∩B)的是( )4.(广西南宁三中二模)从装有两个红球和两个黑球的口袋内任取两个球,现有如下说法:①至少有一个黑球与都是黑球是互斥事件;②至少有一个黑球与至少有一个红球不是互斥事件;③恰好有一个黑球与恰好有两个黑球是互斥事件;④至少有一个黑球与都是红球是对立事件.在上述说法中正确的个数为( )A.1B.2C.3D.45.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17B.1235C.1735D.16.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.7.已知随机事件A,B发生的概率满足条件P(A∪B)=3,某人猜测事件A∩B4发生,则此人猜测正确的概率为.8.根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率是0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中一种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.9.从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下.所用时间/分钟10~20 20~30 30~40 40~50 50~60(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.综合提升组10.(山西朔州怀仁一中二模)7月24日,中共中央办公厅国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,要求学校做好课后服务,结合学生的兴趣爱好,开设体育、美术、音乐、书法等特色课程.某初级中学在课后延时一小时开设相关课程,为了解学生选课情况,在该校全体学生中随机抽取50名学生进行问卷调查,得到如下数据:(附:计算得到χ2≈8.333)根据以上数据,对该校学生情况判断不正确的是( )A.估计该校既喜欢体育又喜欢音乐的学生约占25B.从这30名喜欢体育的学生中采用随机数表法抽取6人做访谈,则他们每个个体被抽到的概率为15C.从不喜欢体育的20名学生中任选4人做访谈,则事件“至少有2人喜欢音乐”与“至多有1人不喜欢音乐”为对立事件D.在犯错误的概率不超过0.01的前提下,认为“喜欢体育”与“喜欢音乐”有关系11.(天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为;甲、乙两球至少有一个落入盒子的概率为.创新应用组12.把一枚骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是( )A.16B.1112C.112D.118参考答案课时规范练53 随机事件的概率1.A2.C 事件A与B不互斥,当向上点数为1时,两者同时发生,故事件A与B也不对立.事件A+B表示向上点数为1,3,4,5之一,所以P(A+B)=46=23.故选C.3.C 对于选项A,阴影部分表示P((A∩B)∪(A∩B)),故A错误;对于选项B,阴影部分表示P(A∩B),故B错误;对于选项C,阴影部分表示P(A∩B),故C正确;对于选项D,阴影部分表示P(A∪B),故D错误.故选C.4.C 设两个红球为球a、球b,两个黑球为球1、球2,则从装有两个红球和两个黑球的口袋内任取两个球,所有可能的结果为(a,b),(a,1),(a,2),(b,1),(b,2),(1,2),共6种.①至少有一个黑球与都是黑球有公共事件(1,2),故二者不是互斥事件,判断错误;②至少有一个黑球与至少有一个红球有公共事件(a,1),(a,2),(b,1),(b,2),故二者不是互斥事件,判断正确;③恰好有一个黑球包含事件(a,1),(a,2),(b,1),(b,2),恰好有两个黑球包含事件(1,2),故二者是互斥事件,判断正确;④至少有一个黑球包含事件(a,1),(a,2),(b,1),(b,2),(1,2),都是红球包含事件(a,b),故二者是对立事件,判断正确.故选C.5.C 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A ∪B,且事件A 与B 互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.故选C.6.54,43由题意可知{0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,则{0<2-a <1,0<4a -5<1,3a -3≤1,解得{1<a <2,54<a <32,a ≤43,故54<a≤43. 7.14因为事件A ∩B 与事件A ∪B 是对立事件,所以P(A ∩B )=1-P(A ∪B)=1-34=14.8.解记A 表示事件“该车主购买甲种保险”,B 表示事件“该车主购买乙种保险但不购买甲种保险”,C 表示事件“该车主至少购买甲、乙两种保险中的一种”,D 表示事件“该车主甲、乙两种保险都不购买”. (1)由题意得P(A)=0.5,P(B)=0.3,又因为C=A ∪B, 所以P(C)=P(A ∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.9.解(1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),用频率估计概率,可得所求概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率分布如下表:(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.用频率估计概率及由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.10.C 对于A选项,估计该校既喜欢体育又喜欢音乐的学生约占2050=25,正确;对于B选项,每个个体被抽到的概率为630=15,正确;对于C选项,“至少有2人喜欢音乐”与“至多有1人喜欢音乐”为对立事件,则C错误;对于D 选项,由χ2≈8.333>6.635,则在犯错误的概率不超过0.01的前提下,认为“喜欢体育”与“喜欢音乐”有关系,故D 正确.故选C. 11.1623甲、乙两球都落入盒子的概率为12×13=16,设事件A=“甲、乙两球至少一个落入盒子”,则对立事件为A =“甲、乙两球都未落入盒子”,P(A )=(1-12)×(1-13)=12×23=13,则P(A)=1-P(A )=23.12.B 若m 与n 共线,则2a-b=0,而(a,b)的可能情况有6×6=36(种).符合2a=b 的有(1,2),(2,4),(3,6),共3种.故共线的概率是336=112,从而不共线的概率是1-112=1112.。
