南方名校2018届高三下学期临考冲刺检测数学(文)试题(图片版)
- 格式:doc
- 大小:862.50 KB
- 文档页数:4
高考数学三轮复习冲刺模拟试题03考试时间:120分钟满分:150分第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则()UAB =A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,62.534+i的共轭复数是( ). A .34-i B .3545+i C .34+i D .3545-i3. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是( )A. 5,10,15,20,25B. 5,12,31,39,57C. 5,15,25,35,45D. 5,17,29,41,535.目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A .3,12min max ==z zB .z z ,3min =无最大值C .,12max =z z 无最小值 D .z 既无最大值,也无最小值6.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )7..某程序框图如图所示,现输入四个函数(1)f(x)=x 2,(2)f(x)=1x,(3)f(x)=ln x +2x -6,(4)f(x)=sin x ,则输出函数是8.在ABC ∆中,A tan 是以-4为第3项,4为第5项的等差数列的公差,B tan 是以31为第3项,9为第6项的等比数列的公比,则该三角形是A. 锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.圆122=+y x 和圆05622=+-+y y x 的位置关系是( ) A .外切B .内切C .外离D .内含10.设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为( )A 、椭圆B 、双曲线C 、抛物线D 、圆11.已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a的取值范围是( )A .[-4,0]B .[)8,-+∞C .[)4,-+∞D .(0,)+∞12、过点A (2,1)作曲线f(x)=x 3-x 的切线的条数最多是( ) A ,3 B ,2 C , 1 D, 0第Ⅱ卷二.填空题:本大题共4小题,每小题4分。
高考数学三轮复习冲刺模拟试题01集合一、选择题1 .已知集合,,则( ) A .B .C .D .2 .设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x ∈R},若A ⋂B=φ,则实数a 的取值范围是( )A .{a|0≤a ≤6}B .{a|a ≤2,或a ≥4}C .{a|a ≤0,或a ≥6}D .{a|2≤a ≤4}3 .已知集合2A ={|log<1},B={x|0<<c}x x x,若=A B B ,则c 的取值范围是( )A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题4 .若不等式4+-2+1x m x≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B ___________.5 .设集合是A={32|()=83+6a f x xax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B ð= ;6.试题)己知集合222{|28},{|240}xxA xB x x mx -=<=+-<, 若{|11},{|43}A B x x A B x x =-<<=-<<,则实数m 等于__________ .7 .设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A ,则实数a 取值范围是___________.三、解答题8 .已知={()|1},B={()|3,0x 3}2A x,y y =-x+mx -x,y x+y =≤≤,若A B ⋂是单元素集,求实数m的取值范围.参考答案一、选择题 1. 【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<=,选B.2. 【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3. 【答案】D【解析】2{log 1}{01}A x x x x =<=<<.因为A B B =,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题4. {}-1<3x x ≤; 5. 【答案】(,1)(4,)-∞+∞【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为144x x +≥=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B ð(,1)(4,)-∞+∞.6. 【答案】32222{|28}{|230}{13}x xA x x x x x x -=<=--<=-<<,因为{|11},{|43}AB x x A B x x =-<<=-<<,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。
2018届湖南省长沙市高三下学期临考冲刺训练文科数学试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}|04A x N x =∈≤≤,则下列说法正确的是A.0A ∈B.1A ⊆A ⊆ D. 3A ∈2.()231i -等于 A. 32i B. 32i - C. i D.i - 3. 为了得到函数sin3cos3y x x =+的图象,可以将函数y x =的图象A. 向右平移12π个单位B.向右平移4π个单位 C.向左平移12π个单位 D. 向左平移4π个单位 4.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机有放回的抽取2张,则取出的2张卡片上的数字之差的绝对值为奇数的概率为 A. 13 B.12 C.23 D.345.已知一个几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则这个几何体的体积为A. 612π+B. 624π+C. 1212π+D. 2412π+6.已知等差数列{}n a 满足14n n a a n ++=,则1a =A.-1B. 1C. 2D. 37.从1,2,3,4,5,6,7,8中随机取出一个数x ,执行如图所示的程序框图,则输出的x 不小于40的概率为 A. 34 B. 58 C. 78 D. 128.若变量,x y 满足约束条件4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为6-,则k = A. 9 B. 3 C. -2 D. 32-9.函数cos 1x x y e =+的图象大致是10.已知三棱锥P ABC -,在底面ABC ∆中,60,A BC PA ∠==⊥平面ABC,PA =锥的外接球的表面积为 A.163πB. C.16π D.323π 11.已知圆22:3C x y +=,从点()2,0A -观察点()2,B a ,要使视线不被圆C 挡住,则a 的取值范围是A.4,3,3⎛⎛⎫-∞+∞ ⎪⎝⎝⎭ B. ()(),22,-∞-+∞ C. ((),23,-∞-+∞ D. ((),43,-∞-+∞ 12.设定义在()0,+∞上的单调函数()f x 对任意()0,x ∈+∞的都有()()2log 4f f x x -=,则不等式()224f a a +>的解集为A. ()(),31,-∞-+∞B. ()1,+∞C. ()3,1--D.(),3-∞-二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()2,3,1,2a b ==-,若ma nb +与3a b -共线,则m n= . 14.直线1y kx =+与曲线3y x ax b =++相切于点()1,3A ,则b 的值为 . 15.