南京市、盐城市2014届高三第一次模拟考试数学试卷(word版,有答案)
- 格式:doc
- 大小:3.62 MB
- 文档页数:9
南京市、盐城市2014届高三年级第一次模拟考试英语试题 2014.01第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where will the two speakers go?A. Shanghai.B. Hangzhou.C. Hong Kong.2. Where does the conservation most probably take place?A. In a hotel.B. In a store.C. In a railway station.3. What does the man hope to talk about with Mr. Chen?A. The urgent business.B. The complaints.C. The time to contact him.4. What is the woman doing now?A. Bargaining for a necklace.B. Making an advertisement for jewelry.C. Showing a design of a necklace.5. Why did the man go to San Francisco and Los Angeles?A. To visit some friends.B. To study in the USA.C. To visit some universities.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
南京市、盐城市2014届高三年级第一次模拟考试英语试题 2014.01第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where will the two speakers go?A. Shanghai.B. Hangzhou.C. Hong Kong.2. Where does the conservation most probably take place?A. In a hotel.B. In a store.C. In a railway station.3. What does the man hope to talk about with Mr. Chen?A. The urgent business.B. The complaints.C. The time to contact him.4. What is the woman doing now?A. Bargaining for a necklace.B. Making an advertisement for jewelry.C. Showing a design of a necklace.5. Why did the man go to San Francisco and Los Angeles?A. To visit some friends.B. To study in the USA.C. To visit some universities.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
2014年江苏省某校高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上. 1. 已知集合A ={x|2x >1},B ={x|x <1},则A ∩B =________. 2. 复数a−2i 1+2i(i 是虚数单位)是纯虚数,则实数a 的值为________.3. 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500, 3000)(元)月收入段应抽出________人.4. 某算法的伪代码如图所示,若输出y 的值为1,则输入x 的值为________.5. 已知双曲线x 24−y 2b=1的右焦点为(3, 0),则该双曲线的渐近线方程为________.6. 已知2sinθ+3cosθ=0,则tan2θ=________.7. 已知正三棱柱底面边长是2,外接球的表面积是16π,则该三棱柱的侧棱长________. 8. 在R 上定义运算⊙:a ⊙b =ab +2a +b ,则不等式x ⊙(x −2)<0的解集是________. 9. 投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又n(A)表示集合的元素个数,A ={x||x 2+ax +3|=1, x ∈R},则n(A)=4的概率为________.10. 函数f(x)=2sin(πx)−11−x,x ∈[−2, 4]的所有零点之和为________.11. 如图,PQ 是半径为1的圆A 的直径,△ABC 是边长为1的正三角形,则BP →⋅CQ →的最大值为________.12. 已知数列{a n }的首项a 1=a ,其前n 和为S n ,且满足S n +S n−1=3n 2(n ≥2).若对任意的n ∈N ∗,a n <a n+1恒成立,则a 的取值范围是________.13. 已知圆C :(x −2)2+y 2=1,点P 在直线l:x +y +1=0上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标x 0的取值范围是________. 14. 记实数x 1,x 2,…,x n 中的最大数为max{x 1, x 2, ..., x n },最小数为min{x 1, x 2, ..., x n }.已知实数1≤x ≤y 且三数能构成三角形的三边长,若t =max{1x , xy, y}⋅min{1x , xy, y},则t 的取值范围是________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15. 已知a →=(3, −cos(ωx)),b →=(sin(ωx),√3),其中ω>0,函数f(x)=a →⋅b →的最小正周期为π.(1)求f(x)的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .且f(A2)=√3,a =√3b 求角A 、B 、C 的大小.16. 如图,在三棱锥P −ABC 中,PA ⊥PC ,AB =PB ,E ,F 分别是PA ,AC 的中点.求证: (1)EF // 平面PBC ;(2)平面BEF ⊥平面PAB .17. 某音乐喷泉喷射的水珠呈抛物线形,它在每分钟内随时间t (秒)的变化规律大致可用y =−(1+4sin 2tπ60)x 2+20(sin tπ60)x(t 为时间参数,x 的单位:m)来描述,其中地面可作为x 轴所在平面,泉眼为坐标原点,垂直于地面的直线为y 轴. (1)试求此喷泉喷射的圆形范围的半径最大值;(2)若在一建筑物前计划修建一个矩形花坛并在花坛内装置两个这样的喷泉,则如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水? 18. 如图,在平面直角坐标系xOy 中,已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√32,以椭圆C 左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM →⋅TN →的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O为坐标原点,求证:OR ⋅OS 为定值. 19. 已知数列{a n }满足下列条件: ①首项a 1=a ,(a >3, a ∈N ∗); ②当a n =3k ,(k ∈N ∗)时,a n+1=a n 3;③当a n ≠3k ,(k ∈N ∗)时,a n+1=a n +1. (1)当a 4=1,求首项a 之值; (2)当a =2014时,求a 2014;(3)试证:正整数3必为数列{a n }中的某一项.20. 已知函数f(x)=a −blnx(a, b ∈R),其图象在x =e 处的切线方程为x −ey +e =0.函数g(x)=kx (k >0),ℎ(x)=f(x)x−1.(1)求实数a 、b 的值;(2)以函数g(x)图象上一点为圆心,2为半径作圆C ,若圆C 上存在两个不同的点到原点O 的距离为1,求k 的取值范围;(3)求最大的正整数k ,对于任意的p ∈(1, +∞),存在实数m 、n 满足0<m <n <p ,使得ℎ(p)=ℎ(m)=g(n).【选做题】在四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.选修4-1几何证明选讲21. 选修4−1:几何证明选讲如图,已知⊙O 的半径为1,MN 是⊙O 的直径,过M 点作⊙O 的切线AM ,C 是AM 的中点,AN 交⊙O 于B 点,若四边形BCON 是平行四边形; (1)求AM 的长; (2)求sin∠ANC .选修4-2矩阵与变换22. 已知二阶矩阵M 有特征值λ=3及对应的一个特征向量e 1→=[11],并且矩阵M 对应的变换将点(−1, 2)变换成(3, 0),求矩阵M .选修4-4参数方程与极坐标23. 已知曲线C 的极坐标方程是ρ=2sinθ,设直线l 的参数方程是{x =−35t +2,y =45t ,(t 为参数).(1)将曲线C 的极坐标方程转化为直角坐标方程;(2)设直线l 与x 轴的交点是M ,N 为曲线C 上一动点,求|MN|的最大值.选修4-5不等式证明选讲24. 已知x 2+y 2=2,且|x|≠|y|,求1(x+y)2+1(x−y)2的最小值.25. 