精选题9_组合变形
- 格式:doc
- 大小:913.50 KB
- 文档页数:14
材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。
正确答案是______。
答案(C )1BL102ADB (3)三种受压杆件如图。
设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。
正确答案是______。
答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。
正确答案是______。
答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。
当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。
正确答案是______。
答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。
正确答案是______。
答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。
正确答案是______。
答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。
组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。
A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。
第八章组合变形§8-1 组合变形和叠加原理一、组合变形的概念:构件的基本变形:拉压、剪切挤压、扭转、弯曲。
由两种或两种以上基本变形的组合---称为组合变形。
如:梁的弯曲和拉压变形的组合。
轴的扭转和弯曲变形的组合。
梁的弯曲与剪切变形的组合(横力弯曲)。
李禄昌liluchang二、叠加法---解决组合变形问题的基本方法*:1、叠加原理:复杂外力进行简化、分解为几组静力等效载荷。
→ →每一组载荷对应着一种基本变形。
→ →分别计算一种基本变形的内力、应力、应变、挠度。
→ →将所有结果叠加,便是构件发生组合变形时的内力、应力、应变、挠度。
2、叠加原理的几个原则*:⑴、分量(内力、应力、应变、位移)与外力成线性关系。
⑵、与外力加载的先后顺序无关,⑶、材料服从胡克定律(线弹性变形)。
⑷、应用原始尺寸原理。
注意:各分量叠加时,同方向的相同分量可以用代数和叠加。
如:正应力与正应力、切应力与切应力。
3、叠加原理应用的基本步骤:xxσ(1) 、将载荷进行分解,产生几种基本变形;(2)、分析每种基本变形,确定危险截面;(3)、计算构件在每种基本变形情况下的危险截面内的应力;(4)、将各基本变形情况下的应力叠加,确定最危险点;**(5)、计算主应力,选择适合的强度理论,进行强度校核。
而不同方向的分量,应采用不同的求和方法,如:正应力与切应力之间。
σσσ'''=+τττ'''=+22p στ=+xτ不要用这个公式。
斜弯曲PϕyzxyzlP zP yP 不考虑剪应力Kk σσσ'''=+y z z y M z M y I I -sin cos z yP z P y I I ϕϕ=--cos y yyM z P zI I σϕ''=-=-sin ,z z zM y P y I I σϕ'=-=-如果是圆截面?§8-2 弯曲与拉伸的组合变形一、受力及变形特点:xyzlFF轴向拉伸F偏心拉伸zMyM附加力偶1、轴向力:产生拉压正应力:()()12x x zN x M x yA I σσσ=+=+注意两个应力正负号。
组合变形1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案: (A) d e =; (B) d e >; (C) e 越小,d 越大; (D) e 越大,d 越大。
答:C2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为1m ax σ、2m ax σ和3m ax σ,现有下列四种答案: (A)3max 2max 1max σσσ==; (B)3max 2max 1max σσσ=>; (C)3max 1max 2max σσσ=>; (D)3max 1max σσσ=<max2。
答:C3.形形心重合)。
立柱受沿图示a-a (A) 斜弯曲与轴向压缩的组合; (B)平面弯曲与轴向压缩的组合; (C) 斜弯曲; (D)平面弯曲。
答:B4. 铸铁构件受力如图所示,种答案:(A) A 点; (B) B 点; (C) C 点; (D) D 点。
答:C5. 图示矩形截面拉杆,中间开有深度为2h的缺口,与不开口的拉杆相比,开口处最大正应力将是不开口杆的 倍:(A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。
答:C6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为1m ax σ、2m ax σ和3m ax σ(A)max32max 1max σσσ<<; (B)3max 2max max1σσσ=<; (C)2max max3max1σσσ<<; (D)2max 3max 1max σσσ<=。
答:C7. 正方形等截面立柱,受纵向压力F 作用。
当力F 作用点由A 移至B 时,柱内最大压应力的比值maxmaxB A σσ有四种答案:(A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。
答:C8. 图示矩形截面偏心受压杆,其变形有下列四种答案: (A) 轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合;(D)轴向压缩、斜弯曲和扭转的组合。
答:C9. 矩形截面梁的高度mm 100=h ,跨度m 1=l 。
梁中点承受集中力F ,两端受力kN 301=F ,三力均作用在纵向对称面内,mm 40=a 。
若跨中横截面的最大正应力与最小正应力之比为35。