若数列{}n a 23n a n n +=+,则3122341n a a a a n ++++=+ . 16. 已知双曲线C 的方程为22145x y -=,其左、右焦点分别为12,F F ,已知点M 的坐标为()2,1,双曲线C 上的点()()0000,0,0P x y x y >>,满足12212121PF MF F F MF PF F F ⋅⋅=,则12PMF PMF S S ∆∆-= .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知sin cos.c A C =(1)求C ;(2)若c =()sin sin 3sin 2C B A A +-=,求ABC ∆的面积.18.(本题满分12分)某学校为了加强学生的安全教育,对学校旁边A,B 两个路口进行了8天的监测调查,得到每天路口不按交通规则过马路的学生人数(如茎叶图所示),且A 路口数据的平均数比B 路口数据的平均数小2.(1)求出A 路口8个数据的中位数和茎叶图中m 的值;(2)在B 路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.19.(本题满分12分)如图,在四棱锥P ABCD -中,ABC ∆为正三角形,,,,AB AD AC CD PA AC PA ⊥⊥=⊥平面.ABCD(1)若E 为棱PC 的中点,求证:PD ⊥平面ABE ;(2)若3AB =,求点B 到平面PCD 的距离.20.(本题满分12分)已知椭圆()2222:10x y C a b a b+=>>的两个焦点分别为()()122,0,2,0F F -,离心率为32F 斜率不为0的直线l 与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(1)求椭圆C 的方程;(2)当四边形12MF NF 为矩形时,求直线l 的方程.21.(本题满分12分)已知函数()()()()212ln .f x a x x a R =---∈(1)若曲线()()g x f x x =+上点()()1,1g 处的切线过点()0,2,求函数()g x 的单调递减区间;(2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
高考数学三轮复习冲刺模拟试题09共150分.时间120分钟.第Ⅰ卷 (选择题40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{}24A x x =≤,{}1B x x =<,则集合B A 等于 (A ){}12x x ≤≤(B ){}1x x ≥ (C ){}2x x ≤(D )R {}-2x x ≥2.在等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是 (A )15(B )30(C )31(D )643.为得到函数sin (π-2)y x =的图象,可以将函数πsin (2)3y x =-的图象 (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位(D )向右平移6π个单位4.如果()f x 的定义域为R ,(2)(1)()f x f x f x +=+-,若(1)lg3lg 2f =-,(2)lg3lg5f =+,则(3)f 等于(A )1 (B )lg3-lg2 (C )-1(D )lg2-lg35.如图所示,为一几何体的三视图, 则该几何体的体积是(A )1(B )21(C )13(D )656.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足422=-+c b a )(,且C =60°,则ab 的值为左视图俯视图111(A )348-(B )1(C )34 (D )32 7. 已知函数22,0()42,0x f x x x x ≥⎧=⎨++<⎩的图象与直线(2)2y k x =+-恰有三个公共点,则实数k 的取值范围是 (A )()02,(B)(]02,(C)()-2∞, (D)()2+∞,8.点P 是以12F F ,为焦点的椭圆上的一点,过焦点2F 作12F PF ∠的外角平分线的垂线,垂足为M 点,则点M 的轨迹是(A )抛物线 (B )椭圆 (C )双曲线 (D )圆第Ⅱ卷(非选择题110分)二、填空题:本大题共6小题,每小题5分,共30分.9.复数11i-在复平面内对应的点到原点的距离是 . 10.在给定的函数中:① 3-y x =;②xy -2=;③sin y x =;④1y x=,既是奇函数又在定义域内为减函数的是 .11.用计算机产生随机二元数组成区域-11-22x y <<⎧⎨<<⎩,对每个二元数组(,)x y ,用计算机计算22y x +的值,记“(,)x y 满足22y x + <1”为事件A ,则事件A 发生的概率为________.12.如右图所示的程序框图,执行该程序后 输出的结果是 .13.为了解本市的交通状况,某校高一年级的同学 分成了甲、乙、丙三个组,从下午13点到18点, 分别对三个路口的机动车通行情况进行了实际调查, 并绘制了频率分布直方图(如图),记甲、乙、丙 三个组所调查数据的标准差分别为321,,s s s , 则它们的大小关系为 .(用“>”连结) 开始1=i ,2=s1+=i iss 1-1= 5>i输出S 结束是否xMyQPOF 2F 114.设向量()21,a a =,()21,b b =,定义一种向量积:⊗=()21,a a ⊗()21,b b =()2211b a b a ,.已知=⎪⎭⎫ ⎝⎛3,21,=⎪⎭⎫⎝⎛0,6π,点P 在x y sin =的图象上运动,点Q 在)(x f y =的图象上运动,且满足OQ =⊗+(其中O 为坐标原点),则)(x f y =的最大值是 . 三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数)-2π(cos cos sin )(2x x x x f +=. (Ⅰ)求)3π(f 的值;(Ⅱ)求函数()f x 的最小正周期及值域.16. (本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ))(x f 在1x =-处的切线与x 轴平行,求b 的值; (Ⅱ)求)(x f 的单调区间.t13 14 15 16 17 18 0.10.3 组距频率0.2 13 14 15 16 17 18 0.10.3 组距频率0.2 13 14 15 16 17 18 0.10.3 组距频率0.2 tt甲乙丙17. (本小题满分13分) 如图,已知平面α,β,且,,,,AB PC PD C D αβαβ=⊥⊥是垂足.(Ⅰ)求证:AB ⊥平面PCD ; (Ⅱ)若1,2PC PD CD ===,试判断平面α与平面β是否垂直,并证明你的结论.18. (本小题满分13分)某学校有两个参加国际中学生交流活动的代表名额,为此该校高中部推荐了2男1女三名候选人,初中部也推荐了1男2女三名候选人.(I )若从初高中各选1名同学做代表,求选出的2名同学性别相同的概率;(II )若从6名同学中任选2人做代表,求选出的2名同学都来自高中部或都来自初中部的概率.19. (本小题满分14分)已知椭圆与双曲线122=-y x 有相同的焦点,且离心率为22. (I )求椭圆的标准方程;(II )过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若PB AP 2=,求AOB ∆的面积.20. (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22x x x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ; (II )求证:10121<-≤+++||||n n n n P P P P . APCDBβα参考答案一、选择题:本大题共8小题,每小题5分,共40分.1 2 3 4 5 6 7 8 CABADCAD二、填空题:本大题共6小题,每小题5分,共30分.910 11 12 1314 22①π8-1123>s s s >3四、解答题:本题共6小题,共80分.15.(本小题满分13分)已知函数)-2π(cos cos sin )(2x x x x f +=. (Ⅰ)求)3π(f 的值;(Ⅱ)求函数()f x 的最小正周期及值域. 