如图,PCBM 是直角梯形,∠PCB =90∘,PM // BC ,PM =1,BC =2,又AC =1,∠ACB =120∘,AB ⊥PC ,直线AM 与直线PC 所成的角为60∘. (1)求二面角M −AC −B 的余弦值; (2)求点C 到面MAB 的距离. 26. 已知二项式(√x 5+12x)m的展开式中第2项为常数项t ,其中m ∈N ∗,且展开式按x 的降幂排列.(1)求m 及t 的值.(2)数列{a n }中,a 1=t ,a n =t a n−1,n ∈N ∗,求证:a n −3能被4整除.2014年江苏省某校高考数学一模试卷答案1. {x|0<x <1}2. 43. 254. −1或20145. y =±√52x 6. 125 7.4√63 8. (−2, 1) 9. 13 10. 8 11. 12 12. (94, 154) 13. [−1, 2] 14. [1,1+√52)15. 解:(1)f(x)=3sinωx−√3cosωx=2√3(√32sinωx−12cosωx)=2√3sin(ωx−π6),∵ T=2πω=π,∴ ω=2,即f(x)=2√3sin(2x−π6),由2kπ−π2≤2x−π6≤2kπ+π2,k∈Z,得:kπ−π6≤x≤kπ+π3,k∈Z,则f(x)的单调递增区间为[kπ−π6, kπ+π3](k∈Z);(2)∵ f(A2)=2√3sin(A−π6)=√3,∴ sin(A−π6)=12,∵ 0<A<π,∴ −π6<A−π6<5π6,即A=π3,∵ asinA =bsinB,a=√3b,∴ sinB=bsinAa =√33×√32=12,∵ a>b,∴ A>B,则B=π6,A=π3,C=π2.16. 证明:(1)在△APC中,因为E,F分别是PA,AC的中点,所以EF // PC,…又PC⊂平面PAC,EF⊄平面PAC,所以EF // 平面PBC;…(2)因为AB=PB,且点E是PA的中点,所以PA⊥BE;…又PA⊥PC,EF // PC,所以PA⊥EF,…因为BE⊂平面BEF,EF⊂平面BEF,BE∩EF=E,PA⊂平面PAB,所以平面PAB⊥平面BEF.…17. 花坛的长为10√2m,宽为5√2m,两喷水器位于矩形分成的两个正方形的中心,符合要求.…18. 依题意,得a=2,e=ca =√32,∴ c=√3,b=√4−3=1,故椭圆C的方程为x 24+y2=1.方法一:点M与点N关于x轴对称,设M(x 1, y 1),N(x 1, −y 1),不妨设y 1>0. 由于点M 在椭圆C 上,所以y 12=1−x 124. (∗)由已知T(−2, 0),则TM →=(x 1+2,y 1),TN →=(x 1+2,−y 1), ∴ TM →⋅TN →=(x 1+2,y 1)⋅(x 1+2,−y 1) =(x 1+2)2−y 12=(x 1+2)2−(1−x 124)=54x 12+4x 1+3=54(x 1+85)2−15.由于−2<x 1<2,故当x 1=−85时,TM →⋅TN →取得最小值为−15.由(∗)式,y 1=35,故M(−85,35),又点M 在圆T 上,代入圆的方程得到r 2=1325. 故圆T 的方程为:(x +2)2+y 2=1325.方法二:点M 与点N 关于x 轴对称,故设M(2cosθ, sinθ),N(2cosθ, −sinθ), 不妨设sinθ>0,由已知T(−2, 0),则TM →⋅TN →=(2cosθ+2,sinθ)⋅(2cosθ+2,−sinθ) =(2cosθ+2)2−sin 2θ =5cos 2θ+8cosθ+3 =5(cosθ+45)2−15.故当cosθ=−45时,TM →⋅TN →取得最小值为−15,此时M(−85,35),又点M 在圆T 上,代入圆的方程得到r 2=1325.故圆T 的方程为:(x +2)2+y 2=1325.方法一:设P(x 0, y 0),则直线MP 的方程为:y −y 0=y 0−y1x 0−x 1(x −x 0),令y =0,得x R =x 1y 0−x 0y 1y 0−y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R⋅x S=x12y02−x02y12y02−y12 (∗∗)又点M与点P在椭圆上,故x02=4(1−y02),x12=4(1−y12),代入(∗∗)式,得:x R⋅x S=4(1−y12)y02−4(1−y02)y12y02−y12=4(y02−y12)y02−y12=4.所以|OR|⋅|OS|=|x R|⋅|x S|=|x R⋅x S|=4为定值.方法二:设M(2cosθ, sinθ),N(2cosθ, −sinθ),不妨设sinθ>0,P(2cosα, sinα),其中sinα≠±sinθ.则直线MP的方程为:y−sinα=sinα−sinθ2cosα−2cosθ(x−2cosα),令y=0,得x R=2(sinαcosθ−cosαsinθ)sinα−sinθ,同理:x S=2(sinαcosθ+cosαsinθ)sinα+sinθ,故x R⋅x S=4(sin2αcos2θ−cos2αsin2θ)sin2α−sin2θ=4(sin2α−sin2θ)sin2α−sin2θ=4.所以|OR|⋅|OS|=|x R|⋅|x S|=|x R⋅x S|=4为定值.19. (1)解:当a4=1时,因为a n+1=a n3,所以a3=3,此时,若a2=2,则a=6;若a2=9,则a=27或8,综上所述,a之值为6或8或27.…(2)解:当a=2014时,a2=2015,a3=2016,a4=672,a5=224,a6=225,a7=75,a8=25,a9=26,a10=27,a11=9,a12=3,a13=1,a14=2,a15=3,以下出现周期为3的数列,从而a2014=a13=1;…(3)证明:由条件知:若a n=3k,(k∈N∗),则a n+1=a n3,a n+3≤a n3+2;若a n=3k+1,(k∈N∗),则a n+1=a n+1=3k+2,a n+2=3k+3,a n+3=k+1<13a n+2;若a n=3k+2,(k∈N∗),则a n+1=a n+1=3k+3,a n+2=13(a n+1),a n+3≤13(a n+1)+1<13a n+2;…综上所述,a n+3≤13a n+2,从而a n−a n+3≥23(a n−3),故当a n>3时,必有a n−a n+3>0,因a n∈N∗,故a n−a n+3≥1,所以数列{a n}中必存在某一项a m≤3(否则会与上述结论矛盾!)若a m=3,则a m+1=1,a m+2=2;若a m=2,则a m+1=3,a m+2=1,若a m =1,则a m+1=2,a m+2=3,综上所述,正整数3必为数列{a n }中的某一项. … 20. 解:(1) 当x =e 时,y =2,f′(x)=−bx , 故{a −b =2−b e =1e,解得{a =1b =−1.(2)问题即为圆C 与以O 为圆心1为半径的圆有两个交点,即两圆相交. 设C(x 0,kx 0),则1<√x 02+k 2x 02<3,即{k 2>x 02−x 04k 2<9x 02−x 04, ∵ x 02−x 04=−(x 02−12)2+14,∴ x 02−x 04≤14,∴ k 2>x 02−x 04必定有解; ∵ 9x 02−x 04=−(x 02−92)2+814,∴ 9x 02−x 04≤814,故k 2<9x 02−x 04有解,须k 2<814,又k >0,从而0<k <92.(3)显然g(x)=kx (k >0)在区间(1, +∞)上为减函数,于是g(n)>g(p),若ℎ(p)=g(n),则对任意p >1,有ℎ(p)>g(p). 当x >1时,ℎ(x)>g(x)⇔k <x(1+lnx)x−1,令φ(x)=x(1+lnx)x−1(x >1),则φ/(x)=x−2−lnx (x−1)2.令ϕ(x)=x −2−lnx(x >1),则ϕ/(x)=x−1x>0,故ϕ(x)在(1, +∞)上为增函数,又ϕ(3)=1−ln3<0,ϕ(4)=2−ln4>0, 因此存在唯一正实数x 0∈(3, 4),使ϕ(x 0)=x 0−2−lnx 0=0.故当x ∈(1, x 0)时,φ′(x)<0,φ(x)为减函数;当x ∈(x 0, +∞)时,φ′(x)>0,φ(x)为增函数,因此φ(x)在(1, +∞)上有最小值φ(x 0)=x 0(1+lnx 0)x 0−1,又x 0−2−lnx 0=0,化简得φ(x 0)=x 0∈(3, 4),∴ k ≤3.下面证明:当k =3时,对0<x <1,有ℎ(x)<g(x).当0<x <1时,ℎ(x)<g(x)⇔3−2x +xlnx >0.令ψ(x)=3−2x +xlnx(0<x <1), 则ψ′(x)=lnx −1<0,故ψ(x)在(0, 1)上为减函数, 于是ψ(x)>ψ(1)=1>0.同时,当x ∈(0, +∞)时,g(x)=3x ∈(0,+∞).当x ∈(0, 1)时,ℎ(x)∈R ;当x ∈(1, +∞)时,ℎ(x)∈(0, +∞).结合函数的图象可知,对任意的正数p ,存在实数m 、n 满足0<m <n <p ,使得ℎ(p)=ℎ(m)=g(n).综上所述,正整数k 的最大值为3.21. 解:(1)连接BM ,则 ∵ MN 是⊙O 的直径,∴ ∠MBN =90∘,∵ 四边形BCON 是平行四边形,∴ BC // MN ,又∵ AM 是⊙O 的切线,可得MN ⊥AM ,∴ BC ⊥AM , ∵ C 是AM 的中点,∴ BC 是△ABM 的中线, 由此可得△ABM 是等腰三角形,即BM =BA , ∵ ∠MBN =90∘,∴ ∠BMA =∠A =45∘,因此得到Rt △NAM 是等腰直角三角形,故AM =MN =2.… (2)作CE ⊥AN 于E 点,则 由(1),得△CEA 是等腰直角三角形,且AC =1 ∴ CE =√22AC =√22, ∵ Rt △MNC 中,MN =2,MC =1,∴ CN =√22+12=√5, 故Rt △ENC 中,sin∠ANC =CE NC=√1010.