2016-2017学年北京市丰台十二中七年级下学期期中数学试题(含答案)
- 格式:doc
- 大小:1020.47 KB
- 文档页数:12
E北京市2016-2017学年七年级下学期期中考试数学试卷班级_____ 姓名_____ 学号_____ 成绩_____注意:时间100分钟,满分100分.一、选择题(每题3分,共30分)1.方程2x -1y=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个2.下列说法错误的是( )A .1的平方根是1B .-1的立方根是-1C .2是2的平方根D .-错误!未找到引用源。
是()23-的平方根3.下列语句:①点(3,2)与点(2,3)是同一点;②点(2,1)在第二象限;③点(2,0) 在第一象限;④点(0,2)在x 轴上,其中正确的是( )A .①②B .②③C .①②③④D . 没有4.如图,在数轴上表示某不等式组中的两个不等式的解集, 则该不等式组的解集为( )A .x <4B .x <2C .2<x <4D .x >25. 如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .1个B .2个C .3个D .4个6. 6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍, 则甲现在的年龄为 ( )A. 12B. 18C. 24D. 307.在下列各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是( )CA.2个B.3个C.4个D.5个8. 如图,AB ∥CD ,且∠BAP =60°-α,∠APC =45°+α, ∠PCD =30°-α,则α=( )A.10°B.15°C.20°D.30°9.平面直角坐标系xoy 中,有两点A (m ,0),B (5,8),请你求出线段AB 的最小值, 及此时m 的值( )A . AB 最小值为5,m=8 B . AB 最小值为3,m=0C . AB 最小值为5,m=5D . AB 最小值为8,m=5 10.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( )A .3m ≥B . 3m =C .3m <D .3m ≤二、填空题(每题2分,共20分)11. 把命题“对顶角相等”写成“如果……,那么……”的形式为:____________________________________________________.12.已知212+++b a =0,则 ab=_____________.13. 如果点()1,-a a M 在x 轴下侧,在y 轴的右侧,那么a 的取值范围是_____________.14.a -b=2,a -c=3,则(b -c )3-3(b -c )+1=________.15.若方程m x x -=+33 的解是正数,则m 的取值范围是_________.16. 方程72=+y x 的正整数解有_______组,分别为__________________________.班级_____ 姓名_____ 学号_____17. 某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价 30元,主楼梯道宽2米,其侧面如图所示, 则购买地毯至少需要_____元.18.当x 满足_____________时,3345223+-+++-x x x 有意义.19.如图所示,一个四边形纸片ABCD ,90B D ==∠∠, 把纸片按如图所示折叠,使点B 落在AD 边上的B '点,AE 是折痕,130C = ∠,则AEB ∠的度数为_____________20.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2014次,点P 依次落在点2013321,,,P P P P 2014,P 的位置,记),(i i i y x P ,错误!未找到引用源。
2016-2017学年七年级(下)期中数学试卷一、选择题(每题3分,共24分,答案填在上方的表格里)1.下列图形中,∠1与∠2是内错角的是()A.B.C.D.2.在下面四根木棒中,选一根能与长为4cm,9cm的两根木棒首尾依次相接钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.计算x3•x3的结果是()A.2x3B.2x6C.x6D.x94.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①②B.①③ C.②③ D.③④5.计算﹣2a(a2﹣1)的结果是()A.﹣2a3﹣2a B.﹣2a3+a C.﹣2a3+2a D.﹣a3+2a6.下列各式中,计算结果为81﹣x2的是()A.(x+9)(x﹣9)B.(x+9)(﹣x﹣9)C.(﹣x+9)(﹣x﹣9)D.(﹣x﹣9)(x﹣9)7.下列方程中是二元一次方程的是()A.3x+y=0 B.2x﹣1=4 C.2x2﹣y=2 D.2x+y=3z8.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°二、填空题(每题3分,共30分)9.一种细菌的半径是0.00003厘米,这个数用科学记数法表示为厘米.10.已知a+b=3,ab=2,计算:a2b+ab2等于.11.如果一个正多边形的一个外角是36°,那么该正多边形的边数为.12.计算:(2x)2•3x=.13.(y﹣1)2=.14.因式分解:a2﹣4=.15.请你写一个关于x,y的二元一次方程组,使得它的解为.16.如图,已知AB∥CD,则∠1与∠2,∠3的关系是.17.计算0.1252015×(﹣8)2016=.18.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.三、解答题(本大题共有9小题,满分66分)19.计算(每题4分,共8分):(1)()﹣1+()2×(﹣2)3﹣(π﹣3)0.(2)4xy2•(﹣x2yz3).20.因式分解(每题4分,共8分);(1)2a2﹣2;(2)m2﹣12mn+36n2.21.解下列方程组(每题5分,共10分)(1)(2)22.(8分)已知,如图,在正方形网格中,每个小正方形的边长均为1,将△ABC先向上平移3格,再向左平移2格.(1)画出平移后的图形△A′B′C′;(2)直接写出△A′B′C′的面积.23.(6分)已知:A=4x+y,B=4x﹣y,计算A2﹣B2.24.(6分)已知a x=5,a x+y=30,求a x+a y的值.25.(6分)如图,BD是△ABD与△CBD的公共边,AB∥CD,∠A=∠C,试判断AD与BC的位置关系,并说明理由.26.