解:(I )由已知,得2πππππ()sin cos cos()33323f =+- ……2分π31333()342f +=+……5分(II )2()sin cos sin f x x x x =+ 1cos 2sin 222x x-=+111sin 2cos 2222x x =-+ 2π1)242x =-+ 函数)(x f 的最小正周期T π=……11分值域为1-21+2[22……13分16.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R .(Ⅰ))(x f 在1x =-处的切线与x 轴平行,求b 的值; (Ⅱ)求)(x f 的单调区间.解:(Ⅰ)222()()b x f x x b -'=+.……2分依题意,由(1)0f '-=,得1b =. ……4分 经检验,1b = 符合题意.……5分(Ⅱ)① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ……6分② 当0b >时,222()()b x f x x b -'=+.令()0f x '=,得1x b 2x b =-……8分()f x 和()f x '的情况如下:x(,)b -∞-b - (,)b b -b (,)b +∞()f x ' -0 +-()f x↘ ↗ ↘故()f x 的单调减区间为(,)b -∞,,)b +∞;单调增区间为(,)b b .……11分③ 当0b <时,()f x 的定义域为{|}D x x b =∈≠-R .因为222()0()b x f x x b -'=<+在D 上恒成立, 故()f x 的单调减区间为(,)b -∞--,(,)b b ---,,)b -+∞;无单调增区间.……13分17. (本小题满分13分) 如图,已知平面,αβ,且,,,,AB PC PD C D αβαβ=⊥⊥是垂足.(Ⅰ)求证:AB ⊥平面PCD ; (Ⅱ)若1,2PC PD CD ===,试判断平面α与平面β是否垂直,并证明你的结论. PCD BβαH(Ⅰ)证明:因为,PC AB αα⊥⊂,所以PC AB ⊥. 同理PD AB ⊥.又PC PD P =,故AB ⊥平面PCD .……5分(Ⅱ)平面α与平面β垂直证明:设AB 与平面PCD 的交点为H ,连结CH 、DH . 因为α⊥PC ,所以CH PC ⊥, ……8分 在PCD ∆中,1,2PC PD CD ===,所以2222CD PC PD =+=,即090CPD ∠=. ……11分 在平面四边形PCHD 中,CH PC PD PC ⊥⊥,,所以CH PD // 又β⊥PD ,所以β⊥CH ,所以平面α⊥平面β. ……13分18. (本小题满分13分)某学校有两个参加国际中学生交流活动的代表名额,为此该校高中部推荐了2男1女三名候选人,初中部也推荐了1男2女三名候选人.(I )若从初高中各选1名同学做代表,求选出的2名同学性别相同的概率;(II )若从6名同学中任选2人做代表,求选出的2名同学都来自高中部或都来自初中部的概率解:设高中部三名候选人为A1,A2,B .初中部三名候选人为a,b1,b2 (I )由题意,从初高中各选1名同学的基本事件有 (A1,a ),(A1,b1),(A1,b2), (A2,a ),(A2,b1),(A2,b2), (B ,a ),(B ,b1),(B ,b2), 共9种 ……2分 设“2名同学性别相同”为事件E ,则事件E 包含4个基本事件,概率P(E)=94 所以,选出的2名同学性别相同的概率是94.……6分(II )由题意,从6名同学中任选2人的基本事件有(A1 ,A2),(A1,B ),(A1,a ),(A1,b1),(A1,b2), (A2,B ), (A2,a ),(A2,b1),(A2,b2),(B ,a ), (B ,b1),(B ,b2),(a ,b1),(a ,b2),(b1,b2) 共15种 ……8分 设“2名同学来自同一学部”为事件F ,则事件F 包含6个基本事件,概率P(F)=52516=所以,选出的2名同学都来自高中部或都来自初中部的概率是25. ……13分19. (本小题满分14分)已知椭圆与双曲线122=-y x 有相同的焦点,且离心率为22. (I )求椭圆的标准方程;(II )过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若2=,求AOB ∆的面积.解:(I )设椭圆方程为12222=+by a x ,0>>b a ,由2=c ,可得2=a ,2222=-=c a b既所求方程为12422=+y x……5分(II )设),(11y x A ,),(22y x B , 由PB AP 2=有⎩⎨⎧-=-=-)(12122121y y x x 设直线方程为1+=kx y ,代入椭圆方程整理,得0241222=-++kx x k )(……8分解得1228222++±-=k k k x ……10分若 12282221++--=k k k x ,12282222+++-=k k k x则 122822122822222++--⋅=++---k k k k k k 解得1412=k ……12分又AOB ∆的面积81261228221||||212221=++⋅=-⋅=k k x x OP S答:AOB ∆126……14分20. (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22xx x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ;(II )求证:10121<-≤+++||||n n n n P P P P .解:(I )由题意22nn n a a S +=……2分当2≥n 时2212121---+-+=-=n n n n n n n a a a a S S a整理,得0111=--+--))((n n n n a a a a……5分又0≠∈∀n a N n ,*,所以01=+-n n a a 或011=---n n a a01=+-n n a a 时,11=a ,11-=-n na a , 得11--=n n a )(,211nn S )(--=……7分011=---n n a a 时,11=a ,11=--n n a a ,得n a n =,22nn S n +=……9分(II )证明:01=+-n n a a 时,))(,)((21111n n n P ----5121==+++||||n n n n P P P P ,所以0121=-+++||||n n n n P P P P……11分011=---n n a a 时,),(22nn n P n +22121)(||++=++n P P n n ,2111)(||++=+n P P n n222222121112111211121)()()()()()(||||++++++--++=++-++=-+++n n n n n n P P P P n n n n22112132)()(++++++=n n n……13分因为 11122122+>+++>++n n n n )(,)(所以1112132022<++++++<)()(n n n综上10121<-≤+++||||n n n n P P P P……14分。
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
2018年高考数学模拟试卷(文科)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学模拟试卷(文科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学模拟试卷(文科)(word版可编辑修改)的全部内容。
