Webmap Concept mapping on the web
- 格式:pdf
- 大小:102.93 KB
- 文档页数:14
web gis原理与开发Web GIS是一种利用互联网技术将地理信息系统(GIS)应用于在线地图浏览、空间分析和地理信息共享的方式。
它基于一系列的原理和开发技术,旨在提供用户友好的地图浏览和分析功能。
Web GIS的原理可归纳为以下几点:1. 地图数据的准备和管理:Web GIS需要将地理数据转换为可在网页上展示的格式,常见的格式包括矢量数据(如点、线、面)和栅格数据(如图像)。
同时,还需要将数据进行组织和管理,以便快速从服务器上查询到所需的数据。
2. 地图服务的发布:Web GIS通过发布地图服务,将地图数据和功能暴露给用户。
地图服务可以是基于矢量数据的矢量地图服务,也可以是基于栅格数据的图片地图服务。
这些地图服务可以在网页上嵌入,用户可以通过浏览器进行地图浏览、缩放和查询。
3. 空间分析与地图交互:Web GIS可以支持用户进行空间分析操作,如缓冲区分析、叠加分析等。
用户可以选择不同的分析工具,并指定参数进行操作,系统将返回相应的分析结果。
同时,在地图上可以进行互动操作,如选择、标注、编辑等,以便更好地理解和利用地图数据。
4. 用户权限控制:Web GIS支持对地图服务和数据进行权限管理,以保护敏感的地理信息。
通过用户认证和角色管理,可以限制用户对地图数据和功能的访问和使用权限。
这样可以确保仅授权的用户可以访问和编辑特定的地图数据。
Web GIS的开发涉及以下几个方面:1. 前端开发:开发Web GIS的前端部分,主要涉及使用HTML、CSS和JavaScript等前端技术构建用户界面,实现地图的显示和交互功能。
常见的前端框架包括OpenLayers和Leaflet等。
2. 后端开发:开发Web GIS的后端部分,主要涉及处理地图数据、提供地图服务和实现空间分析功能。
后端开发可以使用多种编程语言和框架,如Python的Django、Java的Spring等。
3. 数据库管理:Web GIS需要使用数据库管理地理数据,包括将数据导入数据库、进行索引和查询等操作。
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
webgis面试题WebGIS(Web Geographic Information System)是一种基于Web平台的地理信息系统,通过将地理信息与互联网相结合,为用户提供在线地图浏览、数据查询、分析和管理等功能。
对于从事WebGIS开发和设计的人员来说,面试是获取工作机会的重要环节。
下面是一些常见的WebGIS面试题,帮助您更好地准备面试。
1. 什么是WebGIS?WebGIS是一种基于Web平台的地理信息系统,通过利用互联网技术,实现地理空间信息的存储、分析和共享,提供给用户在线地图浏览、数据查询与分析等功能。
2. WebGIS的优势有哪些?WebGIS具有以下优势:- 方便易用:用户可以通过浏览器直接访问WebGIS,无需安装额外的软件。
- 实时共享:地理数据可以实时更新和共享,多人协同工作更加便捷。
- 空间分析:WebGIS能够进行地理数据的空间分析和模型建立,帮助用户更好地理解和分析地理现象。
- 可视化展示:通过WebGIS,地理数据可以以图形化的方式展示,增强了用户对数据的理解和应用。
3. WebGIS的核心技术有哪些?WebGIS的核心技术包括:- 地图服务(Map Service):地图服务是WebGIS中最基本的服务,通过提供标准的地图切片或动态地图的方式,将地理信息可视化在Web上。
- 空间数据库(Spatial Database):用于存储和管理地理空间数据,并支持空间查询和分析等功能。
- 地理信息系统标准(GIS Standards):WebGIS需要遵循一系列的地理信息系统标准,如WMS、WFS和WCS等,以实现地理数据的互操作性和共享性。
4. 请解释一下WMS和WFS是什么?- WMS(Web Map Service):WMS是一种通过Web传输地图图像的服务,允许用户在Web上浏览地图,并具备基本的地图查询和打印功能。
- WFS(Web Feature Service):WFS是一种通过Web传输地理要素数据的服务,可以实现地理要素的查询、编辑和分析等功能,支持对地理要素数据的增删改查操作。
onlinemapv4用法-回复什么是onlinemapv4?onlinemapv4是一种在线地图服务,它提供了一个方便易用的接口,使用户可以通过web浏览器获取地图数据,并在地图上实现各种功能。
它可以帮助用户查找特定位置、获取路线规划、探索附近的兴趣点等。
如何使用onlinemapv4?第一步:注册用户和创建API密钥在使用onlinemapv4之前,您需要注册一个用户账号,并创建一个API 密钥。
这个API密钥将用于访问onlinemapv4的各种功能和服务。
第二步:引入onlinemapv4库在您的网页或应用程序中引入onlinemapv4的JavaScript库。
您可以从官方网站或者其他可信的渠道下载和获取这个库文件。
第三步:创建地图实例通过JavaScript代码,您可以在页面上创建一个地图实例。
您可以指定地图的初始中心点、缩放级别以及其他样式和属性。
第四步:添加标记和覆盖物通过onlinemapv4提供的接口,您可以在地图上添加标记、覆盖物和信息窗口。
这样可以使得地图更加丰富和有趣。
第五步:获取地理信息onlinemapv4还提供了获取地理信息的功能。
您可以通过地理编码将地址转换为经纬度坐标,或者通过逆地理编码将经纬度坐标转换为地址。
这对于定位和导航功能非常有用。
第六步:实现路线规划onlinemapv4的路线规划功能可以帮助用户找到最佳路径。
您可以指定起点和终点,然后onlinemapv4会计算出最短路径,并提供详细的导航指示。
第七步:控制和操作地图onlinemapv4还提供了丰富的控制和操作功能。
您可以调整地图的视角和缩放级别,平移和旋转地图,以及实现其他自定义的交互效果。
第八步:处理事件和交互onlinemapv4支持各种事件和交互,您可以根据需要添加事件监听器,并在相应的事件发生时执行自定义的逻辑。
例如,您可以在点击标记时显示相关信息窗口。
第九步:集成其他功能和服务onlinemapv4还可以与其他功能和服务集成。
Adobe ColdFusion (2016 release) Enterprise EditionThe 2016 release of Adobe ColdFusion Enterprise Edition is a tried and testedapplication server that simplifies complex coding tasks in enterprise environments. Rapidly develop web and mobile applications that are robust, scalable, secure and adept at handling high loads with high reliability. Create new channels for your offerings by using the all-new API Manager to implement your API strategy faster. Get unprecedented control over PDF generation and manipulation.Embrace futuristic technologies —Move your APIs swiftly from concept to production with the all-new API Manager. Manage APIs across their lifecycle, get insights into usage and track all aspects of performance. Secure your APIs, restrict access beyond a specified threshold and maximize returns on your APIs through the developer portal.Deploy enterprise-ready applications —Get unprecedented control over PDF generation and manipulation, including new capabilities such as redaction and sanitization. Use the new security code analyzer to automatically detect vulnerabilities. Leverage overall performance enhancements to make existing applications work faster.Build applications quickly —Work faster with many nifty new features that include a command-line interface, CFML enhancements, SOAP to REST translation, and web services support. Leverage your existing CFML skills to develop mobile apps and use built-in integration with Adobe PhoneGap Build.Adobe ColdFusion (2016 release)Enterprise EditionGet a robust platform for scalable, high-performing web and mobile applications.If you recently purchased