【2019最新】精选高考数学一轮复习第十一章计数原理概率随机变量及其分布第四节随机事件的概率课后作业理一、选择题1.抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品2.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A∪B与C是互斥事件,也是对立事件B.B∪C与D是互斥事件,也是对立事件C.A∪C与B∪D是互斥事件,但不是对立事件D.A与B∪C∪D是互斥事件,也是对立事件3.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A.0.45 B.0.67 C.0.64 D.0.324.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是( )A. B. C. D.15.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是( ) A.甲获胜的概率是 B.甲不输的概率是12C.乙输了的概率是 D.乙不输的概率是12二、填空题6.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.7.某城市2015年的空气质量状况如下表所示:100<T≤150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为________.8.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.三、解答题9.经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:求:(1)(2)至少3人排队等候的概率是多少?10.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,1 40,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.1.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5 cm~170.5 cm之间的概率约为( )A. B. C. D.132.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.答案一、选择题1. 解析:选B ∵“至少有n个”的反面是“至多有n-1个”,又∵事件A“至少有2件次品”,∴事件A的对立事件为“至多有1件次品”.2. 解析:选D 由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.3. 解析:选D 摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P=1-0.45-0.23=0.32.4. 解析:选C 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B 互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.5. 解析:选A “甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P=1--=,故A正确;“乙输”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)=+=或设事件A为“甲不输”看作是“乙获胜”的对立事件,所以P(A)=1-=,故B不正确;同理,“乙不输”的概率为,故D不正确.二、填空题6. 解析:断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.答案:0.97 0.037. 解析:由题意可知2015年空气质量达到良或优的概率为P=++=.答案:358. 解析:由题意得an=(-3)n-1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以p==.答案:35三、解答题9. 解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.10. 解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为Y=+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=++=.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.1. 解析:选A 从已知数据可以看出,在随机抽取的这20位学生中,身高在155.5 cm~170.5 cm之间的学生有8人,频率为,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5 cm~170.5 cm之间的概率约为.2. 解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n个,则=,故n=15.答案:15。