… 22. 解:设矩阵M =[abc d],这里a ,b ,c ,d ∈R , 则[a b c d ] [11]=3 [11]=[33],故{a +b =3,c +d =3,①[a b cd ][−12]=[30],故{−a +2b =3,−c +2d =0,②由①②联立解得{a =1,b =2,c =2,d =1,∴ M =[1 22 1].23. 解:(1)曲C 的极坐标方程可化为:ρ2=2ρsinθ, 又x 2+y 2=ρ2,x =ρcosθ,y =ρsinθ.所以,曲C 的直角坐标方程为:x 2+y 2−2y =0.(2)将直线L 的参数方程化为直角坐标方程得:y =−43(x −2).令y =0得x =2即M 点的坐标为(2, 0) 又曲线C 为圆,圆C 的圆心坐标为(0, 1)半径r =1,则|MC|=√5,∴ |MN|≤|MC|+r =√5+1. 所以|MN|max =√5+1.24. 解:∵ x 2+y 2=2,∴ (x +y)2+(x −y)2=4.∵ ((x +y)2+(x −y)2)(1(x+y)2+1(x−y)2)≥4,∴ 1(x+y)2+1(x−y)2≥1,当且仅当x =±√2,y =0,或x =0,y =±√2时,1(x+y)2+1(x−y)2取得最小值是1.25. 解:(1)∵ PC ⊥AB ,PC ⊥BC ,AB ∩BC =B ,∴ PC ⊥平面ABC .在平面ABC 内,过C 作CD ⊥CB ,建立空间直角坐标系C −xyz (如图) 由题意有A(√32,−12,0),设P(0, 0, z 0)(z 0>0),则M(0,1,z 0),AM →=(√32,−12,z 0),CP →=(0,0,z 0)由直线AM 与直线PC 所成的角为600, 得AM →⋅CP →=|AM →|⋅|CP →|⋅cos600,即z 02=π2√z 02+3⋅z 0,解得z 0=1∴ CM →=(0,0,1),CA →=(√32,−12,0), 设平面MAC 的一个法向量为n 1→=(x 1,y 1,z 1), 则{y 1+z 1=0√32y 1−12z 1=0,取x 1=1,得n 1→=(1,√3,−√3),平面ABC 的法向量取为n 2→=(0,0,1)设n 1→与n 2→所成的角为θ,则cosθ=|n 1→|⋅|n 2→|˙=−√3√7.二面角M −AC −B 的平面角为锐角, 故二面角M −AC −B 的余弦值为√217.… (2)M(0, 1, 1),A(√32,−12,0),B(0, 2, 0), ∴ AM →=(−√32,32,1),MB→=(0,1,−1).CB →=(0, 2, 0),设平面MAB 的一个法向量m →=(x 2,y 2,z 2), 则{−√32x 2+32y 2+z 2=0y 2−z 2=0,取z 2=1,得m →=(5√3,1,1),则点C 到平面MAB 的距离d =|m →|˙=2√9331.… 26. 解:(1) T 2=C m 1(x 15)m−1(12x )1=C m 1⋅12⋅x m−65, 故m−65=0,m =6,t =C 61⋅12=3. (2)证明:①当n =1时,a 1=3,a 1−3=0,能被4整除. ②假设当n =k 时,a k −3能被4整除,即a k −3=4p ,其中p 是非负整数. 那么当n =k +1时,a k+1=34p+3=(1+2)4p+3=C 4p+30+C 4p+31⋅2+C 4p+32⋅22+⋯+C 4p+34p+324p+3=1+8p +6+4(C 4p+32+⋯+C 4p+34p+324p+1) =3+8p +4+4(C 4p+32+⋯+C 4p+34p+324p+1) =3+4(2p +1+C 4p+32+⋯+C 4p+34p+324p+1) 显然2p +1+C 4p+32+⋯+C 4p+34p+324p+1是非负整数, a k+1−3能被4整除.由①、②可知,命题对一切n ∈N ∗都成立.。
2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题命题单位:常州市教育科学研究院 2014.3参考公式:柱体的体积公式:V 柱体=Sh ,其中S 是柱体的底面积,h 是高.直棱柱的侧面积公式:S 直棱柱侧=ch ,其中c 是直棱柱的底面周长,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B =,则AB = .2.若复数z =13i1i+-(i 为虚数单位),则 | z | = . 3.已知双曲线2218x y m -=m 的值为 .4.一个容量为20的样本数据分组后,分组与频数分别如下:(]10,20,2; (]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 .5.执行如图所示的算法流程图,则最后输出的y 等于 . 6.设函数2()sin f x a x x =+,若(1)0f =,则(1)f -的值为 .7.四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,P A ⊥底面ABCD 且P A = 4, 则PC 与底面ABCD 所成角的正切值为 .8.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 .9.已知2tan()5+=,1tan 3=,则)4tan(π+a 的值为 . 10.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=,12k S =-,则正整数k = .11.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .12.如图,在△ABC 中,BO 为边AC 上的中线,2BG GO =,设CD ∥AG ,若15AD AB AC =+λ()∈R λ,则λ的值为 .13.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不(第5题)(第12题)ABCDOG同的零点,则实数k 的取值范围为 .14.在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)设函数2()6cos cos f x x x x =-. (1)求()f x 的最小正周期和值域;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若()0f B =且2b =,4cos 5A =,求a 和sin C .16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点.(1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .17.(本小题满分14分)一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分.现要把其中111DC B AC BA (第16题)一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,,C D 在半圆上),设BOC∠=,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy中,已知A,B,C是椭圆22221(0)x ya ba b+=>>上不同的三点,θD CB A O(第17题)2A,(3,3)B--,C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明OM ON⋅为定值并求出该定值.19.(本小题满分16分)设各项均为正数的数列{}n a的前n项和为S n,已知11a=,且11()(1)n n n nS a S aλ+++=+对一切*n∈N 都成立.(第18题)(1)若λ = 1,求数列{}n a的通项公式;(2)求λ的值,使数列{}n a是等差数列.20.(本小题满分16分)已知函数e()ln,()e xxf x mx a x mg x=--=,其中m,a均为实数.(1)求()g x的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立, 求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区......域.内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,⊙O为四边形ABCD的外接圆,且AB AD=,E是CB延长线上一点,直线EA与圆O相切.求证:CD AB AB BE=.B.选修4—2:矩阵与变换已知矩阵1221⎡⎤=⎢⎥⎣⎦M,17⎡⎤=⎢⎥⎣⎦β,计算6Mβ.C.选修4—4:坐标系与参数方程在平面直角坐标系xOy中,圆的参数方程为22cos,()2sinxy=+⎧⎨=⎩为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.D.选修4—5:不等式选讲已知函数2()122f x x x a a=++---,若函数()f x的图象恒在x轴上方,求实数a的取值范围.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影E (第21-A题)响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次. (1)求甲同学至少有4次投中的概率; (2)求乙同学投篮次数的分布列和数学期望.23.(本小题满分10分)设01212(1)m m n n n n n m S C C C C ---=-+-+-,*,m n ∈N 且m n <,其中当n 为偶数时,2nm =; 当n 为奇数时,12n m -=. (1)证明:当*n ∈N ,2n ≥时,11n n n S S S +-=-; (2)记01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,求S 的值.2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.