ColdFusion 11, you might be eligible for a complimentary upgrade to ColdFusion (2016 release). To find out more, contact Customer Service at 800-833-6687 or /support/contactVERSION COMPARISON CHART• AvailableRestrictedEnhanced Enhanced FeaturesBlank Not AvailableNew Features• AvailableRestricted Enhanced Enhanced FeaturesBlank Not AvailableNew Features• AvailableRestricted Enhanced Enhanced FeaturesBlank Not AvailableNew Features• AvailableRestricted Enhanced Enhanced FeaturesBlank Not AvailableNew Features• AvailableRestricted Enhanced Enhanced Features Blank Not AvailableNew Features• AvailableRestricted Enhanced Enhanced FeaturesBlank Not AvailableNew FeaturesAdobe, the Adobe logo, ColdFusion and ColdFusion Builder are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.© 2016 Adobe Systems Incorporated. All rights reserved.xxxxxxxx x/xxAdobe Systems Incorporated 345 Park AvenueSan Jose, CA 95110-2704 USA•Available RestrictedEnhanced Enhanced Features Blank Not AvailableNew Features。
矢量切片原理金字塔英文回答:The principle of vector tile slicing is an important concept in geographic information systems (GIS) and cartography. It refers to the process of dividing a mapinto smaller, pre-rendered sections called tiles, which can be loaded and displayed quickly in a web mapping application.Vector tiles are a way to store and transmit geospatial data in a compact and efficient format. They contain vector data, such as points, lines, and polygons, along with associated attributes. Unlike raster tiles, which store images of map data, vector tiles store the actual geometric and attribute information, allowing for dynamic rendering and interaction.The process of creating vector tiles involves several steps. First, the source data, such as a shapefile or adatabase, is converted into a vector tile format, such as Mapbox Vector Tiles (MVT) or GeoJSON. This conversion process involves simplifying and generalizing the geometryto reduce file size and improve performance.Once the vector tiles are created, they can be sliced into smaller tiles at different zoom levels. This is doneby dividing the map into a grid of tiles, with each tile representing a specific geographic area. The tiles are typically square in shape and have a fixed size, such as256x256 pixels.The slicing process involves determining which features and attributes should be included in each tile. For example, a tile at a lower zoom level may only include major roads and cities, while a tile at a higher zoom level may include detailed street networks and building footprints.The use of vector tiles offers several advantages over traditional raster tiles. First, vector tiles areresolution-independent, meaning they can be rendered at any scale without loss of detail. This allows for smoothzooming and panning in web mapping applications.Second, vector tiles allow for dynamic styling and labeling of map features. Since the vector data is storedin a structured format, it can be easily styled using CSS-like syntax. This allows for on-the-fly customization of map styles, such as changing the color or thickness of roads, or adding labels to points of interest.Third, vector tiles enable efficient data transmission and storage. Since the vector data is highly compressed, it can be transmitted over the internet more quickly thanraster tiles. Additionally, vector tiles can be stored in a database or on a server, allowing for efficient data management and updating.In summary, the principle of vector tile slicinginvolves dividing a map into smaller, pre-rendered tilesfor efficient display and interaction. Vector tiles storethe actual geometric and attribute information, allowingfor dynamic rendering and customization. They offer advantages such as resolution independence, dynamic styling,and efficient data transmission and storage.中文回答:矢量切片原理是地理信息系统(GIS)和制图学中的一个重要概念。
WebGIS考试参考试题一、选择题(每题5分,共20题)1. WebGIS是指通过网络实现地理信息系统的交互操作和服务发布。
以下哪项不属于WebGIS的特点?A. 可以实现多人协同编辑地理信息数据B. 可以实现地理信息数据的快速可视化C. 可以在任何设备上访问和使用地理信息数据D. 可以替代传统的地理信息系统桌面软件2. 在WebGIS中,以下哪个功能是用来对地理数据进行浏览和查询的?A. 编辑器B. 分析工具C. 地图导航D. 数据存储3. 在地理数据可视化方面,WebGIS提供了多种方式,以下哪项不属于WebGIS常用的地理数据可视化方式?A. 热力图B. 饼状图C. 柱状图D. 曲线图4. WebGIS中的应用程序框架是指用来构建WebGIS应用程序的基础框架。
下列哪个不属于常见的WebGIS应用程序框架?A. ArcGIS OnlineB. LeafletC. OpenLayersD. Django二、问答题(每题10分,共5题)1. 请简要说明WebGIS与传统GIS的区别和优势。
2. 请描述WebGIS的核心组成部分及其功能。