(6分)七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.(8分)如图1,是一个长为2m、宽为2n的长方形,沿图中虚线剪成四个完全一样的小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)用两种不同的方法计算图2中阴影部分的面积,可以得到的等式是(只填序号);①(m+n)2=m2+2mn+n2 ②(m﹣n)2=m2﹣2mn+n2③(m﹣n)2=(m+n)2﹣4mn(3)若x﹣y=﹣4,xy=,则x+y=.2016-2017学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9.3×10﹣510.6.11.10.12. 12x3.13.y2+1﹣2y.14.(a+2)(a﹣2).15..16.∠1=∠2+∠3.178.18.25n2.三、解答题(本大题共有9小题,满分66分)19.计算:(1)()﹣1+()2×(﹣2)3﹣(π﹣3)0.(2)4xy2•(﹣x2yz3).解:(1)原式=﹣2﹣1=3﹣2﹣1=0;(2)4xy2•(﹣x2yz3)=4×(﹣)(x•x2)(y2•y)z3=﹣x3y3z3.20.因式分解;(1)2a2﹣2;(2)m2﹣12mn+36n2.解:(1)原式=2(a2﹣1)=2(a+1)(a﹣1);(2)原式=(m﹣6n)2.21.解:(1),把?代入?得:6y+y+7=0,即y=﹣1,把y=﹣1代入?得:x=﹣3,则方程组的解为;(2),?﹣?×2得:7y=35,即y=5,把y=5代入?得:x=2,则方程组的解为.22.解:(1)如图所示:△A'B'C'即为所求;(2)△A'B'C'的面积为:×4×4=8.故答案为:8.23.已知:A=4x+y,B=4x﹣y,计算A2﹣B2.解:∵A=4x+y,B=4x﹣y,∴A2﹣B2=(A+B)(A﹣B)=(4x+y+4x﹣y)(4x+y﹣4x+y)=8x×2y=16xy.24.已知a x=5,a x+y=30,求a x+a y的值.解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.25.解:AD∥BC.理由:∵AB∥CD,∴∠A+∠ADC=180°.∵∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC.26.解:设钢笔每支为x元,笔记本每本y元,据题意得答:钢笔每支5元,笔记本每本3元。
2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有 小题,每题 分,共 分) 、下面四个图形中 与 是对顶角的是( )✌. . . .、方程组的解为( ) ✌....、在♊ ⍓;♋⌧﹣ ⍓;♌⌧⍓;♍ ⍓四个式子中,不是二元一次方程的有( ) ✌. 个 . 个 . 个 . 个 、如图所示,图中 与 是同位角的是( )2(1)11212(3)12(4)✌、 个 、 个 、 个 、 个 .下列运动属于平移的是( )✌.冷水加热过程中小气泡上升成为大气泡 .急刹车时汽车在地面上的滑动 .投篮时的篮球运动 .随风飘动的树叶在空中的运动、如图 ,下列能判定✌的条件有☎ ✆个☎✆ ︒=∠+∠180BCD B ; ☎✆21∠=∠;☎✆ 43∠=∠; ☎✆ 5∠=∠B✌. . . 、下列语句是真命题的有☎ ✆♊点到直线的垂线段叫做点到直线的距离; ♋内错角相等;♌两点之间线段最短; ♍过一点有且只有一条直54D3E21C B A图线与已知直线平行;♎在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.✌. 个 . 个 . 个. 个、如图 ,把一个长方形纸片沿☜☞折叠后,点 、 分别落在 、 的位置,若 ☜☞,则 ✌☜☎ ✆✌、 、 、 、 、如图 ,直线21//l l , ✌, ,则 ( )✌. . . . 、如图 ,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点 到 的方向平移到 ☜☞的位置,✌, ,平移距离为 ,则阴影部分面积为( )✌∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙二、填空题(本题有 小题, 题 分,其余每题 分,共 分) 、﹣ 的立方根是的平方根是 如果,那么♋ ,的绝对值是 , 2的小数部分是♉♉♉♉♉♉♉、命题❽对顶角相等❾的题设 ,结论、( )点 在第二象限内, 到⌧轴的距离是 ,到⍓轴的距离是 ,那么点 的坐标为♉♉♉♉♉♉♉ ( )若,则、如图 ,一艘船在✌处遇险后向相距 海里位于 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置图图F EDCB音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥、 ✌的两边与 的两边互相平行,且 ✌比 的 倍少 ,则 ✌的度数为♉♉♉♉♉♉♉、在平面直角坐标系⌧⍓中,对于点 (⌧,⍓),我们把点 ( ⍓,⌧)叫做点 的伴随点.已知点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,⑤,这样依次得到点✌ ,✌ ,✌ ,⑤,✌⏹,⑤.若点✌ 的坐标为( , ),则点✌ 的坐标为 , 点✌ 的坐标为♉♉♉♉♉♉♉♉♉ 三、解答题(本题有 小题,共 分)、(本题有 小题,每小题 分,共 分)(一)计算:( )322769----)( ( ))13(28323-++-☎✆ ☎- ✆+ ☎ +✆. (二)解方程:( ) ⌧ . ( )(⌧﹣ ) ( )、(本小题 分)把下列各数分别填入相应的集合里:38,3,- ,3π,722,32-,87-, ,- ••02, ,7-, ⑤☎每两个相邻的 中间依次多 个 ✆. ☎✆正有理数集合: ⑤❝; ☎✆负无理数集合:⑤❝;、(本小题 分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示 可是她忘记了在图中标出原点和⌧轴 ⍓轴 只知道游乐园 的坐标为( ,- ), 请你帮她画出坐标系,并写出其他各景点的坐标、(本小题 分)已知 是⌧的立方根,且(⍓) ,求的值.、(本小题 分)如图,直线✌、 、☜☞相交于点 .( )写出 ☜的邻补角;( )分别写出 ☜和 ☜的对顶角;( )如果 ,EFAB ,求 ☞和 ☞的度数.、(本小题 分)某公路规定行驶汽车速度不得超过 千米 时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中❖表示车速(单位:千米 时),♎表示刹车后车轮滑过的距离(单位:米),♐表示摩擦系数.