课时作业59 二项分布及其应用一、选择题1.某道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条路上行驶时,三处都不停车的概率是( ).A .35192B .25192C .35576D .651922.某人射击一次击中目标的概率为35,经过3次射击,此人至少有两次击中目标的概率为( ).A .81125B .54125C .36125D .271253.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ).A .12B .512C .14D .164.一位国王的铸币大臣在每箱100枚的硬币中各掺入一枚劣币,国王怀疑大臣作弊,他用两种方法来检测,方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚,国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2,则( ).A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能5.电灯泡使用时数在1 000小时以上的概率为0.2,则3只灯泡在使用1 000小时后最多有1只坏了的概率是( ).A .0.401B .0.410C .0.014D .0.1046.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( ).A .110B .210C .810D .9107.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ).A .16625B .96625C .624625D .4625二、填空题8.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________. 9.如图,EFGH 是一个以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内,”则(1)P (A )=__________;(2)P (B |A )=__________.10.设甲、乙两人每次射击命中目标的概率为34和45,且各次射击相互独立.按甲、乙、甲……的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时甲射击了两次的概率是__________.三、解答题11.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.12.(2012天津高考)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).参考答案一、选择题1.A 解析:三处都不停车的概率是P (ABC )=2560×3560×4560=35192. 2.A3.B 解析:记两个零件中恰有一个一等品的事件为A ,则P (A )=23×14+13×34=512. 4.B 解析:p 1=1-0.9910=1-0.980 15,p 2=1-52992100C C ⎛⎫ ⎪⎝⎭=1-0.985,∴p 1<p 2.5.D 解析:3只灯泡在1 000小时后最多有1只坏了这个事件,也就是3只灯泡中至少有2只灯泡的使用时数在1 000小时以上,相当于3次独立重复试验有2次或3次发生的概率,故P =23C ×0.22×(1-0.2)+33C ×0.23=0.104. 6.A 解析:设A 为“第一次失败”,B 为“第二次成功”,则P (A )=910, P (B |A )=19, ∴P (AB )=P (A )P (B |A )=110. 7.B 解析:据题意取出两球号码之积是4的倍数的情况为(1,4),(2,4),(3,4),(2,6),(4,6),(4,5)共6种情况,故中奖的概率为266C =25,故4人中有3人中奖的概率为34C ⎝ ⎛⎭⎪⎫253×35=96625. 二、填空题8.35 解析:设该队员每次罚球的命中率为p ,则1-p 2=1625,解得p =35. 9.2π 14解析:该题为几何概型,圆的半径为1,正方形的边长为2, ∴圆的面积为π,正方形面积为2,扇形面积为π4. 故P (A )=2π, P (B |A )=P (A ∩B )P (A )=12π2π=14. 10.19400解析:停止射击时甲射击了两次,分两种情况:①甲未中、乙未中、甲命中的概率是⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-45×34=380;②甲未中、乙未中、甲未中、乙命中的概率是⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫1-34×45=1100. 停止射击时甲射击了两次的概率是380+1100=19400. 三、解答题11.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共有9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率P =39=13. (2)X 的可能取值分别为0,1,2,3.P (X =0)=03C ·⎝ ⎛⎭⎪⎫233=827, P (X =1)=13C ·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫232=49, P (X =2)=23C ·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫231=29, P (X =3)=33C ·⎝ ⎛⎭⎪⎫133=127. X 的分布列如下:12.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=4C i⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=24C ⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=34C ⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+44C ⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能取值为0,2,4.由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E(ξ)=0×27+2×81+4×81=14881.。