3. 什么是地理编码服务?请举例说明其应用场景。
4. 请解释什么是地图投影,以及在WebGIS中为什么需要进行地图投影转换?5. WebGIS中的空间分析功能是指对地理数据进行分析和处理的功能,请列举并简要描述WebGIS中常见的空间分析功能。
三、实操题(每题15分,共5题)1. 请使用ArcGIS Online创建一个地理信息数据的Web地图,并将其分享给他人进行查看和编辑。
2. 请使用Leaflet在网页上嵌入一个地图,并添加一个标注点(Marker)。
3. 请使用OpenLayers加载一个Web地图,并添加一个地理数据图层。
4. 请使用Django框架搭建一个WebGIS应用,并实现地理数据的查询功能。
5. 请使用任意WebGIS平台(如ArcGIS Online、Leaflet等)中的空间分析工具,对一个地理数据图层进行缓冲区分析。
webgis概述WebGIS是一种基于Web技术的地理信息系统,它将地理数据与Web技术相结合,实现了地理空间数据的在线共享、查询、分析和可视化展示。
WebGIS的出现,极大地推动了地理信息技术在互联网时代的发展和应用。
WebGIS的工作原理是通过Web浏览器访问地理信息系统服务器,将服务器上存储的地理数据以图层的形式加载到浏览器中,并通过地图服务将地理数据以地图的形式展现给用户。
用户可以通过鼠标操作地图,进行缩放、平移、标注等操作,并可以进行地理数据的查询、分析和编辑。
WebGIS具有以下几个特点:1. 开放性:WebGIS采用开放的Web技术,使得地理数据能够以开放的方式共享和访问。
用户只需要一个浏览器和网络连接,就能够随时随地访问地理数据,方便快捷。
2. 可视化:WebGIS通过地图的形式展现地理数据,使得复杂的地理信息变得直观可见。
用户可以通过地图的缩放、平移、标注等操作,深入了解地理现象和空间关系。
3. 互动性:WebGIS允许用户与地图进行互动操作,通过鼠标点击、拖拽等方式,实现地图的交互效果。
用户可以自定义地图的显示内容,进行地理数据的查询、分析和编辑,实现个性化的地理信息服务。
4. 分布式:WebGIS采用分布式架构,地理数据存储在地理信息系统服务器上,用户通过Web浏览器访问服务器获取地理数据。
这种架构使得地理数据能够集中管理和维护,提高了数据的安全性和可靠性。
WebGIS在各个领域都有广泛的应用,例如城市规划、环境保护、交通管理、农业决策等。
它可以帮助决策者更好地了解地理环境,做出科学合理的决策;可以帮助企业进行市场分析,找到最佳的经营策略;可以帮助公众了解地理信息,提高地理素养。
WebGIS是一种强大的地理信息技术工具,它通过将地理数据与Web技术相结合,实现了地理信息的在线共享、查询、分析和可视化展示。
它的出现,促进了地理信息技术的发展和应用,为各个领域带来了许多便利和机遇。
WebMap: Concept Mapping on the WebBrian R. Gaines and Mildred L. G. ShawKnowledge Science InstituteUniversity of CalgaryAlberta, Canada T2N 1N4{gaines, mildred}@cpsc.ucalgary.caAbstractConcept maps have long provided visual languages widely used in many different disciplines and application domains. This article reports experience in taking an existing open architecture concept mapping tool and making it available on the web in a number of ways: as a client helper downloading and uploading concept maps; as an active controller of the browser, indexing multimedia material through URLs embedded in concept maps; as a concept map creator controlled by the browser, generating concept maps through the browsing process; and as an auxiliary HTTP server making concept maps available as clickable maps for users who do not have the client helper or want to use active concept maps embedded in documents. Keywords: Concept maps, semantic networks, active documents, client helpers, clickable map servers.1 IntroductionThis article describes the integration of concept mapping tools with World Wide Web browsers and servers, as client helpers on the one hand and gatewayed clickable image servers on the other. Abstractly, concept maps are sorted graphs visually represented as nodes having a type, name and content, some of which are linked by arcs. Each type of node has associated visual attributes, such as shape and color scheme, and the arcs may be non-directional, directional or bidirectional. Links between nodes may also be labeled and typed by constructing them from a pair of arcs with an intervening node whose name is the link name and whose type is the link type. Figure 1 shows a typical concept map from a knowledge-based system that solves a room allocation problem (Gaines, 1994b).The map in Figure 1 is a semantic network (Sowa, 1991) with a formal logical interpretation that allows it to be automatically compiled for a KL-ONE inference engine (Gaines, 1991b). This is typical of artificial intelligence, engineering and mathematical applications of concept maps. In these disciplines various forms of concept map are used as formal knowledge representation systems, for example: bond graphs in mechanical and electrical engineering (Karnopp, Rosenberg and van Dixhorn, 1989), Petri nets in communications (Reisig, 1985), and category graphs in mathematics (Mac Lane, 1971). More generally, concept maps have been used in education (Novak and Gowin, 1984; Lambiotte, Dansereau, Cross and Reynolds, 1989), policy studies (Axelrod, 1976; Eden, Jones and Sims, 1979) and the philosophy of science (Toulmin, 1958; Thadgard, 1992) to provide a visual representation of knowledge structures and argument forms. They provide visual languages as complementary alternatives to natural languages as a means of communicating knowledge.Figure 1 Concept map representing a semantic networkConcept maps have been used for a wide range of purposes and it would be useful to make such usage available over the World Wide Web. This article reports on the development of WebMap, a system for integrating concept maps with existing web media and