在一次交通事故中,经测量♎米,♐.请你判断一下,肇事汽车当时是否超出了规定的速度?、(本小题 分)完成下列推理说明:( )如图,已知 , ,可推出✌.理由如下:因为 (已知),且 ( )所以 (等量代换) 所以 ☜☞( )所以 ( )又因为 (已知) 所以 (等量代换)所以✌( )( )如图,已知 , .求证: ☜ ☞☜.证明: (已知),✌ ( )( )又 (已知), (等量代换)✌☜( ) ☜ ☞☜( )、(本小题 分)如图,长方形 ✌中, 为平面直角坐标系的原点,点✌、 的坐标分别为✌( , ), ( , ),点 在第一象限.( )写出点 的坐标 ;( )若过点 的直线交长方形的 ✌边于点 ,且把长方形 ✌的周长分成 : 的两部分,求点 的坐标;( )如果将( )中的线段 向下平移 个单位长度,得到对应线段 , 在平面直角坐标系中画出 ,并求出它的面积.、(本小题 分)如图,已知 , ,你能判断 与 ✌☜的大小关系吗?并说明理由(本小题 分)如图,在平面直角坐标系中,点✌, 的坐标分别为(﹣ , ),( , ),现同时将点✌, 分别向上平移 个单位,再向右平移 个单位,分别得到点✌, 的对应点 , ,连接✌, , .得平行四边形✌( )直接写出点 , 的坐标;( )若在⍓轴上存在点 ,连接 ✌, ,使 ✌ 平行四边形✌,求出点 的坐标.( )若点 在直线 上运动,连接 , .请画出图形,直接写出 、 、 的数量关系. 学年度第二学期期中联考数学科 评分标准一、选择题(本大题共 小题,每小题 分,共 分)二、填空题(本大题共 小题, 题 分,其余每小题 分,共 分). 、 ± 、 、 ﹣、 2 .题设 两个角是对顶角 结论 这两个角相等.( ) ( , ) ( ) . 南偏西 °, 海里. °或 ° ☎答出一种情况 分) . ( ) 、 ( )三、解答题(本大题共 小题,共 分)☎分)☎一✆( )322769----)( ( ))13(28323-++-解:原式= (- ) … 解:原式=232223-++-…… = …………………… =…233-……… ☎✆ ☎- ✆+ ☎ +✆. 解:原式=13222++-……=222+ ……………………(二)( ) ⌧ . ( )(⌧﹣ ) 题号答案✌✌✌解:⌧ ,…… ⌧﹣ 或⌧﹣ ﹣ ……⌧±,…… ⌧═ 或⌧…… (求出一根给 分)( ),(⌧ ) ,…… ⌧ ,…… ⌧.……(本小题 分)解:☎✆正有理数集合: 38,722, ,…❝ …… 分 ☎✆负无理数集合: 32-,7-,…❝.…… 分(本小题 分)解:( )正确画出直角坐标系;…… 分( )各点的坐标为✌☎✆( , ), (﹣ , ),☜( , ),☞( , );…… 分 (本小题 分)解:∵ 是⌧的立方根, ∴⌧,…… ∵(⍓﹣ ) ,∴, 解得:,……∴.……(本小题 分)解:( )∠ ☞和∠☜……( )∠ ☜和∠ ☜的对顶角分别为∠ ☞和∠✌☞.…… ( )∵✌⊥☜☞ ∴∠✌☞∠ ☞°∴∠ ☞∠ ☞∠ ° ° °…… 又∵∠✌∠ °∴∠☞∠✌☞∠✌° ° °.……(本小题 分)解:把♎,♐代入❖ ,❖ ( ❍♒)……∵ > , ……∴肇事汽车当时的速度超出了规定的速度.…….( 分)( )如图,已知∠ ∠ ,∠ ∠ ,可推出✌∥ .理由如下:因为∠ ∠ (已知),且∠ ∠ (对顶角相等)……所以∠ ∠ (等量代换)所以 ☜∥ ☞(同位角相等,两直线平行)……所以∠ ∠ (两直线平行,同位角相等)……又因为∠ ∠ (已知)所以∠ ∠ (等量代换)所以✌∥ (内错角相等,两直线平行)……( )在括号内填写理由.如图,已知∠ ∠ °,∠ ∠ .求证:∠☜∠ ☞☜.证明:∵∠ ∠ °(已知),∴✌∥ (同旁内角互补,两直线平行)……∴∠ ∠ ☜(两直线平行,同位角相等)……又∵∠ ∠ (已知),∴∠ ☜∠ (等量代换)……∴✌∥ ☜(内错角相等,两直线平行)……∴∠☜∠ ☞☜(两直线平行,内错角相等)…….( 分)解:( )点 的坐标( , );……( )长方形 ✌周长 ×( ) ,∵长方形 ✌的周长分成 : 的两部分,∴两个部分的周长分别为 , ,∵ ✌∴ ∵ ,∴ ,∴点 的坐标为( , );……( )如图所示,△ ′ ′即为所求作的三角形,……′ ,点 ′到 ′的距离为 ,所以,△ ′ ′的面积 × × .……( 分)解:∠ 与∠✌☜相等,……理由为:证明:∵∠ ∠ °,∠ ∠ ☞☜°,∴∠ ∠ ☞☜ ……∴✌∥☜☞∴∠ ∠✌☜ ……又∠ ∠∴∠ ∠✌☜∴ ☜∥ ……∴∠ ∠✌☜……、(本小题 分)解:( ) ( , ), ( , );……( )∵✌, ,∴ 平行四边形✌ ✌• × ,设 坐标为( ,❍),∴× × ❍,解得❍±∴ 点的坐标为( , )或( ,﹣ );…… (求出一点给 分)( )当点 在 上,如图 ,∠ ∠ ∠ ;……当点 在线段 的延长线上时,如图 ,,∠ ﹣∠ ∠ ;……同理可得当点 在线段 的延长线上时,∠ ﹣∠ ∠ .…… ☎每种情况正确画出图形给 分✆。
54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
北京市丰台区2016--2017学年第二学期期末考试初一数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A BC D4.如果⎩⎨⎧-==21yx ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是A .35°B .45°C .55°D .65°7.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示. 如果知道香草口味冰淇淋一天售出200份,那么芒果口味冰淇淋一天售出的份数是 A .80 B .40 C .20 D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9C .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,8香草味50%巧克力 味25%芒果味抹茶味15%21D C10.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC= °.14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.AB CM NDE FABlP19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.”王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:(1)王老师是第 次购买足球和篮球时,遇到商场打折销售的; (2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买 个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,∆ABC .