第二节 概率的应用A 组1.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是________. 解析:当取出的小球标注的数字之和为3时只有{1,2}一种取法;当取出的小球标注的数字之和为6时,有{1,5},{2,4}两种取法,所以符合条件的取法种数为3种,而所有的取法有10种,故所求的概率为310.答案:3102.已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|A B →|≤4,则△ABC 是直角三角形的概率为________.解析:|A B →|≤4,k 2+1≤16,k 2≤15,k =-3,-2,-1, 0,1,2,3.B C →=(2-k,3).若A B →·B C →=-k 2+2k +3=0,则k =-1,k =3;若B C →·A C →=0,则k =8(舍);若A B →·A C →=0,则k =-2.故P =37.答案:373.(2010年南京调研)甲盒子里装有分别标有数字1,2,4,7的4张卡片,乙盒子里装有分别标有数字1,4的2张卡片.若从两个盒子中各随机地取出1张卡片,则2张卡片上的数字之和为奇数的概率是________.解析:数字之和为奇数的有(1,4),(2,1),(4,1),(7,4)共4种情形,而从两个盒子中各抽取一张卡片共有8种情况,所以所求概率为12.答案:124.(2009年高考江苏卷)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.解析:在5个长度中一次随机抽取2个,则有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10种情况.满足长度恰好相差0.3 m 的基本事件有(2.5,2.8),(2.6,2.9),共2种情况,所以它们的长度恰好相差0.3 m 的概率为P =210=15.答案:155.(原创题)连掷两次骰子分别得到点数m ,n ,向量a =(m ,n ),b =(-1,1),若在△ABC 中,A B →与a 同向,C B →与b 反向,则∠ABC 是钝角的概率是________.解析:要使∠ABC 是钝角,必须满足A B →·C B →<0,即a ·b =n -m >0.连掷两次骰子所得点数m ,n 共有36种情形,其中15种满足条件,故所求概率是512. 6.一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外其他特征完全相同,已知蓝色球3个.若从袋子中随机取出1个球,取到红色球的概率是16. (1)求红色球的个数;(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙大的概率.解:(1)设红色球有x 个,依题意得x 24=16,解得x =4,∴红色球有4个. (2)记“甲取出的球的编号比乙的大”为事件A ,所有的基本事件有(红1,白1),(红1,蓝2),(红1,蓝3),(白1,红1),(白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,白1),(蓝2,蓝3),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个.事件A 包含的基本事件有(蓝2,红1),(蓝2,白1),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共5个,所以P (A )=512. B 组1.(2009年高考浙江卷)有20张卡片,每张卡片上分别标有两个连续的自然数k ,k +1,其中k =0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A ,则P (A )=________.解析:对于大于14的情况通过列举可得有5种情况:(7,8)、(8,9)、(16,17)、(17,18)、(18,19),而基本事件有20种,因此P (A )=14. 答案:142.用黑白两种颜色的正方形地砖依照下图的规律拼成若干图形,则按此规律第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图形中,则豆子落在白色地砖上的概率是________.解析:白色地砖构成等差数列:8,13,18,…,5n +3,…∴a n =5n +3,a 100=503,第100个图形中有地砖503+100=603,故所求概率P =503603.答案:503 5036033.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为________.解析:分别从A 和B 中各取1个数,一共有6种等可能的取法,点P (a ,b )恰好落在直线x +y =2上的取法只有1种:(1,1);恰好落在直线x +y =3上的取法有2种:(1,2),(2,1);恰好落在直线x +y =4上的取法也有2种:(1,3),(2,2);恰好落在直线x +y =5上的取法只有1种:(2,3),故事件C n 的概率分别为16,13,13,16(n =2,3,4,5),故当n =3或4时概率最大.答案:3和44.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率等于________.解析:基本事件共有4×4=16个,其中抽到的2个球的标号之和不大于5的情况有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(4,1),共10种,所以所求概率为1016=58.答案:585.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,-2),则向量m 与向量n 垂直的概率是________.解析:显然m·n =a -2b =0,所有可能的结果为(a ,b )=(2,1)、(4,2)、(6,3).