technologies. WebMap is based on an existing open architecture concept mapping tool, KMap, developed for the Apple Macintosh platform. The next section gives an overview of KMap, and subsequent sections illustrate its application as a client helper to web browsers, and as an auxiliary server to web servers.2 KMap: A Concept Mapping ToolKMap is a concept mapping tool written for Apple Macintosh computers. It is open architecture, first in allowing different forms of concept map to be defined, and second in supporting integration with other applications through the Apple Object Event protocol and AppleScript. KMap has been used in a wide variety of situations ranging from concept mapping in education (Gaines and Shaw, 1993b), through multimedia indexing (Gaines and Shaw, 1994a) and semantic nets for knowledge-based systems (Gaines and Shaw, 1992; Gaines, 1994b), to workflow support for scientific communities on the Internet (Gaines and Norrie, 1994; Gaines and Shaw, 1994b; Gaines, Norrie and Lapsley, 1995).2.1 Entering a Concept Map in KMapFigure 2 shows a concept map from an application in which KMap was used to index a multimedia CD-ROM (GNOSIS, 1994a) of materials comprising the final report of the GNOSIS project (GNOSIS, 1994b), part of the international Intelligent Manufacturing Systems (IMS) research program (Gaines and Norrie, 1995). The user creates a new node by selecting its type on the popup menu at the top left (currently showing type “ConMap” which is used to reference another concept map), typing its label into the text box below (currently showing “GNOSIS Final Reports”), and clicking on the popup menu text “ConMap”. KMap then inserts a new node as shown, wrapping the text to create a horizontal rectangle.Figure 2 Concept map indexing a CD-ROMThe new node can be dragged anywhere in the window. The arrows to and from the new node are drawn by a simple process. The corners of the node are sensitive and the cursor changes to an arrow symbol when over the lower right corner. Clicking on the mouse creates a “rubberband”line. Dragging this over another node highlights the node. Releasing the move over the highlighted node draws an arrow from the original node to the highlighted one.2.2 Selecting Node Types in KMapThere are many different nodes types with differing appearances in the concept map of Figure 2. The selection of the node type is made through a popup menu. When the cursor browses over the node type at the top left it assumes a button shape, as shown in Figure 2, to indicate that clicking will create a new node. However, as the user moves to the right of the node type name the cursor becomes a popup menu and mousing down produces the menu shown in Figure 3 which lists the available node types for selection. KMap also supports an alternative interface through buttons as shown at the top of Figure 1 where the node types are each listed on a separate button.Figure 3 Popup menu for node types2.3 Creating and Editing Node Types in KMapAt the bottom of the popup menu in Figure 3 there is an “Edit...” option. Selecting this opens a floating dialog as shown in Figure 4 which enables the user to edit existing node types and create new ones. The user creates a new node type by typing its name in the text box at the top, selecting a shape in the palette below, defining the colors of the surround, fill, heading text and body text, texts sizes and styles, and whether the head and/or body text should be shown.Figure 4 Node type editing and creation2.4 Programming KMapSo far KMap has been shown as a flexible concept mapping or diagramming tool. However, it is also programmable so that user actions can communicate with other applications. Each node in a map has not only a label but also a hidden content, which is an arbitrary text string. The hidden content may be accessed and edited by holding down the “Option” key when double-clicking on a node. This brings up the content, rather than the label, in the text box for editing.User actions in the concept map send messages to a script attached to the map which has access to all the map data including the hidden content. This script is created and edited in a script editor activated by “Open Script” in the “File” menu as shown in Figure 5. The script receives messages when a concept map is open or closed, when it is edited in any