求证:∠A +∠B +∠C =180°. 证明:延长BC ,过点C 作CM ∥BA .∴∠A =∠1(两直线平行,内错角相等), ∠B =∠2(两直线平行,同位角相等). ∵∠1+∠2+∠ACB =180°(平角定义), ∴∠A +∠B +∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,.(1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值; ② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.丰台区2016-2017学年度第二学期期末练习初一数学评分标准及参考答案三、解答题(本题共52分) 17.解:原式=1112--+ …… 3分 =32-. …… 4分 18.解:原式=3223122.a b a b - …… 4分19. 5178(1),1062x x x x ①.②-<-⎧⎪⎨--≤⎪⎩ 解: 3.x 由①,得>- ……1分2.x ≤由②,得 ……2分∴3 2.x -<≤ ……3分 ∴正整数解为1,2. …… 4分 20.231,2 4.x y x y +=⎧⎨-=⎩①②解:由②,得42x y =+.③ ……1分把③代入①,得 843 1.y y ++= 解得 1.y =-……2分把1y =-代入③,得 2x =.……3分∴原方程组的解是 2,1.x y =⎧⎨=-⎩……4分21.解:原式=223(96)ab a b ab -+- …2分=23(3).ab a b -- ……4分22.解:原式=2224263(441)1m m m m m m +++-+++- =24 1.m m ++ ……3分 当14m =-时,原式=211()4()144-+⨯-+1=.16……5分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩ 解得:50,80.x y =⎧⎨=⎩答:足球的标价为50元,篮球的标价为80元; ……4分(3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表项目 骑行 付费/押金 找车/开锁/还车流程管理维护 满意度97.9%96.2%91.9%72.2% (3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义), ∴∠B +∠BAC +∠C =180°. ……5分27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分ABMN11 解不等式②,得1812a p -≤.181.12a p -∴-<≤ ……4分 ∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
2016—2017学年度第二学期初一年级数学期中试卷一、选择题(每小题3分,共30分) 1.下列运算中,正确的是 ( )A.326a a a ⋅= B. 448b b b += C.824a a a ÷=D.2363(3)27p q p q -=-2.下列多项式相乘,能用平方差公式计算的是( )A .(2)(2)a b b a +-B .(23)(32)a b b a -+C .(3)(3)m n m n --+D 3. 如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( ) A .30° B .45° C . 60° D .75°第3题图 第5题图4.要使2(2)()x x b x a -+-中不含x 的一次项和二次项,则,a b 的值分别为( ) A .2,4a b =-=- B .2,4a b == C .2,4a b ==- D .2,4a b =-= 5.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D=∠B ;⑤∠1+∠3+∠B=180°.其中能说明AB ∥DC 的条件有 ( ) A .5个 B .4个 C . 3个 D .2个6. 海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.如下图所示,是某港口从0时到12时的水深情况,下列说法不正确的是 ( ) A .时间是自变量,水深是因变量;B .3时时水最深,9时时水最浅;C .0时到3时港口水深在增加,3时到12时港口水深在减少;D .图象上共有3个时刻水深恰好为5米.第6题图7. 已知3,2x y xy -=-=,则(2)(2)x y +-的值是( ) A .4 B .-8 C .12 D .08. 下列说法中,正确的个数是( ) (1)在同一平面内,不相交的两条线段一定平行; (2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)两条平行线被第三条直线所截,一对内错角的角平分线互相平行; (5)从直线外一点到这条直线的垂线段,叫做这个点到直线的距离; (6)两个角互补,则一个角一定是钝角,另一个角一定是锐角. A . 1个 B.2个 C .3个 D .4个9. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD=70°,则∠AOF=( ).A .35°B .45°C .55°D .65°10. 已知2510a a --= ,则221a a +的值为( ) A .5 B .25 C . 23 D .27第9题图 二、填空题(每小题3分,共18分)11.(1)(1)p p -+= ,62()a a ÷-= ,201620170.25(4)⨯-= ;12. 在电子显微镜下测得一个球体细胞的直径是5510cm -⨯,3102⨯个这样的细胞排成的细AB CDEF1 胞链的长度是 ;13.一个角的余角与它的补角之比为1:4,则这个角的度数是 ; 14. 已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;15. 如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于 ;16. 已知 925,310,a b ==则23a b -= .第15题图三、解答题(共52分) 17.(共12分)计算题:(1)22313()2a b ab ⋅-(2)(23)()(2)(2)a b a b a b a b -+--+(3)43()()()x y y x y x -÷-⋅-(4)(23)(23)m n m n -++-18.