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=()A.[﹣1,1) B.(0,1)C.[﹣1,1]D.(﹣1,1)2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=( )A.40 B.39 C.38 D.374.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.55.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是()A.(1,) B.() C.(1,2) D.(2,+∞)6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为( ) A.6 B.7 C.8 D.97.(5分)函数y=log(x2﹣4x+3)的单调递增区间为()A.(3,+∞)B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞) D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下:A说:“是甲或乙获得特等奖"; B说:“丁作品获得特等奖”;C说:“丙、乙未获得特等奖”; D说:“是甲获得特等奖".比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A.甲 B.乙 C.丙 D.丁9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为()A. B.C.2 D.10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出的结果为()A.4 B.5 C.6 D.711.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为( )A.B.C.D.12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题:①当x≥0时,f(x)=e﹣x(x+1);②∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2;③f(x)>0的解集为(﹣1,0)∪,(1,+∞);④方程2[f(x)]2﹣f(x)=0有3个根.其中正确命题的序号是()A.①③B.②③C.②④D.③④二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)在等比数列{a n}中,若a2+a4=,a3=,且公比q<1,则该数列的通项公式a n= .14.(5分)已知y=f(x)是偶函数,且f(x)=g(x)﹣2x,g(3)=3,则g(﹣3)= .15.(5分)三棱锥P﹣ABC中,底面△ABC是边长为的等边三角形,PA=PB=PC,PB ⊥平面PAC,则三棱锥P﹣ABC外接球的表面积为.16.(5分)在△ABC中,D为AC上一点,若AB=AC,AD=,则△ABC面积的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
汕头市潮南2018高考冲刺试卷数学(文科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题(共12小题,每小题5分,共60分.每小题有四个选项,只有一个是正确的)1. 已知全集,集合,,那么=()A. B. C. D.【答案】C【解析】【分析】由题意和补集的运算求出,由交集的运算求出(.【详解】因为全集,集合,,所以,又,则(,故选:C.【点睛】本题考查交、并、补集的混合运算,属于基础题.2. 已知复数满足则()A. B. C. D.【解析】【分析】根据复数的运算法则计算即可.【详解】故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题3. 等比数列的前项和,成等差数列,,则()A. 15B. -15C. 4D. -4【答案】A【解析】【分析】利用成等差数列求出公比即可得到结论.【详解】由题成等差数列.,即即解得,【点睛】本题考查等比数列的前n项和的计算,根据条件求出公比是解决本题的关键.4. 设P是△ABC所在平面内的一点,,则()A. B. C. D.【答案】B【解析】移项得.故选B视频5. 下列命题正确的是()A. 命题的否定是:B. 命题中,若,则的否命题是真命题C. 如果为真命题,为假命题,则为真命题,为假命题D.是函数的最小正周期为的充分不必要条件【答案】D【解析】【分析】在A中,命题的否定是:;在B中,命题中,若,则的否命题是假命题;在C中,与中一个是假命题,另一个是真命题;在D中,,从而是函数的最小正周期为的充分不必要条件.【详解】在A中,命题的否定是:,故A错误;在B中,命题中,若,则的否命题是假命题,故B错误;在C中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C错误;在D中,∴ω=1⇒函数f(x)=sinωx-cosωx的最小正周期为2π,函数f(x)=sinωx-cosωx的最小正周期为2π⇒ω=±1.∴是函数的最小正周期为的充分不必要条件,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查否命题、复合命题的真假判断、充分不必要条件等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6. 若如右图所示的程序框图输出的是,则①可以为 ( )A. B.C. D.【答案】C【解析】试题分析:程序执行中的数据变化如下:不成立,输出考点:程序框图7. 已知函数,下列结论中错误的是()A. 的图像关于中心对称B. 在上单调递减C. 的图像关于对称D. 的最大值为【答案】B【解析】【分析】利用辅助角公式将函数进行化简,结合三角函数的单调性,最值性,对称性的性质分别进行判断即可.【详解】A.当时,,则的图像关于中心对称,故A正确,B.由得当时,函数的递减区间是,故B错误,C.当时,,则的图像关于对称,故C正确,D.当时,函数取得最大值为,故D正确,故选:B.【点睛】本题主要考查与三角函数有关的命题的真假判断,利用辅助角公式将函数进行化简,结合三角函数的性质是解决本题的关键.8. 若===1,则a,b,c的大小关系是()A. a>b>cB. b>a>cC. a>c>bD. b>c>a【答案】D【解析】【分析】由求出的值,由求得的值,由=1求得的值,从而可得答案.【详解】由,可得故,由,可得,故,由,可得,故,.故选:D.【点睛】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.9. 已知满足,的最大值为,若正数满足,则的最小值为()A. B. C. D.【答案】B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值,然后根据基本不等式的性质进行求解即可.【详解】作出不等式组对应的平面区域如图:(阴影部分)由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.代入目标函数得.即.则,当且仅当取等号,故选:B.【点睛】本题主要考查线性规划以及基本不等式的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.10. 如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图.则该几何体的体积为( )A. B. C. D.【答案】A【解析】【分析】由已知中的三视图可得:该几何体是由一个长方体切去一个三棱锥所得的组合体,进而得到答案.【详解】由已知中的三视图可得:该几何体是由一个长方体切去一个三棱锥所得的组合体,长方体的长,宽,高分别为:2,1,2,体积为:4,切去的三棱锥的长,宽,高分别为:2,1,1,体积为,故组合体的体积,故选:A.【点睛】本题考查的知识点是由三视图求体积和表面积,难度不大,属于基础题.11. 抛物线的焦点为,设是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】D【解析】由抛物线定义得所以由得,因此所以,选D.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若为抛物线上一点,由定义易得;若过焦点的弦AB的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.12. 已知函数,若,且,则的取值范围是()A. B. C. D.【答案】A【解析】作出函数f(x)的图象如图,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e−1,则满足0<n⩽e−1,−2<m⩽0,则ln(n+1)=m+1,即m=2ln(n+1)−2,则n−m=n+2−2ln(n+1),设h(n)=n+2−2ln(n+1),0<n⩽e−1则,当h′(x)>0得1<n⩽e−1,当h′(x)<0得0<n<1,即当n=1时,函数h(n)取得最小值h(1)=1+2−2ln2=3−2ln2,当n=0时,h(0)=2−2ln1=2,当n=e−1时,h(e−1)=e−1+2−2ln(e−1+1)=1+e−2=e−1<2,则3−2ln2⩽h(n)<2,即n−m的取值范围是[3−2ln2,2),本题选择A选项.