way, when the user clicks in a node, a button, a popup menu, and so on. A full record of the map affected, the node within it, the menu selection, and so on, is passed as a parameter to the routine in the script. This enables concept maps to be used as active documents providing user interfaces to any functionality on the Macintosh, including control of other applications either locally or through a network. In particular, multiple versions of the same concept map open on different machines may be kept mutually updated as users edit them.Figure 5 Scripting a concept map2.5 Integrating KMap with Other ApplicationsKMap scripting has been used to create a wide range of computer-supported cooperative work applications in multimedia environments. The semantic network shown in Figure 1 can be sent to a compiler which converts it to the text form of KL-ONE definitions and loads these into the KRS (Gaines, 1991a) knowledge representation system for execution as part of the solution of a room allocation problem. The script for the concept map of Figure 2 provides multimedia indexing capabilities by interpreting a click on a node as a request to load the file specified by a URL stored in the node content. The file loaded can be another concept map, providing multi-level indexing, or it can be any file openable by another application. For example, the GNOSIS final report CD-ROM contains digitized photographs, digital movies, expert system knowledge bases, engineering drawings, reports in Word, Replica, and so on.For example, in Figure 6 the node “GNOSIS Final Reports” has been clicked in the “Mediator Server Agent” window of Figure 2. This has opened a concept map of the GNOSIS final reports as shown overlaying it in the lower part of the figure. Clicking on the node “Final Report of IMS Test Case 7 GNOSIS” at the middle left of this concept map has opened the Farallon Replica document shown in the window behind the two concept maps.Figure 6 Multimedia indexing through concept mapsIt should be noted that the only script operating is that in the “Mediator Server Agent” concept map. If it opens another concept map it links it to itself so that the script responds to actions in the new concept map, essentially acting as an active agent for otherwise passive documents. This is important to applications that fetch concept maps across the Internet since one does not want to accept arbitrary script functionality that can have detrimental effects on the local machine.3 Using Concept Maps Across the World Wide WebKMap is written in a C++ class library (Gaines, 1994a) that provides a wide range of application functionality including TCP/IP communications and protocols, typographic documents with active embedded components (Gaines and Shaw, 1993a), knowledge processing, and so on. Hence, it has been simple to support collaborative groupware systems operating across local and wide area networks and providing end users with interfaces through concept maps and through active documents with embedded maps. However, much of the functionality required in these applications is now available with high quality at low cost in the form of World Wide Web browsers such as Mosaic and Netscape. These browsers support inter-application protocols allowing them to be integrated as components in a system involving other applications. They are also available on all major platforms making it possible to support a heterogeneous environment with minimal constraints on end users.Hence, it is attractive to investigate the integration of the concept mapping techniques and tools already described with World Wide Web tools with a view to extending web functionality to support collaborative activities with user interfaces largely through visual languages. In particular, the Mediator system illustrated above has been reimplemented to operate with HTTP servers and browsers, with KMap operating as a client helper tightly coupled to Netscape, and also with KMap operating as an auxiliary server either through its own HTTP support or through a common gateway interface (CGI) to WebStar. The following subsections illustrate some of the features of these implementations.3.1 KMap as a Client Helper to NetscapeIt was simple to reimplement the type of multimedia indexing functionality described in Section 2.5 and illustrated in Figure 