{}1,2,3,4,7 2 3. 4 4.710 5.63 6.2 7 8. 23 9. 9810.13 11.9 12.6513.27321,{0,22e+⎛⎫--⎪⎝⎭14. [3(327,3++--二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. 解:(1)1+cos2()622xf x x=⨯=3cos223x x+=)36x++.…………………3分所以()f x的最小正周期为22T==,…………………4分值域为[3-+.…………………6分(2)由()0f B=,得πcos(2)6B+=.B为锐角,∴ππ7π2666B<+<,π5π266B+=,∴π3B=. (9)分∵4cos5A=,(0,)A∈,∴3sin5A==.…………………10分在△ABC中,由正弦定理得32sinsinb AaB⨯===.…………………12分∴21sin sin()=sin()sin322C A B A A A=---=+=.…………………14分16.(1)证明:∵11ABB A为菱形,且160A AB∠=︒,∴△1A AB为正三角形.…………………2分D是AB的中点,∴1AB A D⊥.∵AC BC=,D是AB的中点,∴AB CD⊥.…………………4分1A D CD D=,∴AB⊥平面1A DC.…………………6分∵AB⊂平面ABC,∴平面1A DC⊥平面ABC.…………………8分(2)证明:连结1C A,设11AC AC E=,连结DE.∵三棱柱的侧面11AA C C是平行四边形,∴E为1AC中点.…………………10分在△1ABC中,又∵D是AB的中点,∴DE∥1BC.…………………12分∵DE⊂平面1A DC,1BC⊄平面1A DC,∴1BC∥平面1A DC.…………………14分17.解:(1)梯形ABCD的面积2cos 2sin 2ABCD S +=⋅=sin cos sin +,(0,)2∈. …………………2分 体积()10(sin cos sin ),(0,)2V =+∈. …………………3分(2)2()10(2cos cos 1)10(2cos 1)(cos 1)V '=+-=-+. 令()0V '=,得1cos 2=,或cos 1=-(舍). ∵(0,)2∈,∴3=. …………………5分当(0,)3∈时,1cos 12<<,()0,()V V '>为增函数;当(,)32∈时,10cos 2<<,()0,()V V '<为减函数. …………………7分∴当3=时,体积V 最大. …………………8分(3)木梁的侧面积210S AB BC CD =++⋅侧()=20(cos 2sin 1)2++,(0,)2∈. 2ABCD S S S =+侧=2(sin cos sin )20(cos 2sin 1)2++++,(0,)2∈.…………………10分设()cos 2sin 12g =++,(0,)2∈.∵2()2sin 2sin 222g =-++,∴当1sin22=,即3=时,()g 最大. …………………12分 又由(2)知3=时,sin cos sin +取得最大值,所以3=时,木梁的表面积S 最大. …………………13分综上,当木梁的体积V 最大时,其表面积S 也最大. …………………14分 18.解:(1)由已知,得222291821,991,a b a b ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2227,27.2a b ⎧=⎪⎨=⎪⎩ …………………2分所以椭圆的标准方程为22127272x y +=. …………………3分 (2)设点(,)C m n (0,0)m n <<,则BC 中点为33(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而23m n =-.① 又∵点C 在椭圆上,∴22227m n +=.②由①②,解得3n =(舍),1n =-,从而5m =-. …………………5分 所以点C 的坐标为(5,1)--. …………………6分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y .∵,,P B M 三点共线,∴011033233y y y x ++=++,整理,得001003()23y x y x y -=--.…………………8分 ∵,,P C N 三点共线,∴22011255y y y x ++=++,整理,得00200523y x y x y -=-+.…………………10分 ∵点C 在椭圆上,∴2200227x y +=,2200272x y =-.从而22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+. …………………14分 所以124552OM ON y y ⋅==. …………………15分 ∴OM ON ⋅为定值,定值为452. …………………16分 19.解:(1)若λ = 1,则11(1)(1)n n n n S a S a +++=+,111a S ==.又∵00n n a S >>,, ∴1111n n n nS a S a +++=+, ………………… 2分 ∴3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅=⋅⋅⋅+++, 化简,得1112n n S a +++=.① ………………… 4分 ∴当2n ≥时,12n n S a +=.②② - ①,得12n n a a +=, ∴12n na a +=(2n ≥). ………………… 6分 ∵当n = 1时, 22a =,∴n = 1时上式也成立,∴数列{a n }是首项为1,公比为2的等比数列, a n = 2n -1(*n ∈N ). …………………8分 (2)令n = 1,得21a λ=+.令n = 2,得23(1)a λ=+. ………………… 10分要使数列{}n a 是等差数列,必须有2132a a a =+,解得λ = 0. ………………… 11分 当λ = 0时,11(1)n n n n S a S a ++=+,且211a a ==. 当n ≥2时,111()(1)()n n n n n n S S S S S S +-+-=+-, 整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+, ………………… 13分 从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅=⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=. ……………… 15分 综上所述,1n a =(*n ∈N ),所以λ = 0时,数列{}n a 是等差数列. ………………… 16分20.解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. ………………… 1分 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. …………………3分 (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. …………………4分 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立, ∴()h x 在[3,4]上为增函数. …………………5分 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. …………………6分∴11e ex x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3. ………………… 8分∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. …………………9分(3)由(1)知()g x 在(0,e]上的值域为(0,1]. …………………10分 ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意. ………………… 11分当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m <<,即2em >.① …………………12分此时()f x 在2(0,)m 上递减,在2(,e)m上递增, ∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.② 由①②,得3e 1m -≥. …………………13分 ∵1(0,e]∈,∴2()(1)0f f m =≤成立. …………………14分下证存在2(0,]t m ∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③ 设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立. 再证()e m f -≥1. ∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. …………………16分21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲证明:连结AC .EA 是圆O 的切线,∴EAB ACB ∠=∠. …………………2分AB AD =,∴ACD ACB ∠=∠. ∴ACD EAB ∠=∠. …………………4分圆O 是四边形ABCD 的外接圆,∴D ABE ∠=∠. …………………6分∴CDA ∆∽ABE ∆. …………………8分 ∴CD DAAB BE=, AB AD =,∴CD ABAB BE=. …………………10分 B .