第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题5分,共20分)13. 已知实数满足条件,则的最小值为__________.【答案】-6【解析】【分析】先利用二元一次不等式表示平面区域的性质画出线性约束条件对应的可行域,再将目标函数赋予几何意义,数形结合得最优解,代入目标函数即可得目标函数的最值【详解】画出的可行域如图阴影区域:由得,目标函数可看做斜率为-2的动直线,由图数形结合可知:当过点时,最小为.故答案为:-6.【点睛】本题主要考查了简单线性规划问题的一般解法,线性约束条件对应的可行域的画法,数形结合解决问题的思想方法,属基础题.14. 已知动点在圆上运动,点为定点与点距离的中点,则点的轨迹方程为__________ 【答案】【解析】【分析】设,用表示出点坐标,代入圆方程化简即可.【详解】设,则把代入圆的方程可得:,即,故答案为:.【点睛】本题考查了轨迹方程的求解,中点坐标公式的应用,属于基础题.15. 三棱锥D-ABC中,DC⊥平面ABC,且AB=BC=CA=DC=2,则该三棱锥的外接球的表面积是__________【答案】【解析】【分析】作的外接圆,过点作圆的直径,连结则为三棱锥的外接球的直径,由此能求出三棱锥的外接球表面积.【详解】作的外接圆,过点作圆的直径,连结,则为三棱锥的外接球的直径,∵三棱锥平面,且,∵平面,∴三棱锥的外接球表面积为:.故答案为:.【点睛】本题考查三棱锥的外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16. 定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________【答案】【解析】【分析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解可得的范围,即可得答案.【详解】根据题意,,则,分析可得,当时,取得最小值2,则有,则,若为减函数,必有,解可得:,即m的取值范围为;故答案为:.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.三、解答题(共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤)17. 已知(1)若向量,,且∥,求的值.(2)在中,角的对边分别是,且满足,求的取值范围【答案】(1);(2).【解析】【分析】(1)利用向量共线的坐标运算与辅助角公式得到:,从而可求)的值;(2)利用正弦定理求出取值范围,然后求出函数的取值范围.【详解】(1),即,所以.(2)因为,由正弦定理得:即又中,∴∵,∴,则,因此,于是,由,∴,故的取值范围为.【点睛】本题考查向量共线的坐标运算,考查三角函数中的恒等变换应用,突出考查辅助角公式与两角和的余弦,属于中档题.18. 2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率. 参考数据:【答案】(1)没有95%的把握认为“围棋迷”与性别有关.(2).【解析】【分析】(1)由频率分布直方图求得频率与频数,填写列联表,计算观测值,对照临界值得出结论;(2)根据分层抽样原理,用列举法求出基本事件数,计算所求的概率值.【详解】(1)由频率分布直方图可知,所以在抽取的100人中,“围棋迷”有25人,从而列联表如下因为,所以没有95%的把握认为“围棋迷”与性别有关.(2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为.则从5名学生中随机抽取2人出赛,基本事件有:,,,,,,,,,,共10种;其中2人恰好一男一女的有:,,,,,,共6种;故2人恰好一男一女的概率为.【点睛】本题考查了频率分布直方图、独立性检验和列举法求概率的应用问题,是基础题.19. 如下图,四梭锥中,⊥底面,,为线段上一点,,为的中点.(1)证明:平面;(2)求四面体的体积.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)取的中点,连接,得到四边形为平行四边形,即,利用直线与平面平行的判定定理,即可证得平面;(Ⅱ)由平面,得到平面的距离为,取的中点,连结,求德,利用,即可求解三棱锥的体积.试题解析:(Ⅰ)由已知得,取的中点,连接,由为中点知,.又,故,四边形为平行四边形,于是.因为平面,平面,所以平面(Ⅱ)因为平面,为的中点,所以到平面的距离为.取的中点,连结.由得,.由得到的距离为,故.所以四面体的体积.20. 已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴,的中点为,过且垂直于线段的直线交射线于点(I)证明:点在直线上;(Ⅱ)当四边形是平行四边形时,求的面积.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)设所在直线为:,联立方程组,由韦达定理得,得到,从而和所在直线方程,联立方程组解得,即可证得点在直线上.(Ⅱ)由点是的中点,且四边形是平行四边形,即点是的中点,由(Ⅰ)知的坐标,求得的值,得到,利用弦长公式和两点的距离公式分别求得,即可求得的面积.试题解析:(Ⅰ)易知,设所在直线为:,,联立方程组,化简得由韦达定理得,,则,从而所在直线方程为又所在直线方程为,联立两直线方程解得.所以点在直线上.(Ⅱ)∵点是的中点,且四边形是平行四边形∴点是的中点由(Ⅰ)知,,则此时.从而.点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知函数(1)求函数的极值(2)定义:若函数在区间上的取值范围为,则称区间为函数的“美丽区间”.试问函数在上是否存在“美丽区间”?若存在,求出所有符合条件的“美丽区间”;若不存在,请说明理由【答案】(1)当时,函数有极大值为1,当时,函数有极小值为.(2)见解析.【解析】【分析】(1)利用函数的正负性,来求原函数的单调区间,可得函数的极值;(Ⅱ)据“域同区间”的定义得到,则方程有两个大于3的相异实根.,然后利用方程根的情况列式求解,即可得出结论.【详解】(1)因为,所以.令,可得或.则在上的变化情况为:所以当时,函数有极大值为1,当时,函数有极小值为.(2)假设函数在上存在“美丽区间”,由(1)知函数在上单调递增.所以即也就是方程有两个大于3的相异实根.设,则.令,解得,.当时,,当时,,所以函数在区间上单调递减,在区间上单调递增.因为,,,所以函数在区间上只有一个零点.这与方程有两个大于3的相异实根相矛盾,所以假设不成立.所以函数在上不存在“美丽区间”.【点睛】本题考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时写清题号22. 选修:坐标系与参数方程选讲在平面直角坐标系中,曲线过点,其参数方程为(为参数,).以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)已知曲线与曲线交于、两点,且,求实数的值.【答案】(1)见解析;(2)或.【解析】试题分析:(1)对曲线进行消参即可得曲线的普通方程,根据和将曲线化为直角坐标方程;(2)将曲线的参数方程代入曲线,根据参数方程的几何意义可知,| |,利用,分类讨论,即可求实数的值.试题解析:(1)的参数方程,消参得普通方程为,的极坐标方程为两边同乘得即;(2)将曲线的参数方程(为参数,)代入曲线得,由,得,设对应的参数为,由题意得即或,当时,,解得,当时,解得,综上:或.23. 选修:不等式选讲已知关于的不等式有解,记实数的最大值为.(1)求的值;(2)正数满足,求证:.【答案】(1).(2)见解析.【解析】试题分析:(1)利用绝对值不等式可求得,所以,解这个不等式可求得.(2)由(1)得,将此式乘以要证明不等式的左边,化简后利用基本不等式可求得最小值为.试题解析:(1),若不等式有解,则满足,解得,∴.(2)由(1)知正数满足,∴.当且仅当,时,取等号.。