5. KMap was registered as a client helper with Netscape for the MIME type application/x-kss (which is the generic file type for all our knowledge support systems), and this MIME type was registered with our NCSA and WebStar servers and with Netscape as corresponding to the file suffix “.kss”. This is sufficient to allow concept maps to be fetched over the web and opened in KMap. To allow the concept maps to be used as active documents to fetch other documents across the Web, a script was written for a concept map to act as a “Netscape Agent” similar to the “Mediator Server Agent” shown in Figure 4 but passing the appropriate part of the hidden content of nodes to Nescape using the “OpenURL” Apple event. Figure 7 shows KMap acting as a client helper to Netscape to index the GNOSIS reports. The concept map of Figure 6 has been fetched as “GNOSISReports.kss”, and clicking on the node “Final Report of IMS Test Case 7 GNOSIS” at the middle left has sent a message to Netscape requesting it open the URL “http://ksi.cpsc.ucalgary.ca/IMS/GNOSIS/TC7Final.kss”. This is another concept map shown at the bottom right which provides an overview of the structure of the GNOSIS final report. Clicking on the node “Project Objectives, Activities and Organization”has sent a message to Netscape requesting it open the URL“http://ksi.cpsc.ucalgary.ca/IMS/GNOSIS/TC7FF2.kss”. This is an HTML document that Netscape opens in its own window as shown at the back. Clicking on other nodes in the concept map at the front will cause Netscape to index through the sections of the report.Figure 7 KMap as a client helper to NetscapeSince the HTTP protocols support fetching documents in different formats for different applications, for example fetching an AutoCAD dataset and opening it in AutoCAD, many of the design objectives of Mediator can be satisfied through this integration of KMap, Netscape and the World Wide Web HTTP/HTML protocols. Mediator on the web, coupled with various agent technologies, can provide a system supporting the manufacturing life cycle across a virtual enterprise distributed internationally (Gaines et al., 1995).3.2 Generating Concept Maps by Browsing in NetscapeNetscape allows an external application to register itself to receive a range of information about user interaction with Netscape. This enables a KMap agent to receive a trace of user interactions with the World Wide Web, build a concept map of linked documents, and use this to provide access to those documents—a graphic “hot-list.” Figure 8 shows such a hot list being developed and used. The “NetscapeAgent” in KMap has sent a “Register URL Message” to Netscape requesting that it be informed when Netscape shows a document. Each time that Netscape does so it sends KMap a message giving the URL of the document, the URL of the referring document if there was one and the window in which the document is being shown.The “NetscapeAgent” script stores the URLs and displays the name of the window in the text box near the top of its window. If the user clicks on the popup menu button, the script creates a new node of the type specified in the popup menu. It stores the name of the window in the visible content of the node because this name is the <TITLE> field of the HTML document. It stores the URL of the document in the invisible content of the node so that clicking on the node may be used to request Netscape to fetch the document. If there is already a node for the referring document then the script links it with an arrow to the new node. The overall effect is to create a hot list of locations visited that can be used to access these locations again.3.3 KMap as a Clickable Map Server to WebStarKMap is currently implemented only for the Apple Macintosh and hence can act as a client helper only on Macintosh computers. Ports to Windows and Motif are being developed which will make KMap helpers available on all major platforms. However, there will always be users who do not have, or want to use, the helpers but where it is appropriate to provide non-editable concept maps as clickable maps in HTML documents. Hence KMap has also been interfaced as an HTTP server to allow the same concept maps to be used as clickable maps.Clicking on the “Send” button at the top left of the “NetscapeAgent” concept map in Figure 8 uploads the concept map data to