(5,其中2,1x y =-=.19.(5分)尺规作图(保留作图痕迹,不写作法):已知αβ∠∠、,求作一个角,使它等于αβ∠-∠.20.(5分)如图所示,梯形上底的长是x,下底的长是15,高是8,梯形面积是y .(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到15时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?(4)当x=0时,y等于什么?此时图形是什么?21.(4分)如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b之比是3:2,部分的面积.(结果用只含字母b的代数式表示,保留 .)22.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.23.(7分)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于_____________; (2)请用两种不同的方法求图②中阴影部分的面积:方法1:___________________; 方法2:___________________. (3)根据(2)请写出代数式22(),(),m n m n mn +-之间的等量关系__________________________;(4)根据(3)题中的等量关系,解决如下问题:若7,5,a b ab +==求2()a b -的值.24.(8分)探究:如图①,已知直线12//l l ,直线3l 和12l l 、分别交于点C 和D ,直线3l 上有一点P.(1)若点P 在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间有怎样的关系?并说明理由.(2)若点P 在C 、D 两点的外侧运动时(点P 与点C 、D 不重合),请尝试自己画图,写出∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由.(3)如图②,AB ∥EF ,∠C=90°,我们可以用类似的方法求出αβγ∠∠∠、、之间的关系,请直接写出αβγ∠∠∠、、之间的关系.图①图②西北大学附中初一年级数学期中试卷答案一、选择题 1. D 2. B 3. C 4. D 5. C 6. C 7. A 8. A 9. C 10. D 一、填空题11. 21p - 4a - -4 12. 1110-⨯cm 或0.1cm 13. 60° 14. 12± 15. 115° 16.120三、解答题17. (1)5738a b -(2)22a ab b -+ (3)222x xy y -+(4)224129m n n -+-18. 3126x x y --- 13319. 图略,注意写结论20.(1)1(15)84602y x x =+⨯=+ (2)(3)增加4(4)y=60 三角形 21.223216S b b π=- 22.141224//33//CE BF C B C B AB CD∠=∠∠=∠∴∠=∠∴∴∠=∠∠=∠∴∠=∠∴23. (1)m-n(2) 22(),()4m n m n mn -+- (3) 22()()4m n m n mn -=+- (4) 2924. (1)APB PAC PBD ∠=∠+∠ (2)上方:APB PBD PAC ∠=∠-∠ 下方:APB PAC PBD ∠=∠-∠(3)90αβγ∠+∠=∠+。
2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)1(2)1212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则54D3E21CB A图1∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为_________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++-图4图5FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、 2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,......3 x ═6或x=2 (3)题号 12345678910答案CDBCBCAAAD(求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分 19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。
2017七年级数学下期中综合检测试卷(北师大版附答案和解释)本资料为WoRD文档,请点击下载地址下载全文下载地址期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列计算正确的是()•a2=+a5=a10c.(-3a3)2=6a6D.(a3)2•a=a72.如图所示,边长为m+3的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是()++6++63.如果一个角的补角是150°,那么这个角的余角的度数是()°°°°4.如图所示,已知AB∥c D,∠E=28°,∠c=52°,则∠E A B 的度数是()°°°°5.如果□×3ab=3a2b,那么□内应填的代数式是()6.若a2-b2=,a-b=,则a+b的值为()A.-7.如图所示,∠1=∠2,∠3=80°,则∠4等于()°°°°8.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图所示反映了一天24小时内小红的体温变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高c.这一天小红体温T(℃)的范围是≤T≤D.从5时至24时,小红体温一直是升高的9.如图所示,图象(折线oEFPmN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时c.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10.”龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()二、填空题(每小题4分,共32分)11.化简:6a6÷3a3= .12.如图所示,AB⊥l1,Ac⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段的长度.13.已知x+y=-5,xy=6,则x2+y2= .14.