2018年中考数学复习第1轮考点系统复习第3章函数第1节平面直角坐标系与函数课件
- 格式:ppt
- 大小:5.06 MB
- 文档页数:8
2018年中考数学函数知识点2018年中考数学函数知识点一次函数与反比例函数考点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx,0><点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0x,0<⇔y>2、坐标轴上的点的特征点P(x,y)在x轴上0=⇔y,x为任意实数点P(x,y)在y轴上0=⇔x,y为任意实数点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+考点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P(x,y)的几何意义:点P(x,y)到x轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
2018年中考数学第一轮复习-- 平面直角坐标系与函数【中考目标】1.了解平面直角坐标系,掌握坐标平面内特殊点的坐标特征,能用点的坐标描出点的位置.由点的位置写出它的坐标;了解坐标变化与图形变换间的关系.2.了解变量、自变量、因变量的概念,能结合变量之间的关系、图象对简单实际问题中的函数关系进行分析.3.掌握函数的三种表示方式,能从函数图象中获取相关信息.【中考知识清单】考点1、平面直角坐标系内点的坐标特征1.各象限内点的坐标特征(1)点P (x,y )在第一象限⇔x >0,y >0;(2)点P (x,y )在第二象限⇔ ;(3)点P (x,y )在第三象限⇔ ; (4) 点P (x,y )在第四象限⇔ .2.坐标轴上点的坐标特征(1)点P (x,y )在x 轴上⇔ ; (2)点P (x,y )在y 轴上⇔ ;(3)点P (x,y )既在x 轴上,又在y 轴上⇔点P 的坐标为 .(坐标轴上的点不属于任何象限)3.各象限角平分线上的点的坐标特征(1)点P (x,y )在第一、三象限角平分线上⇔ ;(2)点P (x,y )在第二、四象限角平分线上⇔ .4.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的 相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的 相同,纵坐标为不相等的实数.5.对称点的坐标特征(1)点P (x,y )关于x 轴的对称点坐标为 ;(2)点P (x,y )关于y 轴的对称点坐标为 ;(3)点P (x,y )关于原点的对称点坐标为 .6.平面直角坐标系中的距离:(1)设点P (x ,y ),则点P 到x 轴的距离为 ;点P 到y 轴的距离为 ; 点P 到原点的距离为 .(2)设1122()()A x y B x y ,,,,则点A 与点B 的水平距离为 ;点A 与点B 的铅直距离为 ;点A 与点B 的距离为 . 考点2、函数1.函数的定义:(1)有两个变量x,y (2)y 随x 的变化而变化(3)对于x 的每一个值,y 都有唯一的值和它对应;2.函数的三种表示方法: ;3.画函数图象的一般步骤: ;4.自变量取值范围的确定(1)如果函数的解析式是整式,那么自变量的取值范围是 .(2)如果函数的解析式是分式,那么自变量的取值范围是使 的实数.C'B'A'A C B O x y (3)如果函数的解析式是偶次根式,那么自变量的取值范围是使 为非负数.(4)含有零指数、负整数指数幂的函数,自变量的取值范围是使 的实数.(5)实际问题,函数自变量的取值范围必须使实际问题有意义.(如不能取负值或小数等)(6)如果函数解析式兼有上述两种或两种以上的结构特点时,则先按上述方法分别求出它们的取值范围,再求它们的公共部分.【合作探究】合作探究一:平面直角坐标系内点的坐标特征及点的坐标与图形变换例1. 若点 P (a ,a -2)在第四象限,则a 的取值范围是_________ . 例2.已知y 轴上的点P 到x 轴的距离为3,则点P 的坐标为_________ . 巩固练习:1.在平面直角坐标系中,点(﹣4,4)在第 象限.2.在平面直角坐标系中,点P (-2,x 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.若点M (x ,y )满足(x+y )2=x 2+y 2﹣2,则点M 所在象限是( )A .第一象限或第三象限B .第二象限或第四象限C .第一象限或第二象限D .不能确定例3.在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则S △ADO S △ABC=_________; (2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为____________.例4. 已知点A(1,5),B(3,1),点M 在x 轴上,当AM+BM 最大时,点M 的坐标为____________.巩固练习:1. 点A (﹣2,3)关于x 轴的对称点A ′的坐标为 .3.已知点A (m 2+1,n 2-2)与点B (2m ,4n+6)关于原点对称,则A 关于x 轴的对称点的坐标为_____ ,B 关于y 轴的对称点的坐标为______ . 例5.△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,则顶点A 2的坐标是__________.例6. 如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA B C '''的位置,若OB=∠C=120°,则点B '的坐标为 .例7. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续九次这样的变换得到△A ′B ′C ′,则点A的对应点A ′的坐标是__________.巩固练习:1. 已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为2.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移m (m >0)个单位,那么C 点平移后相应的点的坐标是_________.3.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是合作探究二:函数自变量取值范围及其图像例8. 函数y =中的自变量x 的取值范围是例9. 在今年初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD,下列说法正确的是( ).A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时.两人相遇D .在起跑后50秒时.小梅在小莹的前面例10.已知, A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B 前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t 之间函数关系的是( )A B C D巩固练习:1.当实数x 的取值使得2 x 有意义时,函数y =4x +1中y 的取值范________.2.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是()OA .B .C .D .4.(2017年山东省潍坊市第4题)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ).A.()1,2-B.()1,1-C.()2,1-D.()2,1--5.(2017年四川省内江市第11题)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,,∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32B .(2C .32)D .(32,3 6.(2017年辽宁省沈阳市第6题)在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是()2,8-,则点B 的坐标是( )A. ()2,8--B. ()2,8C. ()2,8-D. ()8,2【作业】1.对任意实数x ,点P (x ,x 2-2x )一定不在第 象限2.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将 △ABO 绕点O 按顺时针方向旋转135°,则点A ,B 的对应点A ,,B ,的坐标分别是 .3.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S 随时间t 变化情况的是( ).4.在平面直角坐标系中,点A 坐标为(1,3),将线段OA 向左平移2个单位长度,得到线段O ′A ′,则点A 的对应点A ′的坐标为 .5.【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭. 【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.5.(2017年江西省第12题)已知点A (0,4),B (7,0),C (7,4),连接AC ,BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 .6.(2017年山东省东营市第15题)如图,已知菱形ABCD 的周长为16,面积为,E 为AB 的中点,若P 为对角线BD 上一动点,则EP+AP 的最小值为 .7.(2017年山东省威海市第17题)如图,A 点的坐标为)5,1(-,B 点的坐标为)3,3(,C 点的坐标为)3,5(,D 点的坐标为)1,3(-.小明发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一线段.你认为这个旋转中心的坐标是 .8.(2017年贵州省六盘水市第19题)已知()2,1A -,()6,0B -,若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为( , ).。