the server using Netscape’s capability to accept an “Open URL”event with POST parameters. The map data is automatically stored under the same concept map name in an upload directory named “X” using an auxiliary HTTP server written in the same class library as KMap operating through a common gateway interface to WebStar.KMap itself is also accessible through the CGI for two functions: first, to download concept maps as clickable maps in GIF format; and, second, to receive clicks on these maps and take the same action as if the concept map had been clicked locally in a KMap helper. Figure 9 shows the uploaded concept map of Figure 8 being fetched using the URL “http://tiger.cpsc.ucalgary.ca/WMClick/:X:NetscapeAgent.k” which is recognized as an action to be passed to KMap by WebStar.Figure 8 Concept maps being generated by NetscapeFigure 9 KMap acting as an HTTP server for clickable mapsKMap returns the HTML shown in Figure 10 with the name of the concept map as a title and an embedded call for an image of the concept map. The image URL is again interpreted as an action passed to KMap which, since there are no search arguments, loads the concept map, converts its image to a GIF and returns it as an HTTP message. Clicking on the node “ World Map”sends the coordinates of the point clicked back to KMap on the server as search arguments, and KMap then takes the same action as if the map had been clicked locally in a helper, in this case to redirect Netscape to the URL for World Map.<HTML><HEAD><TITLE>NetscapeAgent</TITLE></HEAD><BODY><H1 ALIGN="CENTER">NetscapeAgent</H1><P ALIGN="CENTER"><A HREF="http://tiger.cpsc.ucalgary.ca./WebMap/:X:NetscapeAgent.k"><IMG SRC="http://tiger.cpsc.ucalgary.ca./WebMap/:X:NetscapeAgent.k" ISMAP></A></BODY></HTML>Figure 10 HTML for KMap acting as an HTTP server for clickable mapsThus KMap supports the use of concept maps on World Wide Web through client helpers and through servers in an integrated way. Concept maps created in KMap for use in conjunction with Netscape as a local helper can be automatically uploaded and used in the same was as clickable maps through KMap as an auxiliary server. In particular, this allows concept maps to be used by browsers running on platforms other than the Macintosh.It can be seen from the HTML of Figure 10 that any number of concept maps may be embedded as clickable maps in an HTML document. This enables much of the functionality of our active document tool, KWrite (Gaines and Shaw, 1993a), to be recreated on World Wide Web. For example, knowledge bases may be embedded in documents as semantic networks and used as part of expert systems (Gaines and Shaw, 1992). The only capability missing is for the user to be able to edit the knowledge base within the document. In the near future it should be possible to implement this also by rewriting the concept mapping tools in a web code tool such as Java (Sun, 1995).4 ConclusionsConcept maps have long provided visual languages widely used in many different disciplines and application domains. Abstractly, they are sorted graphs visually represented as nodes having a type, name and content, some of which are linked by arcs. Concretely, they are structured diagrams having discipline- and domain-specific interpretations for their user communities, and, sometimes, formally defining computer data structures. Concept maps have been used for a wide range of purposes and it would be useful to make such usage available over the World Wide Web.This article has reported experience in taking an existing open architecture concept mapping tool and making it available on the web in a number of ways: as a client helper downloading and uploading concept maps through an open architecture browser such as Netscape; as an active controller of the browser, indexing multimedia material through URLs embedded in concept maps; as a concept map creator controlled by the browser, generating concept maps through the browsing process; and as an auxiliary HTTP server making concept maps available as clickable maps for users who do not have the client helper or want to use active concept maps embedded in documents. All of these various usages have been shown to complement one another effectively to support the simple and natural integration of concept maps with other World Wide Web media and technologies.As