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,Am⊥b,垂足为点m,若∠1=58°,则∠2= .15.一个角与它的补角之差是20°,则这个角的大小是 .16.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数1234…座位数50535659…上述问题中,第五排、第六排分别有个、个座位;第n排有个座位.17.弹簧的长度与所挂物体的质量的关系如图所示,由图可知不挂重物时弹簧的长度为 .18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系: .三、解答题(共58分)19.(8分)先化简,再求值:(1)2a(a+b)-(a+b)2,其中a=3,b=5.(2)x(x+2y)-(x+1)2+2x,其中x=,y=-25.20.(8分)已知一个角的补角等于这个角的余角的4倍,求这个角的度数.21.(10分)如图所示,已知AD与AB,cD交于A,D两点,Ec,BF与AB,cD交于E,c,B,F,且∠1=∠2,∠B=∠c.(1)试说明c E∥BF;(2)你能得出∠B=∠3和∠A=∠D这两个结论吗?若能,写出你得出结论的过程.22.(12分)小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?23.(10分)先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式9-6y-4y2=7,求2y2+3y+7的值.解:由9-6y-4y2=7,得-6y-4y2=7-9,即6y+4y2=2,因此3y+2y2=1,所以2y2+3y+7=1+7=8.问题:已知代数式14x+5-21x2=-2,求6x2-4x+5的值.24.(10分)小明在暑期社会实践活动中,以每千克元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖西瓜赚了多少钱?【答案与解析】(解析:a3•a2=a5,a5+a5=2a5,(-3a3)2=9a6,(a3)2• ;a=a6•a=a7.)(解析:按照图形剪拼的方法,观察探索出剩余部分拼成的长方形一边长为3,另一边的长是由原正方形的边长m+3与剪出的正方形边长m合成的,为m+3+m=2m+3.)(解析:由题意可知这个角是180°-150°=30°,所以它的余角是90°-30°=60°.)(解析:过E点作EF∥cD,则易知∠FEc=128°,所以∠FEA=100°,因为EF∥AB,所以∠EAB=80°.)(解析:要求□,则相当于□=3a2b÷3ab=a.)(解析:由(a+b)(a-b)=a2-b2,得(a+b)=,即可得到a+b=.)(解析:因为∠1=∠2,所以∠2与∠1的对顶角相等,所以由同位角相等,两直线平行可得a∥b,再由两直线平行,内错角相等可得∠4=∠3=80°.)(解析:由图象可知图中最底部对应横轴上的数据则是体温最低的时刻,最高位置对应横轴上的数据则是体温最高的时刻,所以清晨5时体温最低,下午5时体温最高,最高体温为℃,最低体温为℃,则小红这一天的体温范围是≤T≤,从5时到17时,小红的体温一直是升高的趋势,而17时到24时的体温是下降的趋势.所以错误的是从5时到24时,小红的体温一直是升高的.故选D.)(解析:横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A对;第12分的时候,对应的速度是0千米/时,B对;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×=2(千米),c错;从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D对.) (解析:根据题意得s1一直增加,s2有三个阶段,(1)增加;(2)睡了一觉,不变;(3)当它醒来时,发现乌龟快到终点了,于是急忙追赶,增加.但乌龟还是先到达终点,即s1在s2的上方.故选D.)(解析:6a6÷3a3=(6÷3)×(a6÷a3)=2a3.)(解析:因为AB⊥l1,由点到直线的距离可知,A点到直线l1的距离是线段AB的长度.)(解析:因为x+y=-5,所以(x+y)2=25,所以x2+2xy+y2=25.因为xy=6,所以x2+y2=25-2xy=25-12=13.)°(解析:由题意得∠ABm=∠1=58°,所以∠2=90°-58°=32°.)°(解析:设这个角为α,则α-(180°-α)=20°,解得α=100°.)653n+47(解析:从具体数据中,不难发现:后一排总比前一排多3个.根据规律,第n排有50+3(n-1)个座位,再化简即可.)(解析:不挂重物时,也就是当x=0时,根据图象可以得出y=10cm.)=(解析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y 与购书数量x的关系式,再进行整理即可得出答案.)19.解:(1)原式=(a+b)(2a-a-b)=(a+b)(a-b)=a2-ab+a b+b2=a2-b2,当a=3,b=5时,原式=32-52=-16.(2)原式=x2+2xy-x2-2x-1+2x=2x y-1,当x=,y=-25时,原式=-3.20.解:设这个角的度数为x,则180°-x=4(90°-x),解得x=60°.21.解:(1)设∠1的对顶角为∠4.因为∠1=∠4,∠1=∠2,所以∠2=∠4,所以cE∥B F.(2)∠B=∠3,∠A=∠D成立.由(1)得cE∥BF,所以∠3=∠c.又因为∠B=∠c,所以∠B=∠3,所以AB∥c D,所以∠A=∠D.22.解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离.(2)由图象看出10时他距家15千米,13时他距家30千米.(3)由图象看出12:00时他到达离家最远的地方,离家30千米.(4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30-19=11(千米).(5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐.(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).23.解:由14x+5-21x2=-2,得14x-21x2=-7,所以2x-3x2=-1,即3x2-2x=1,所以6x2-4x=2,所以6x2-4x+5=2+5=7.24.解:(1)设关系式是y=k x,把x=40,y=64代入得40k=64,解得k=则关系式是y=(2)因为降价前西瓜售价为每千克元,所以降价元后西瓜售价每千克元.降价后销售的西瓜为(76-64)÷=10(千克),所以小明从批发市场共购进50千克西瓜.(3)76-50×=76-40=36(元).即小明这次卖西瓜赚了36元钱.。