选修4—2:矩阵与变换 解:矩阵M 的特征多项式为212()2321f λλλλλ--==----.令12()031f λλλ===-,解得,,对应的一个特征向量分别为111⎡⎤=⎢⎥⎣⎦α,211⎡⎤=⎢⎥-⎣⎦α. …5分令12m n =+βαα,得4,3m n ==-.6666661212112913(43)4()3()433(1)112919⎡⎤⎡⎤⎡⎤=-=-=⨯--=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M βM ααM αM α.……………10分 C .选修4—4:坐标系与参数方程解:(1)圆的直角坐标方程为22(2)4x y -+=. …………………5分 (2)把cos ,sin ,x y ρθρθ=⎧⎨=⎩代入上述方程,得圆的极坐标方程为4cos ρθ=.…………………10分D .选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)设甲同学在5次投篮中,有x 次投中,“至少有4次投中”的概率为P ,则(4)(5)P P x P x ==+= …………………2分=441550552222()(1)()(1)3333C C -+-=112243. …………………4分 (2)由题意1,2,3,4,5=.2(1)3P ==,122(2)339P ==⨯=,1122(3)33327P ==⨯⨯=,3122(4)3381P ⎛⎫==⨯= ⎪⎝⎭, 411(5)381P ⎛⎫=== ⎪⎝⎭.的分布表为…………………8分的数学期望22221121123453927818181E =⨯+⨯+⨯+⨯+⨯=. …………………10分23.解:(1)当n 为奇数时,1n +为偶数,1n -为偶数, ∵1101221112(1)n n n n nn S CC C+++++=-++-,110122112(1)n n n n n n S C C C---+=-++-,11012211212(1)n n n n n n S C CC------=-++-,∴1111110011222221111111222()()(1)()(1)n n n n n n n n n n n n n n S S C C C C CCC-+-++-++-++++-=---++--+-=11012212112((1))n n n n n n CCCS --------++-=-.∴当n 为奇数时,11n n n S S S +-=-成立. …………………5分 同理可证,当n 为偶数时, 11n n n S S S +-=-也成立. …………………6分 (2)由01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,得 0123100720142013201220111007201420142014201420142013201220111007S C C C C C =-+-+-=0112233100710072014201320132012201220112011100710071231007()()()()2013201220111007C C C C C C C C C -+++-++-+=0121007012100620142013201210072012201120101006()()C C C C C C C C -+----+-+=20142012S S -. …………………9分 又由11n n n S S S +-=-,得6n n S S +=, 所以20142012421S S S S -=-=-,12014S =-. …………………10分。
南京市、盐城市届高三年级第一次模拟考试数学试题及答案————————————————————————————————作者:————————————————————————————————日期:南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单频50 60 70 80 90 100 0.035 a 0.020 0.010 0.005 第3Read x If 0x > Then ln y x ← Else 第411.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =u u u r u u u r,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c b =. (1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r ,求cos()4B π+的值.A B第13ABCA B C M N第15有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点3(3,)2处时,点Q 的坐标为23(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u r u u u u r 时,求直线BM 的方程.xy O BNM P QD第18A DCB E GFOM N H 第17NEFGH 第17MN设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程) 在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A BE DF O · 第[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===. (1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.MABCDOP第22南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3- 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A I 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =I ,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为52c b =,则由正弦定理,得5sin sin 2C B =. ……………2分 又2C B =,所以5sin 2sin 2B B =,即4sin cos 5sin B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而22222222()35cos 225c c c a c b B ac c +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin1203323R R ππ=-︒=-. ……………4分 又所得柱体的高4EG =,所以V S EG =⨯=16433π-.答:当BE 长为1分米时,折卷成的包装盒的容积 为16433π-立方分米. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(3)323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S EG =⨯=328(23)(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:x (0,2)2(2,3)()f x '+-()f x 增 极大值 减所以当2x =时,()f x 取得最大值.答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由32(3,),(3,0)23N Q ,得直线NQ 的方程为332y x =-. …………………2分 令0x =,得点B 的坐标为(0,3)-. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标3(3,)2代入,得2223()(3)213a +=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. …………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为3y kx =-.在3y kx =-中,令0y =,得3P x k =,而点Q 是线段OP 的中点,所以32Q x k =. 所以直线BN 的斜率0(3)2302BN BQk k k k--===-. ………………10分ADCB E G FO M N HT联立223143y kx x y ⎧=-⎪⎨+=⎪⎩,消去y ,得22(34)830k x kx +-=,解得28334M k x k =+. 用2k 代k ,得2163316N kx k =+. ………………12分又2DN NM =u u u r u u u u r ,所以2()N M N x x x =-,得23M N x x =. ………………14分故22831632334316k k k k ⨯=⨯++,又0k >,解得62k =. 所以直线BM 的方程为632y x =-. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,3)B -,得直线BN 的方程为1133y y x x +=-,令0y =,得1133P x x y =+. 同理,得2233Q x x y =+.