揭阳市2018年高中毕业班高考第二次模拟考试数学(文科)参考答案及评分说明一、选择题:2<,故||(3,5)AC ∈.(12)裂项得1223201720182018111111111a a a a a a a a -+-++-+=,即1201812018201711a a a a +=, 得120182018a a =,即2018)2017(11=+⋅a a ,解得11=a 或20181-=a ,由等差数列各项均不为零知120181,2018a a ==,故20192019(12019)20391902S +==. 二、填空题:解析:(16)法一:设球O 的半径为r ,则1AA =2r ,由三棱柱的内切球O 的半径是正三角形ABC 的内切圆半径,得160sin 3231=︒⨯⨯=r ,故1AA =2. 法二:设球O 的半径为r ,则1AA =2r ,由''''''''''''O ABC O A B C O ACA C O AA B B O CC B B ABC A B C V VV V V V ------++++= 得22211232233r r r ⨯+⨯⨯⨯=⨯,解得1r =,故1AA =2. 三、解答题:(17)解:(Ⅰ)解法1:()f x sin 2cos cos 2sin cos 2cos sin 2sin 3366x x x x ππππ=+++----------2分sin 22x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭----------------------4分 故()f x 的最小正周期22T ππ==;------------------------------------6分 【解法2:()f x sin 2cos 236x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,------------------2分 sin 2sin 233x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭2sin 23x π⎛⎫=+ ⎪⎝⎭-------------------------------------4分图3E D B C A 故()f x 的最小正周期22T ππ==--------------------------------------------------------6分】 (Ⅱ)()22sin 263g x f x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,-----------------------------------------------8分 由2222232k x k πππππ-+≤+≤+,(k Z ∈)---------------------------------------10分 解得71212k x k ππππ-+≤≤-+, 故()g x 的单调递增区间为7,1212k k ππππ⎡⎤-+-+⎢⎥⎣⎦(k Z ∈).-----------------------12分 (17)解:(Ⅰ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.--3分 (Ⅱ)由上图知,这100名患者中x 指标的值小于1.7,y 指标的值小于60的有14人,--------5分故从这100名患者中随机选出一人,此人x 指标的值小于1.7,y 指标的值小于60的概率14710050P ==;-----------------------------------------------------------------------------------8分 (Ⅲ)从图中A ,B ,C ,D 四人中随机选出两人有(A,B )(A,C )(A,D )(B,C )(B,D )(C,D )共6种,其中至少有1人x 指标的值大于1.7有(A,B )(A,C )(A,D )(B,C )(C,D )共5种,故所求的概率56P =.(或15166P =-=)---------------------------------------------12分 (18)解:(Ⅰ)由已知得222CD BD BC =+,BC BD ⊥∴,-----------------------------------------------------1分又BC AB ⊥,B AB BD = , ABD BC 平面⊥∴,---------------------------------------2分AD BC ⊥∴,-----------------------------------------------3分又AD CD ⊥,C CD BC = ,BCD AD 平面⊥∴,----------------------------------4分BD AD ⊥∴.-------------------------------------------5分(Ⅱ)∵E 为AC 的中点,∴12BEC ABC S S ∆∆=, 从而有12C DBE A DBC V V --=16DBC S AD ∆=⋅,-------------------------7分 在Rt △ADB 中,60ABD ∠=︒,BD=BC=1,∴AB=2,又211121=⨯⨯=∆DBC S,∴1162C DBE V -=⨯=,---------------------9分 在Rt △ABC中,BC=1, AB=2,∴5=AC , ∵DE = EB =12AC=,DB=1,∴△DBE 的边DB 1=,∴211121=⨯⨯=∆DBE S ,---------------------------------------------------------10分 设点C 到平面DBE 的距离为h ,则12331=⋅=∆-h S V DBE DBE C ,即12361=h , 解得23=h .------------------------------------------------------12分(20)解:(Ⅰ)设0P y ⎫⎪⎪⎭,由切线长定理,PQ ==-------------2分依题意,PQ PF =,得222220092y a b y +--=-+, 得224a b +=;---------------------------------------------------------------------------4分又222a b -=,可得23a =,21b =,----------------------------------------------5分 椭圆的方程为2213x y +=;----------6分(Ⅱ)设(),0T t ,则l 的方程为)y x t =-,-------------------------------------7分 联立2213x y +=,消去y ,得222230x tx t -+-=,-------------------8分 设()()1122,,,A x y B x y ,由韦达定理得212123,2t x x t x x -+==,------9分 由弦长公式,222212113TA TB x t x t ⎛⎫⎡⎤+=+-+- ⎪⎣⎦⎝⎭ ()()2212121242223x x x x x x t t ⎡⎤=+--++⎣⎦ 4=,即22TA TB +为定值. -----12分21.(Ⅰ)证明:易得()ln ,0A m ,()0,1B m -,-----------------1分 于是ln 1ln 1OA OB m m m m -=--=--,---------------2分记()ln 1,01f x x x x =--<<,则()110f x x'=-<,即()f x 在()0,1x ∈上单调递减,-------3分 ()()10f x f >=,故OA OB >,得证;---------------------------------------4分(II )当01n <<时,n m ≠,|OC|>|OD|,显然三角形AOB 与三角形COD 不可能全等;当1n =时,,C D 重合,三角形COD 不存在;--------------------------------5分当1n >时,()ln ,0C n ,()0,1D n -,结合(Ⅰ)的证明过程知OC OD <,故欲使直角三角形AOB 与直角三角形COD 全等,只有OA OD OB OC ⎧=⎪⎨=⎪⎩, 即ln 11ln m n m n-=-⎧⎨-=⎩①②,由①解得n e m e =,代入②,整理得ln 0n n e n e e -+=,-------------7分 记()ln x x g x e x e e =-+,1x >,()1ln 1x g x e x x ⎛⎫'=+- ⎪⎝⎭, 记()1ln 1h x x x=+-,1x >,显然()h x 与()g x '同号, ()221110x h x x x x-'=-=>,故()h x 递增, ()()10h x h >=,即0)('>x g ,得()g x 在()1,+∞上单调递增,-----------------------10分 ()()10g x g >=,所以方程ln 0n n e n e e -+=无解;--------------------------11分综上,不存在正数n (n m ≠),使得直角三角形AOB 与直角三角形COD 全等.