基本事件总数为36,则概率为112.答案:1126.(2010年南京高三调研)如图,将一个体积为27 cm3的正方体木块表面涂上蓝色,然后锯成体积为1 cm3小正方体,从中任取一块,则这一块恰有两面涂有蓝色的概率是 .解析:据题意知两面涂色的小正方体当且仅当它们是大正方体的各条棱的中点时满足条件.正方体共12条棱,所以两面涂色的小正方体有12个,而所有小正方体有27个,所以,所求的概率为P =1227=49.答案:497.集合A ={2,4,6,8,10},B ={1,3,5,7,9},在A 中任取一元素m 和在B 中任取一元素n ,则所取两数m >n 的概率是________.解析:基本事件总数为25个.m =2时,n =1;m =4时,n =1,3;m =6时,n =1,3,5;m=8时,n =1,3,5,7;m =10时,n =1,3,5,7,9;共15个.故P =1525=0.6.答案:0.6 8.集合A ={(x ,y )|y ≥|x -1|},集合B ={(x ,y )|y ≤-x +5}.先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b)∈A ∩B 的概率等于 .解析:如图:满足(a ,b )∈(A ∩B )的(a ,b )值共有8个,(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).∴P =86×6=29.答案:29 9.(2010年江苏泰兴模拟)已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),则当x ,y ∈Z 时,P 满足(x -2)2+(y -2)2≤4的概率为________.解析:由|x |≤2,|y |≤2,x 、y ∈Z ,则基本事件总数为n =25,P 满足(x -2)2+(y -2) 2≤4,∴满足条件的整点有(0,2),(1,2),(2,2),(1,1),(2,1),(2,0)6个,故P =625.答案:62510.(2010年皖南八校质检)甲、乙两人各掷一次骰子(均匀的正方体,六个面上分别为1,2,3,4,5,6点),所得点数分别为x ,y .(1)求x <y 的概率;(2)求5<x +y <10的概率.解:记基本事件为(x ,y ),则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件.其中满足x <y 的基本事件有(1,2),(1,3),(1,4)(1,5)(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.满足5<x +y <10的基本事件有(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),共20个.(1)x <y 的概率P (x <y )=1536=512; (2)5<x +y <10的概率P (5<x +y <10)=2036=59. 11.晚会上,主持人面前放着A 、B 两个箱子,每箱均装有3个完全相同的球,各箱的3个球分别标有号码1,2,3.现主持人从A 、B 两箱中各摸出一球.(1)若用(x ,y )分别表示从A 、B 两箱中摸出的球的号码,请写出数对(x ,y )的所有情形,并回答一共有多少种;(2)求所摸出的两球号码之和为5的概率;(3)请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性最大?说明理由.解:(1)数对(x ,y )的所有情形为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种.(2)记“所摸出的两球号码之和为5”为事件A ,则事件A 包含的基本情形有(2,3),(3,2),共2种,所以P (A )=29. (3)记“所摸出的两球号码之和为i ”为事件A i (i =2,3,4,5,6),由(1)可知事件A 2的基本结果为1种,事件A 3的基本结果为2种,事件A 4的基本结果为3种,事件A 5的基本结果为2种,事件A 6的基本结果为1种,所以P (A 2)=19,P (A 3)=29,P (A 4)=39,P (A 5)=29,P (A 6)=19. 故所摸出的两球号码之和为4的概率最大,即猜4获奖的可能性最大.12.从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155 cm 到195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高在180 cm 以上(含180 cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x 、y ,求满足“|x -y |≤5”的事件的概率.解:(1)由频率分布直方图得前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18,人数为0.18×50=9,这所学校高三年级全体男生身高在180 cm 以上(含180 cm)的人数为800×0.18=144.(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m ,则第七组人数为9-2-m =7-m ,又m +2=2(7-m ),解得m =4,所以第六组人数为4,第七组人数为3,频率分别等于0.08,0.06.频率组距分别等于0.016,0.012.其完整的频率分布直方图如图.(3)由(2)知身高在[180,185)内的人数为4,设为a 、b 、c 、d ,身高在[190,195]内的人数为2,设为A 、B ,若x ,y ∈[180,185)时,有ab 、ac 、ad 、bc 、bd 、cd 共6种情况;若x ,y ∈[190,195]时,有AB 共1种情况;若x ,y 分别在[180,185)和[190,195]内时,有aA 、bA 、cA 、dA 、aB 、bB 、cB 、dB ,共8种情况.所以基本事件总数为6+1+8=15,事件“|x -y |≤5”所包含的基本事件个数有6+1=7,∴P (|x -y |≤5)=715.。