而点Q 是线段OP 的中点,所以2P Q x x =,故121232333x x y y =++. …………………10分 又2DN NM =u u u r u u u u r ,所以2122()x x x =-,得21203x x =>,从而1241333y y =++,解得214333y y =+. …………………12分 将2121234333x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C 的方程中,得2211(43)1927x y ++=. 又22114(1)3y x =-,所以21214(1)(43)31927y y -++=,即2113230y y +-=, 解得13y =-(舍)或133y =.又10x >,所以点M 的坐标为423(,)33M .……………14分 故直线BM 的方程为632y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩, 所以2(3)c a a t >--对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以2(3)2(3)2()32a a a a +--⨯=?(当且仅当32a =时取等号), 又0t -<,所以2(3)a a t ---的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分 (B )解:设()00,P x y 是圆221x y +=上任意一点,则2201x y +=,A B E D F O· 第设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为320x y --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为0302113d -⨯-==+.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D )解:由柯西不等式,得2222233[(3)][1()](13)33x y x y ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以223333x y -≤+≤, ………………5分 由3133233x y x y ⎧=⎪⎪⎨⎪⎪+=⎩,得3236x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当33,26x y ==时,max 2()33x y +=. 所以当x y +取最大值时x 的值为32x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-u u u r ,(1,1,2)BM =--u u u u r,10AP BM ⋅=u u u r u u u u r , ||25AP =u u u r ,||6BM =u u u u r.则1030cos ,6||||256AP BM AP BM AP BM ⋅<>===⨯u u u r u u u u ru u u r u u u u r u u u r u u u u r . 故直线AP 与BM 所成角的余弦值为306. ………5分 (2)(2,1,0)AB =-u u u r ,(1,1,2)BM =--u u u u r.设平面ABM 的一个法向量为(,,)n x y z =r,MAB C D OP第22x yz则0n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =r.又平面PAC 的一个法向量为(0,1,0)OB =u u u r ,所以n r 4OB ⋅=u u u r,||29n =r ,||1OB =u u u r .则44cos ,2929||||29n OB n OB n OB ⋅<>===r u u u rr u u u r r u u ur . 故平面ABM 与平面PAC 所成锐二面角的余弦值为42929. ………………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++L L , 所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++L . 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++L ,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++L ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++L L ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++L L L ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
江苏省南京盐城市2014届高三年级第一次模拟考试数学试题一、填空题(本大题共14题)⒈已知集合}2,1,2,3{--=A ,集合),0[+∞=B ,则=⋂B A 。
⒉若复数)3)(1(ai i z -+=(i 为虚数单位)为纯虚数,则实数a = 。
⒊现从甲乙丙三人中随机选派2人参加某项活动,则甲被选中的概率为 。
⒋根据如图所示的伪代码,最后输出的S 的值为 。
⒌若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差=2s 。
⒍在平面直角坐标系xOy 中,若中心在坐标原点的双曲线的一条准线方程为21=x ,且它的一个顶点与抛物线x y 42-=的焦点重合,则该双曲线的渐近线方程为 。
⒎在平面直角坐标系xOy 中,若点P )1,(m 到直线0134=--y x 的距离为4,且点P 在不等式32≥+y x 表示的平面区域内,则=m 。
⒏ 在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD 060=,侧棱PA ⊥底面ABCD ,PA =2,E 为AB 的中点,则四面体PBCE 的体积为 。
⒐设函数)2cos()(ϕ+=x x f ,则“)(x f 为奇函数”是“2πϕ=”的 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)。
⒑在平面直角坐标系xOy 中,若圆4)1(22=-+y x 上存在A ,B 两点关于点)2,1(P 成中心对称,则直线AB 的方程为 。
⒒在ABC ∆中,BC =2,32π=A ,则AC AB ⋅的最小值为 。
⒓若函数)(x f 是定义在R 上的偶函数,且在区间),0[+∞上是单调增函数。
如果实数t 满足)1(2)1(ln )(ln f tf t f ≤+时,那么t 的取值范围是 。
⒔若关于x 的不等式02lg )20(≤-xaax 对任意的正实数x 恒成立,则实数a 的取值范围是 。
0←S For I From 1 To 10 I S S +← End For Print S⒕已知等比数列}{n a 的首项为34,公比为31-,其前n 项和为n S ,若B S S A n n ≤-≤1对任意*N n ∈恒成立,则A B -的最小值为 。
盐城市2014年普通高校单独招生第一次调研考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的)1.如果U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },其中U 是全集,那C U A ∩C U B =( )A .φB .{d }C .{a ,c }D .{b ,e }2.已知a 、b 、c ∈R ,那么一定有( )A .a >b ⇒ac 2>bc 2B .cbc a 〉⇒a >b C .a 3>b 3⇒3311ba 〈 D .a 3>b 3 ⇒ a >b3.已知复数z 1=1+2i ,z 2=1-2i ,则z 1·z 2的共轭复数是( )A .2-4iB .2+4iC .5D .-54.下列函数中,在区间(0,+∞)内为增函数的是( )A .y =x 1()2B .y =1xC .y =12xD .y =1log x5. G 2=ab 是三数a 、G 、b 成等比数列的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6. 已知α是第四象限角,且53)sin(=+απ,则)22cos(πα-=( ) A .54B .54- C .257 D .257-7.为了得到函数)62sin(π-=x y 的图象,可以将函数y =sin 2x 的图象 ( )A .向右平移12π个单位 B .向左平移12π个单位 C .向右平移6π个单位 D .向左平移6π个单位8. 若双曲线)0,0(12222〉〉=-b a by a x 的一条渐近线的倾斜角为600,则其离心率为( )A .2B .332 C .32或 D .3322或 9. 设F 1、F 2为椭圆42x +y 2=1的两个焦点,P 是椭圆上一点,当△F 1PF 2面积为1时,1PF ·2PF的值为( ) A .0B .1C .2D .21 10.已知奇函数f (x )(x ∈R ,且x ≠0)在区间(0,+∞)上是增函数,且f (-3)=0,则f (x )>0的解集是( ) A .(-3,0) B .(-∞,-3)∪(3,+∞) C . (-3,0)∪(3,+∞) D .(3,+∞)第Ⅰ卷的答题纸第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11.已知=(1,k ),=(-1,k -2),若∥,则k =____ ____. 12.251()x x-展开式中x 4的系数是____ ____(用数字作答). 13.在约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 下,目标函数y x z 25+=的最小值为__ ____.14.已知正四棱柱的全面积为40cm 2,高为4cm ,则它的侧面积是____ ____ cm 2. 15.以点(3,1)为焦点、直线x =-1为准线的抛物线的方程为____ ____. 三、解答题:(本大题共8小题,共90分,要求写出必要的解题步骤和推理过程) 16.(本题满分6分)解不等式:(13)52+x >3xx72-.17.(本题满分10分)在△ABC 中,b 2=ac ,且a 2-c 2=ac -bc ,求(1) 求角A 的大小;(2) 求sin b Bc的值. 18.(本题满分10分)已知在等差数列}{n a 中,21,952==a a . (1)求}{n a 的通项公式;(2)令2n a n b =,求数列}{n b 的前n 项和T n .19.(本题满分10分)已知函数f (x )=)34(log 22a x ax +-(1)当a =1时,求该函数的定义域;(2)如果f (x )>1恒成立,求实数a 的取值范围.20.(本题满分12分)为了了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x 、y 的含量(单位:毫克)。