---12分(22)解:(I )圆C 的直角坐标方程为221124x y ⎛⎫+-= ⎪⎝⎭,----------------------2分 化为极坐标方程为sin ρθ=;---------------------------------------------------4分 (II )设()122,,,3M N πρθρθ⎛⎫+ ⎪⎝⎭,----------------------------------------------------5分 122sin sin 3OM ON πρρθθ⎛⎫+=+=++ ⎪⎝⎭1sin sin 23πθθθ⎛⎫==+ ⎪⎝⎭--------------------8分 由0203θππθπ≤≤⎧⎪⎨≤+≤⎪⎩,得03πθ≤≤,2333πππθ≤+≤,sin 13πθ⎛⎫≤+≤ ⎪⎝⎭,即OM ON +的最小值为.--------------------------10分(23)解:(I )|||)1(1||1||1|)(m m x x m x x x f =++-+≥++++=,---------------------2分由题意知|2|||-≥m m ,得22)2(-≥m m ,解得1≥m ;------------------------------4分(II )不等式为m x m x 2|1||1|<-++-,即m m x x 2|)1(||1|<+-+-若0≤m ,显然不等式无解;若0>m ,则11>+m . ①当1≤x 时,不等式为m x m x 211<-++-,解得21m x ->,所以121≤<-x m ;------6分 ②当11+<<m x 时,不等式为m x m x 211<-++-,恒成立,所以11+<<m x ;--------8分③当1+≥m x 时,不等式为m m x x 2)1(1<+-+-,解得123+<m x , 所以1231+<≤+m x m ;综上所述,当0≤m 时,不等式的解集为空集, 当0>m 时,解集为}12321|{+<<-m x m x .-------------------------------------------10分。
2018年普通高等学校招生全国统一考试广东省文科数学模拟试卷(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.421ii-=+( ) A .3i - B .3i + C .13i + D .13i - 2.已知()1,3a =-,(),4b m m =-,若//a b ,则m =( ) A .1 B .2- C .3 D .63.已知x R ∈,集合{}0,1,2,4,5A =,集合{}2,,2B x x x =-+,若{}0,2A B =,则x =( )A .2-B .0C .1D .24.空气质量指数(简称:AQI )是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:[)0,50为优,[)50,100为良,[)100,150为轻度污染,[)150,200为中度污染,[)200,250为重度污染,[)250,300为严重污染.下面记录了北京市22天的空气质量指数,根据图表,下列结论错误的是( )A .在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量B .在北京这22天的空气质量中,有3天达到污染程度C. 在北京这22天的空气质量中,12月29日空气质量最好 D .在北京这22天的空气质量中,达到空气质量优的天数有6天5.如图,AD 是以正方形的边AD 为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为( )A .16π B .316 C.4πD .14 6.已知等比数列{}n a 的首项为1,公比1q ≠-,且()54323a a a a +=+,则5a =( ) A .9- B .9 C.81- D .817.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点坐标为()4,0,且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )A .22188x y -=B .2211616x y -= C. 22188y x -= D .22188x y -=或22188y x -= 8.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .86π+B .66π+ C.812π+ D .612π+9.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )A. B. C. D.10.已知三棱锥D ABC-的外接球的球心O恰好是线段AB的中点,且AC BC BD AD====2=,则三棱锥D ABC-的体积为()A.3B.3C.3D.1311.已知数列{}n a的前n项和为n S,115a=,且满足112325n na an n+=+--,已知*,n m N∈,n m>,则n mS S-的最小值为()A.494- B.498- C.14- D.28-12.已知函数()()ln3xf x e x=-+,则下面对函数()f x的描述正确的是()A.()0,x∀∈+∞,()2f x≤ B.()0,x∀∈+∞,()2f x>C. ()0,x∃∈+∞,()00f x= D.()()min0,1f x∈第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数()()()2sin20f x xϕϕ=+<的图象向左平移3π个单位长度,得到偶函数()g x的图象,则ϕ的最大值是.14.设x,y满足约束条件2,1,1,yy xy x≤⎧⎪≥-+⎨⎪≥-⎩则3412z x y=--的最大值为.15.设函数()2logf x a x=+在区间[]1,a上的最大值为6,则a=.16.已知抛物线()220y px p=>与圆()2211x y+-=,则该抛物线的焦点到准线的距离为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC∆中,内角A,B,C所对的边分别为a,b,c,已知60B=,8c=.(1)若点M 是线段BC 的中点,ANBM=b 的值; (2)若12b =,求ABC ∆的面积.18.经销商第一年购买某工厂商品的单价为a (单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:为了研究该商品购买单价的情况,为此调查并整理了个经销商一年的销售额,得到下面的柱状图.已知某经销商下一年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额m (单位:万元),年销售额超过m 的可以获得红包奖励,该工厂希望使62%的经销商获得红包,估计m 的值,并说明理由. 19.如图:在五面体ABCDEF 中,四边形EDCF 是正方形, 90ADE ∠=, (1)证明:FCB ∆为直角三角形;(2)已知四边形ABCD 是等腰梯形,且60DAB ∠=,1AD DE ==,求五面体ABCDEF 的体积.20.已知椭圆()2212:108x yC b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线21:8C y x =的焦点. (1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为()1,1,求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n +是定值. 21.