2016-2017学年北京七年级(下)月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.4的平方根是()A.±16 B.2 C.±2 D.±2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>23.如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A.24° B.34° C.44° D.54°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.<C.﹣4a>﹣4b D.3a﹣2>3b﹣26.如图,点A,B,E在一条直线上,下列条件中不能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠A=∠5 D.∠A+∠ABC=180°7.有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直其中所有正确的命题是()A.①② B.②③ C.①④ D.③④8.在下列各式中,正确的是()A.=﹣0.4 B.=2 C.=±2 D.(﹣)2+()3=09.如图,在△ABC中,D为AB边上一点,点E 在BC的延长线上,DE交AC于点F,设∠DFC=∠1,下列关于∠A、∠B、∠E、∠1的关系式中,正确的()A.∠A+∠B=∠1+∠E B.∠A+∠B=∠1﹣∠E C.∠A﹣∠B=∠1﹣∠E D.∠A﹣∠B=∠1+∠E10.若关于x的不等式mx﹣n>0的解集是,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x>D.x<二、填空题(本大题共8小题,每小题2分,共16分)11.用不等式表示“x的2倍与3的和不大于2”为.12.已知一个三角形的三个内角度数的比是1:5:6,则它的最大内角的度数为度.13.在0.,,﹣,π,这五个实数中,无理数是.14.如图所示:∠1=30°,直线AB与CD相交于点O,已知,OE是∠BOC的平分线,则∠2=,∠3=.15.如图,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为.16.如图,在长方形草地内修建了宽为2米的道路,则草地面积为米2.17.已知关于x的不等式组的整数解共有4个,则a的取值范围是.18.如图,在第1个△ABA1中,∠B=20°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第三个三角形中,以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的内角的度数为.三、解答题(本大题共9小题,每小题6分,共54分)19.计算:.20.若+(3x+y﹣1)2=0,求的平方根.21.解不等式:﹣,并把它的解集在数轴上表示出来.22.解不等式组并求出不等式组的整数解.23.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.已知:如图,∠AGF=∠ABC,∠1+∠2=180°,DE⊥AC于点E.求证:BF⊥AC.25.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为.26.列方程组和不等式解应用题小明所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个蓝球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?27.如图,已知△ABC,D为AB边上一点,∠BDC=∠ACB,过点D作直线DF.(1)若DF∥AC,判断∠FDA与∠BCD之间存在的数量关系,并证明;(2)若将直线DF绕这点D旋转(不含与AB,CD重合的情况),交射线CA于点H,判断∠ADH,∠AHD,∠BCD之间存在的数量关系并证明.一、填空题(本大题共1小题,共6分)28.已知如图:△ABC中,∠ABC的三等分线与∠ACB的三等分线分别相交于G1,G2,(1)若∠A=75°,则∠BG1C=°;∠BG2C=°;(2)试猜想:∠BG1C与∠A的关系.∠BG1C=;(3)试猜想:∠BG2C与∠A的关系.∠BG2C=.二、解答题(本大题共2小题,第29题6分,第30题8分,共14分)29.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).30.已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP 于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.2016-2017学年北京七年级(下)月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.4的平方根是()A.±16 B.2 C.±2 D.±考点:平方根.分析:根据平方根的定义,求数4的平方根即可.解答:解:4的平方根是±2.故选:C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A.24° B.34° C.44° D.54°考点:平行线的性质.分析:先根据平角的定义求出∠3的度数,然后根据两直线平行同位角相等,即可求出∠2的度数.解答:解:如图,∵∠1+∠3+∠4=180°,∠1=56°,∠4=90°,∴∠3=34°,∵a∥b,∴∠2=∠3=34°.故选B.点评:此题考查了平行线的性质,熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,是解题的关键.4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短考点:垂线段最短.专题:应用题.分析:根据垂线段的性质:垂线段最短进行解答.解答:解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.点评:此题主要考查了垂线段的性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.5.若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.<C.﹣4a>﹣4b D.3a﹣2>3b﹣2考点:不等式的性质.分析:根据不等式的性质1,可判断A;根据不等式的性质2,可判断B;根据不等式的性质3,可判断C,;根据不等式的性质1和2,可判断D.