南京市、盐城市2014届高三年级第一次模拟考试物 理 试 题说明:1.本试卷满分120分,考试时间100分钟.2.本试卷分为第Ⅰ卷和第Ⅱ卷,所有题目一律在答题卡上相应位置规范作答.第Ⅰ卷(选择题,共31分)一、单项选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意. 1.如图所示,两个物体A 、B 叠放在一起,接触面粗糙.现将它们同时以相同的速度水平抛出,不计空气阻力.在空中运动的过程中,物体B A .只受重力 B .受重力和A 对它的压力C .受重力和A 对它的摩擦力D .受重力、A 对它的压力和摩擦力2. 在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直.先后在导线中通入不同的电流,导线所受的力也不一样,图中几幅图象表现的是导线受的力F 与通过的电流I 的关系.a 、b 分别代表一组F 、I 的数据.下列图中正确的是3.如图所示,实线表示电场线,虚线表示带电粒子运动的轨迹.带电粒子只受电场力的作用,运动过程中电势能逐渐减少,它运动到b 处时的运动方向与受力方向可能的是4.跳伞运动员从某高度静止的直升机上跳下,经过2s 打开降落伞,此后再过18s 落地.整个跳伞过程中的υ-t 图象如图所示.根据图象可知跳伞运动员 A .4s 末速度为16m/s B .14s 末加速度为零 C .前2s 的机械能守恒D .下落的总高度约为240mA B C D5.自行车的传动装置示意图如图所示,自行车行驶时后轮与地面不打滑.a 、c 为与车轴等高的轮胎上的两点,d 为轮胎与地面的接触点,b 为轮胎上的最高点. 在行驶过程中,到图中位置时 A .c 处角速度最大B .a 处速度方向竖直向下C .b 处向心加速度指向dD .a 、b 、c 、d 四处速度大小相等二、多项选择题:本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答得0分 6.如图所示,甲为一台小型发电机构造示意图,线圈逆时针转动,产生的电动势随时间按余弦规律变化,其e-t 图象如图乙所示.发电机线圈的内阻为1 Ω,外接灯泡的电阻为9 Ω,则 A .电压表的示数为6V B .发电机的输出功率为4W C .在l.0×10-2s 时刻,穿过线圈的磁通量最大D .在2.0×10-2s 时刻,穿过线圈的磁通量变化率最大7.2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,从地面发射后奔向月球,先在轨道Ⅰ上运行,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点.关于“嫦娥三号” 在轨道Ⅱ上 A .运行的周期小于在轨道Ⅰ上运行的周期 B .从P 到Q 的过程中速率不断增大C .经过P 的速度小于在轨道Ⅰ上经过P 的速度D .经过P 的加速度小于在轨道Ⅰ上经过P 的加速度8.匀强磁场方向垂直纸面,规定向里的方向为正,磁感强度B 随时间t 变化规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令1I 、2I 、3I 分别表示Oa 、ab 、bc 段的感应电流,1f 、2f 、3f 分别表示1I 、2I 、3I 时,金属环上很小一段受到的安培力.则A .1I 沿逆时针方向,2I 沿顺时针方向B .2I 沿逆时针方向,3I 沿顺时针方向C .1f 方向指向圆心,2f 方向指向圆心D .2f 方向背离圆心向外,3f 方向指向圆心ab cd乙-2s甲9.如图所示,粗糙程度处处相同的圆弧轨道ABC ,竖直放置时A 与圆心等高,B 为最低点.现将一物块从A 处无初速度释放,恰好能运动到C 静止.下列方案中可能使物块返回到A 点的是A .给物块一个沿轨道切线方向的初速度B .施加竖直向下的力一段时间后再撤去C .施加一个水平向左的力使物块缓慢回到A 点D .用始终沿轨道切线方向的力使物块缓慢回到A 点第Ⅱ卷(非选择题,共89分)三、简答题:本题分必做题(第10、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置. 10.(8分)如图所示,QO 是水平桌面,PO 是一端带有滑轮的长木板,1、2是固定在木板上的两个光电门,中心间的距离为L .质量为M 的滑块A 上固定一遮光条,在质量为m 的重物B 牵引下从木板的顶端由静止滑下,光电门1、2记录遮光时间分别为Δt 1和Δt 2.遮光条宽度为d.(1)若用此装置验证牛顿第二定律,且认为滑块A 受到外力的合力等于B 重物的重力,除平衡摩擦力外,还必须满足 ;在实验中滑块运动的加速度 .(2)如果已经平衡了摩擦力, (选填“能”或“不能”)用此装置验证A 、B 组成的系统机械能守恒,理由是 . 11.(10分) (1)用多用电表欧姆档粗略测量某元件的电阻,选用×1档,测量结果如图所示,则测得的电阻为 Ω;(2)为描绘该元件的U —I 图线.提供了如下器材:A .电流表A(量程0.6 A ,内阻约0.9Ω)B .电压表V(量程3 V ,内阻约3kΩ)C .滑动变阻器R 1(10Ω,1.0A)D .滑动变阻器R 2(1000Ω,0.1A)E .电源E(电动势6V ,内阻约0.1Ω)F .开关S 及导线若干.①实验中滑动变阻器应该选择 (填写器材序号),以保证实验过程中调节方便;②在虚线框内画出实验电路图;③如图中Ⅰ、Ⅱ图线,一条为元件真实的U —I 图线,另一条是本次实验中测得的U —I 图线,其中 是本次实验中测得的图线.ABCOB12.【选做题】本题包括A 、B 、C 三小题,请选做其中两题,并在相应的答题区域内作答,若三题都做,则按A 、B 两题评分. 12A .(选修模块3-3) (1)如图所示,是氧气在0℃和100℃两种不同情况下,各速率区间的分子数占总分子数的百分比与分子速率间的关系.由图可知A .100℃的氧气,速率大的分子比例较多B .具有最大比例的速率区间,0℃时对应的速率大C .温度越高,分子的平均速率大D .在0℃时,部分分子速率比较大,说明内部有温度较高的区域(2)如图所示,一定质量的理想气体的P —V 图象. 其中,A B →为等温过程,B C →为绝热过程.这两个过程中,内能减少的是 ;B C →过程 (选填“气体对外”或“外界对气体”)做功.(3)1mol 任何气体在标准状况下的体积都是22.4L .试估算温度为0℃,压强为2个标准大气压状态下1个立方米内气体分子数目(结果保留两位有效数字). 12B .(选修模块3-4)(1)如图所示,列车上安装一个声源,发出一定频率的乐音.当列车与观察者都静止时,观察者记住了这个乐音的音调.在以下情况中,观察者听到这个乐音的音调比原来降低的是 A .观察者静止,列车向他驶来 B .观察者静止,列车离他驶去 C .列车静止,观察者靠近列车 D .列车静止,观察者远离列车(2)一列简谐横波沿x 轴正方向传播,0=t 时刻的图象如图所示。
南京市、盐城市2014届高三年级第一次模拟考试英语试题 2014.01第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where will the two speakers go?A. Shanghai.B. Hangzhou.C. Hong Kong.2. Where does the conservation most probably take place?A. In a hotel.B. In a store.C. In a railway station.3. What does the man hope to talk about with Mr. Chen?A. The urgent business.B. The complaints.C. The time to contact him.4. What is the woman doing now?A. Bargaining for a necklace.B. Making an advertisement for jewelry.C. Showing a design of a necklace.5. Why did the man go to San Francisco and Los Angeles?A. To visit some friends.B. To study in the USA.C. To visit some universities.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
南京市、盐城市2014届高三第一次模拟考试
一、填空题
1.已知集合{3,1,1,2}A =--,集合[0,)B =+∞,则A B = .