试求F解:偏心距mm 102=-=a he跨中截面轴力 1N F F =跨中截面弯矩e F Fl M 1max 4-=(正弯矩),或 41max Fle F M -=(负弯矩) 则356464211211minmax=---+=bh e F Fl bhF bh e F FlbhF σσ,得kN 7.1=F或356464211211minmax=---+=bh Fl e F bhF bhFl e F bhF σσ,得kN 7.0=F12. 图示混凝土坝,坝高m 2=l ,在混凝土坝的右侧整个面积上作用着静水压力,水的质量密度331kg/m 10=ρ,混凝土的质量密度332kg/m 102.2⨯=ρ。
试求坝解由 13. 解14. 答15.16.p20. 图示水平直角折杆受铅直力F 作用。
圆轴AB 的直径mm 100=d ,mm 400=a ,GPa 200=E ,25.0=ν。
在截面D 顶点K 处,测得轴向线应变401075.2-⨯=ε。
试求该折杆危险点的相当应力3r σ。
解又=σσ21. ][=σ解 22. 1=z F 解T 由4r σ23. ][=σ解由3r σ=24. 解由 w C 得 F C 25. 102=F 解M T 由4r σ=26. 6=F 拉应力(1)(2)(3)解:(1)(2)(3)στMPa 2.48)2(2221=++=τσσσ ][t 11r σσσ>=,不满足强度条件。
27. 悬臂梁AB 的横截面为等边三角形,形心在C 点,承受均布载荷q ,其作用方向及位置如图所示,该梁的变形有四种答案: (A)平面弯曲; (B)斜弯曲; (C)纯弯曲; (D)弯扭组合。
答:A28. 开口薄壁管一端固定一端自由,自由端受集中力F 梁的横截面和力F 的作用线如图所示,C 为横截面形心,该梁的变形有四种答案:(A)平面弯曲; (B)斜弯曲; (C)平面弯曲+扭转; (D)斜弯曲+扭转。
答:D29. 悬臂梁的自由端受垂直于梁轴线的力F 作用,力作用方向与梁横截面形状分别如图所示,则图(a)的变形为___________________; 图(b)的变形为___________________; 图(c)的变形为___________________。
答:斜弯曲;平面弯曲;斜弯曲+扭转30. 按照第三强度理论,图示杆的强度条件表达式有四种答案: (A)][)(4)(2p2σ≤++W TW M A F z ; (B)][p σ≤++W T W M A F z ; (C)][)()(2p2σ≤++W TW M A F z ; (D)][)(4)(2p2σ≤++W TW M A F z 。
答:D31. 图示水平的直角刚架ABC ,各杆横截面直径均为cm 6=d ,cm 40=l ,cm 30=a ,自由端受三个分别平行于x 的力作用,材料的许用应力120][=σ(c)(b)正方形(a)x第三强度理论确定许用载荷[F]。
解由3r σ截面由σ则32. 解:33.34. 图示圆杆的直径mm 200=d ,两端承MPa 102003⨯=E ,3.0=ν,MPa 170][=σ445103-⨯=ε解:杆表面点K 处 MPa 20π42==d Fx σ利用斜截面的应力公式与广义胡克定律得νεσντ+--=12/)1(45E x x则][MPa 4.913224r στσσ<=+=,满足强度条件。
35. 图示圆截面钢杆的直径mm 20=d ,承受轴向力F ,力偶m N 801e ⋅=M ,m N 1002e ⋅=M ,MPa 170][=σ。
试用第四强度理论确定许用力[F ]。
解:横截面外圆周上的点31e 2π32π4d M d F +=σ,32e π16d M =τ。
由][3224r στσσ≤+=,得kN 6.8=F 。
36. 图示圆杆的直径mm 100=d ,长度m 1=l 2F 、3F ,kN 1201=F ,kN 502=F ,603=F 度理论校核杆的强度。
解:危险截面在固定端处22321]2)([)2(l F F d F M -+=,23d F T = MPa 1341=+=zW M A F σ,3.15p ==W Tτ则][MPa 4.1374223r στσσ<=+=37. 梁的斜弯曲是两个互相垂直平面内最主要的特点是______________________________。
答:平面弯曲;挠曲面与弯矩作用面不重合38. 矩形截面梁产生斜弯曲,某横截面尺寸与弯矩矢量方向如图所示,则中性轴与z 轴所成的角度为________________。
答:︒=87.828arctan39. 边长为a 的正方形截面梁产生拉弯组合变形,内力关系为12N aF M M z y ==,则中性轴与z 轴所成的角度为_______,截面形心到中性轴的距离为_______。
答:45°;2a40. 画出图示空心截面的截面核心的大致形状。
答:41. 画出图示正六边形截面的截面核心的大致形状。
答:42. 画出图示T 形截面的截面核心的大致形状。
答:43. 边长为a 的正方形截面,其截面核心的边界为______________形,顶点到正方形形心的距离为________________。
答:正方;6a44. 图示截面外边界为矩形,内边界为边长a 的正方形,其截面核心的边界为_______形,在z 轴上的截距为_______。
答:菱;a 602345. 等边三角形截面的截面核心的边界为_______________形,核心边界的某个顶点和三角形截面形心的连线与该顶点对应的中性轴所成的角度为__________。
答:等边三角;90°46. 圆截面杆受弯矩M 与扭矩T 作用产生弯扭组合变形,T M =。
横截面上全应力值相等的点位于______________线上。
答:椭圆47. 圆截面杆受弯矩M 与扭矩T 作用产生弯扭组合变形,T M =。
按最大切应力强度理论,横截面上相当应力值相等的点位于______________线上。
答:椭圆48. 矩形截面直杆发生扭转与弯曲组合变形,按照最大切应力强度理论,横截面上角点的相当应力有四种答案:(A)σσ=3r ; (B)τσ23r =; (C)223r τσσ+=; (D)223r 3τσσ+=。
(σ、τ分别表示该点处非零的正应力与切应力大小) 答:A49. 圆截面直杆,轴向拉伸时轴线的伸长量为1ΔL ,偏心拉伸时轴线的伸长量为2ΔL ,设两种情况的作用力相同,两个伸长量的关系有四种答案: (A)21ΔΔL L >; (B)21ΔΔL L <; (C)21ΔΔL L =; (D)不确定。
答:C50. 偏心拉伸直杆中的最大拉应力必大于最大压应力。
该论断正确与否?()答:非(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。