the development of web functionality proceeds it will become possible to embed concept mapping tools even more effectively as active components of HTML documents. Meanwhile the current development of WebMap shows that much can be achieved within the existing web capabilities.AcknowledgmentsThis work was funded in part by the Natural Sciences and Engineering Research Council of Canada.ReferencesAxelrod, R. (1976). Structure of Decision. Princeton, New Jersey, Princeton University Press. Eden, C., Jones, S. and Sims, D. (1979). Thinking in Organizations. London, Macmillan. Gaines, B.R. (1991a). Empirical investigations of knowledge representation servers: Design issues and applications experience with KRS. ACM SIGART Bulletin2(3) 45-56. Gaines, B.R. (1991b). An interactive visual language for term subsumption visual languages.IJCAI’91: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence. pp.817-823. San Mateo, California, Morgan Kaufmann.Gaines, B.R. (1994a). Class library implementation of an open architecture knowledge support system. International Journal Human-Computer Studies41(1/2) 59-107.Gaines, B.R. (1994b). A situated classification solution of a resource allocation task represented in a visual language. International Journal Human-Computer Studies40(2) 243-271. Gaines, B.R. and Norrie, D.H. (1994). Mediator: information and knowledge management for the virtual factory. SIGMAN AAAI-94 Workshop: Reasoning about the Shop Floor. pp.30-39.Menlo Park, California, AAAI.Gaines, B.R. and Norrie, D.H. (1995). Knowledge systematization in the international IMS research program. Proceedings of 1995 IEEE International Conference on Systems, Man and Cybernetics. pp.this volume. New York, IEEE.Gaines, B.R., Norrie, D.H. and Lapsley, A.Z. (1995). Mediator: an Intelligent Information System Supporting the Virtual Manufacturing Enterprise. Proceedings of 1995 IEEE International Conference on Systems, Man and Cybernetics. pp.this volume. New York, IEEE.Gaines, B.R. and Shaw, M.L.G. (1992). Documents as expert systems. Bramer, M.A. and Milne, R.W., Ed. Research and Development in Expert Systems IX. Proceedings of British Computer Society Expert Systems Conference. pp.331-349. Cambridge, UK, Cambridge University Press.Gaines, B.R. and Shaw, M.L.G. (1993a). Open architecture multimedia documents. Proceedings of ACM Multimedia 93. pp.137-146.Gaines, B.R. and Shaw, M.L.G. (1993b). Supporting the creativity cycle through visual languages. AAAI Spring Symposium: AI and Creativity. pp.155-162. Menlo Park, California, AAAI.Gaines, B.R. and Shaw, M.L.G. (1994a). Concept maps indexing multimedia knowledge bases.AAAI-94 Workshop: Indexing and Reuse in Multimedia Systems. pp.36-45. Menlo Park, California, AAAI.Gaines, B.R. and Shaw, M.L.G. (1994b). Using knowledge acquisition and representation tools to support scientific communities. AAAI’94: Proceedings of the Twelfth National Conference on Artificial Intelligence. pp.707-714. Menlo Park, California, AAAI Press/MIT Press.GNOSIS (1994a). GNOSIS: Intelligent Manufacturing Systems: IMS Test Case 7: Hybrid-CD, Macintosh (native), PC, Unix (ISO 9660). Canada, Knowledge Science Institute and Division of Manufacturing Engineering, University of Calgary.GNOSIS (1994b). Knowledge Systematization: Configuration Systems for Design and Manufacturing: Final Report of the Test Case. Canada, Knowledge Science Institute, University of Calgary.Karnopp, D., Rosenberg, R.C. and van Dixhorn, J.J. (1989). Bond Graph Techniques for Dynamic Systems in Engineering and Biology. Journal Franklin Institute308(3) Lambiotte, J.G., Dansereau, D.F., Cross, D.R. and Reynolds, S.B. (1989). Multirelational semantic maps. Educational Psychology Review1(4) 331-367.Mac Lane, S. (1971). Categories for the Working Mathematician. New York, Springer-Verlag.Novak, J.D. and Gowin, D.B. (1984). Learning How To Learn. New York, Cambridge University Press.Reisig, W. (1985). Petri Nets: An Introduction. Berlin, Springer.Sowa, J.F., Ed. (1991). Principles of Semantic Networks: Explorations in the Representation of Knowledge. San Mateo, California, Morgan-Kaufman.Sun (1995). HotJava Home Page. Sun Microsystems. .Thadgard, P. (1992). Conceptual Revolutions. Princeton, New Jersey, Princeton University Press.Toulmin, S. (1958). The Uses of Argument. Cambridge, UK, Cambridge University Press.。