2.若复数(1)(3)z i ai =+-(i 为虚数单位)为纯虚数,则实数a = .
3.现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为 .
4.根据如图所示的伪代码,最后输出的S 的值为 .
110Pr int S For I From To S S I End For S
←←+
5.若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差2s = .
6.在平面直角坐标系xOy 中,若中心在坐标原点上的双曲线的一条准线方程为1
2
x =,且它的一个顶点与抛物线24y x =-的焦点重合,则该双曲线的渐进线方程为 .
7.在平面直角坐标系xOy 中,若点(,1)P m 到直线4310x y --=的距离为4,且点P 在不等式23x y +≥表示的平面区域内,则m = .
8.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠= ,侧棱PA ⊥底面ABCD ,2PA =,E 为AB 的中点,则四面体PBCE 的体积为 . 9.设函数()cos(2)f x x ϕ=+,则“()f x 为奇函数”是“2
π
ϕ=
”的 条件.
(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)
10.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 .
11.在ABC ∆中,2BC =,23
A π
=
,则AB AC ⋅的最小值为 . 12.若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足
1
(l n )(l n )2(1)f t f f t
+<时,那么t 的取值范围是 .
13.若关于x 的不等式2(20)lg 0a
ax x
-≤对任意的正实数x 恒成立,则实数a 的取值范围是 .
14.已知等比数列{}n a 的首项为
43,公比为1
3
-,其前n 项和为n S ,若1n n A S B S ≤-≤对*n N ∈恒成立,则
B A -的最小值为 .
二、解答题
15.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3
C π
=.
(1)若ABC ∆
a ,
b ;
16.如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点.
(1)求证://BF 平面1A EC ; (2)求证:平面1A EC ⊥平面11ACC A .
17.如图,现要在边长为100m 的正方形ABCD 内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为xm (x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为215
x m 的圆形草地.为了保证道路畅通,岛口宽不小于60m ,绕岛行驶的路宽均不小于10m .
(1)求x 的取值范围; 1.4)
(2)若中间草地的造价为a 元2/m ,四个花坛的造价为433ax 元2/m ,其余区域的造价为
1211
a
元2/m ,当x
取何值时,可使“环岛”的整体造价最低?
18.在平面直角坐标系xOy 中,已知过点3
(1,)2
的椭圆C :22221(0)x y a b a b +=>>的右焦点为(1,0)F ,过焦
点F 且与x 轴不重合的直线与椭圆C 交于A ,B 两点,点B 关于坐标原点的对称点为P ,直线PA ,PB 分别交椭圆C 的右准线l 于M ,N 两点.
(1)求椭圆C 的标准方程;
(2)若点B 的坐标为8(5,试求直线PA 的方程; (3)记M ,N 两点的纵坐标分别为M y ,N y ,试问M N y y ⋅是否为定值?若是,请求出该定值;若不是,
请说明理由.
19.已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈.
(1)若0a ≠,则a ,b 满足什么条件时,曲线()y f x =与()y g x =在0x =处总有相同的切线? (2)当1a =时,求函数()
()()
g x h x f x =
的单调减区间; (3)当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,求b 的取值的集合.
20.设等差数列{}n a 的前n 项和为n S ,已知12a =,622S =. (1)求n S ;
(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<< ,*n k N ∈. ①当q 取最小值时,求{}n k 的通项公式;
②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.
21.(选做题)(在A 、B 、C 、D 四小题中只能选做2题)
A .如图,A
B ,CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若98P
C =,1
2
OP =,求PD 的长.
B .已知曲线
C :1xy =
,若矩阵M -
⎥
=⎥⎥⎦
对应的变换将曲线C 变为曲线C ',求曲线C '的方程.
C .在极坐标系中,圆C 的方程为2cos a ρθ=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐
标系,直线l 的参数方程为32
42x t y t =+⎧⎨=+⎩
(t 为参数),若直线l 与圆C 相切,求实数a 的值.
D .已知1x ,2x ,3x 为正实数,若1231x x x ++=,求证:22
2
321123
1x x x x x x +
+≥.
22.已知点(1,2)A 在抛物线Γ:22y px =上.
(1)若ABC ∆的三个顶点都在抛物线Γ上,记三边AB ,BC ,CA 所在直线的斜率分别为1k ,2k ,3k ,求
123
111
k k k -+的值; (2)若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为1k ,
2k ,3k ,4k ,求
1234
1111
k k k k -+-的值.
23.设m 是给定的正整数,有序数组(1232,,,m a a a a )中2i a =或2-(12)i m ≤≤. (1)求满足“对任意的1k m ≤≤,*k N ∈,都有
21
21k k
a a -=-”的有序数组(1232,,,m a a a a )的个数A ; (2)若对任意的1k l m ≤≤≤,k ,*
l N ∈,都有221
|
|4l
i i k a =-≤∑
成立,求满足“存在1k m ≤≤,使得
21
21k k
a a -≠-”的有序数组(1232,,,m a a a a )的个数B。