已知函数()xmf x nx e =+. (1)若函数()f x 的图象在点()()0,0f 处的切线方程为32y x =-+,求m ,n 的值;(2)当1n =时,在区间(],1-∞上至少存在一个0x ,使得()00f x <成立,求实数m 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3,4x y a ⎧=+⎪⎨⎪=+⎩(t 为参数),圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线()03πθρ=>与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.23.选修4-5:不等式选讲 已知()32f x mx x n =+-+.(1)当2m =,1n =-时,求不等式()2f x <的解集;(2)当1m =,0n <时,()f x 的图象与x 轴围成的三角形面积大于24,求n 的取值范围.试卷答案一、选择题1-5:DABCD 6-10:BABCA 11、12:CB 二、填空题 13.6π-14.9- 15.416.6三、解答题17.解:(1)若点M 是线段BC的中点,AMBM=BM x =,则AM =, 又60B =,8AB =,在ABM ∆中,由余弦定理得2236428cos60x x x =+-⨯, 解得4x =(负值舍去),则4BM =,8BC =. 所以ABC ∆为正三角形,则8b =. (2)在ABC ∆中,由正弦定理sin sin b cB C=,得8sin 2sin 123c BC b===又b c >,所以B C >,则C为锐角,所以cos 3C =. 则()1sin sin sin cos cos sin 2A B C B C B C =+=+==, 所以ABC ∆的面积1sin 4826S bc A ==⨯=18. 解:(1)由题可知:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.(2)因为后4组的频率之和为0.040.10.120.240.50.62+++=<, 而后5组的频率之和为0.040.10.120.240.30.80.62++++=>, 所以100200m ≤≤. 由0.120.3200100m =-,解得160m =. 所以年销售额标准为160万元时,62%的经销商可以获得红包.19.(1)证明:由已知得AD DE ⊥,DC DE ⊥,,AD CD ⊂平面ABCD ,且AD CD D =,所以DE ⊥平面ABCD .又BC ⊂平面ABCD ,所以BC ED ⊥.又因为//ED FC ,所以FC BC ⊥,即FCB ∆为直角三角形. (2)解:连结AC ,AF ,ABCDEF A CDEF F ACB V V V --=+.过A 作AG CD ⊥交CD 于G ,又因为DE ⊥平面ABCD ,所以DE AG ⊥, 且CDDE D =,所以AG ⊥平面CDEF ,则AG 是四棱锥A CDEF -的高.因为四边形ABCD 是底角为60的等腰梯形,1AD DE ==,所以AG =,2AB =,13A CDEF CDEF V AG S -=⋅=因为DE ⊥平面ABCD ,//FC DE ,所以FC ⊥平面ABCD ,则FC 是三棱锥F ACB -的高.13F ACB ACB V FC S -∆=⋅=.所以3ABCDEF A CDEF F ACB V V V --=+=.20.解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=.(1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得()()()()12121212084x x x x y y y y +-+-+=,又MN 的中点为()1,1,所以122x x +=,122y y +=. 所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,118m n +==当直线AB 的斜率存在且不为0时,设直线AB 的方程为()2y k x =-,设()11,A x y ,()22,B x y ,联立方程得()222,28,y k x x y ⎧=-⎪⎨+=⎪⎩消去y 并化简得()2222128880k x k x k +-+-=, 因为()()()()222228412883210kk k k ∆=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+. 所以)22112k m k+==+,同理可得)2212k n k +=+.所以222211122118k k m n k k ⎫+++=+=⎪++⎭为定值. 21.解:(1)因为()'xm f x n e=-+,让你以()'0f n m =-,即3n m -=-. 又因为()0f m =,所以切点坐标为()0,m ,因为切点在直线32y x =-+上,所以2m =,1n =-.(2)因为()x m f x x e=+,所以()'1x x x m e m f x e e -=-+=.当0m ≤时,()'0f x >,所以函数()f x 在(],1-∞上单调递增,令00x a =<,此时()00a mf x a e=+<,符合题意;当0m >时,令()'0fx =,则ln x m =,则函数()f x 在(),ln m -∞上单调递减,在()ln ,m +∞上单调递增.①当ln 1m <,即0m e <<时,则函数()f x 在(),ln m -∞上单调递减,在(]ln ,1m 上单调递增, ()()min ln ln 10f x f m m ==+<,解得10m e<<.②当ln 1m ≥,即m e ≥时,函数()f x 在区间(],1-∞上单调递减,则函数()f x 在区间(],1-∞上的最小值为()110mf e=+<,解得m e <-,无解. 综上,1m e <,即实数m 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭.22. 解:(1)在直线l 的参数方程中消去t ,可得,304x y a --+=, 将cos x ρθ=,sin y ρθ=代入以上方程中, 所以,直线l 的极坐标方程为3cos sin 04a ρθρθ--+=. 同理,圆C 的极坐标方程为26cos 6sin 140ρρθρθ--+=. (2)在极坐标系中,由已知可设1,3M πρ⎛⎫⎪⎝⎭,2,3A πρ⎛⎫⎪⎝⎭,3,3B πρ⎛⎫⎪⎝⎭. 联立2,36cos 6sin 140,πθρρθρθ⎧=⎪⎨⎪--+=⎩可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB的中点,所以132ρ+=,即323M π⎛⎫+ ⎪ ⎪⎝⎭.把3M π⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(31130224a +⨯-+=,所以94a =. 23. 解:(1)当2m =,1n =-时,()2321f x x x =+--.不等式()2f x <等价于()()3,223212,x x x ⎧<-⎪⎨⎪-++-<⎩或()()31,2223212,x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或()()1,223212,x x x ⎧>⎪⎨⎪+--<⎩解得32x <-或302x -≤<,即0x <.所以不等式()2f x <的解集是(),0-∞. (2)由题设可得,()3,3,3233,3,23,,2x n x n f x x x n x n x n x n x ⎧⎪+-<-⎪⎪=+-+=++-≤≤-⎨⎪⎪-+->-⎪⎩所以函数()f x 的图象与x 轴围成的三角形的三个顶点分别为3,03n A +⎛⎫-⎪⎝⎭,()3,0B n -,,322nn C ⎛⎫-- ⎪⎝⎭. 所以三角形ABC 的面积为()2613332326n n n n -+⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭. 由题设知,()26246n ->,解得6n <-.。