解答:解:A、在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.故A选项错误;B、在不等式a>b的两边同时除以3,不等式仍成立,即<.故B选项错误;C、在不等式a>b的两边同时乘以﹣4,不等号方向改变,即﹣4a<﹣4b.故C选项错误;D、在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a﹣2>3b﹣2.故D选项正确;故选:D.点评:本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.如图,点A,B,E在一条直线上,下列条件中不能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠A=∠5 D.∠A+∠ABC=180°考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一判断即可.解答:解:A、∵∠1=∠2,∴AD∥BC,故本选项错误;B、∵∠3=∠4,∴AB∥CD,故本选项正确;C、∵∠1=∠2,∴AD∥BC,故本选项错误;D、∵∠A+∠ABC=180°,∴AD∥BC,故本选项错误.故选B.点评:本题考查的是平行线的判定定理,用到的知识点为:同旁内角互补,两直线平行;同位角相等,两直线平行;内错角相等,两直线平行是解答此题的关键.7.有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直其中所有正确的命题是()A.①② B.②③ C.①④ D.③④考点:命题与定理.分析:根据平行线的判定方法对①③进行判断;根据平行线的性质对②进行判断;根据垂直公理对④进行判断.解答:解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①正确;两条平行直线被第三条直线所截,同旁内角互补,所以②错误;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线平行,所以③错误;在同一平面内,过一点有且只有一条直线与已知直线垂直,所以④正确.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.在下列各式中,正确的是()A.=﹣0.4 B.=2 C.=±2 D.(﹣)2+()3=0考点:立方根;算术平方根.分析:分别利用立方根以及二次根式的性质化简各数进而判断得出即可.解答:解:A、=﹣0.4,正确;B、=﹣2,故此选项错误;C、=2,故此选项错误;D、(﹣)2+()3=2+2=4,故此选项错误.故选:A.点评:此题主要考查了立方根以及平方根的性质,正确把握相关概念是解题关键.9.如图,在△ABC中,D为AB边上一点,点E 在BC的延长线上,DE交AC于点F,设∠DFC=∠1,下列关于∠A、∠B、∠E、∠1的关系式中,正确的()A.∠A+∠B=∠1+∠E B.∠A+∠B=∠1﹣∠E C.∠A﹣∠B=∠1﹣∠E D.∠A﹣∠B=∠1+∠E考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠ACE即可得解.解答:解:在△ABC中,由三角形的外角性质得,∠ACE=∠A+∠B,在△CEF中,由三角形的外角性质得,∠ACE=∠1﹣∠E,所以∠A+∠B=∠1﹣∠E.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图表示出∠ACE是解题的关键.10.若关于x的不等式mx﹣n>0的解集是,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x>D.x<考点:不等式的解集.分析:先解关于x的不等式mx﹣n>0得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.解答:解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,,解得m=7n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<,故选:A.点评:本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.二、填空题(本大题共8小题,每小题2分,共16分)11.用不等式表示“x的2倍与3的和不大于2”为2x+3≤2.考点:由实际问题抽象出一元一次不等式.分析:首先表示“x的2倍”为2x,再表示“与3的和”为2x+3,最后表示“不大于2”可得2x+3≤2.解答:解:由题意得:2x+3≤2,故答案为:2x+3≤2.点评:此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.12.已知一个三角形的三个内角度数的比是1:5:6,则它的最大内角的度数为90度.考点:三角形内角和定理.分析:根据比例设出三个内角,再根据三角形的内角和等于180°列出方程求解即可.解答:解:根据题意,设三个内角为k、5k、6k,则k+5k+6k=180°,解得k=15°,所以,最大内角度数为6k=6×15°=90°.故答案为:90.点评:本题考查了三角形的内角和定理,根据比例,利用“设k法”表示出三个内角是解题的关键.13.在0.,,﹣,π,这五个实数中,无理数是,﹣,π.考点:无理数.分析:无限不循环小数为无理数,由此可得出无理数.解答:解:在0.,,﹣,π,这五个实数中,无理数是,﹣,π,故答案为:,﹣,π点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14.如图所示:∠1=30°,直线AB与CD相交于点O,已知,OE是∠BOC的平分线,则∠2= 30°,∠3=75°.考点:对顶角、邻补角.分析:由对顶角的性质可求得∠2=30°,由邻补角的定义可求得∠COB=150°,然后根据角平分线的定义可求得∠3.解答:解:由对顶角的性质可知:∠2=∠1=30°,∵∠1+∠COB=180°,∴∠COB=180°﹣30°=150°∵OE是∠BOC的平分线,∴∠3=∠COB==75°.故答案为:30°;75°.点评:本题主要考查的是对顶角、邻补角的性质、角平分线的定义,求得∠COB的度数是解题的关键.15.如图,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为80°.考点:平行线的性质;三角形的外角性质.分析:由直线AB∥CD,∠C=125°,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.解答:解:∵直线AB∥CD,∠C=125°,∴∠1=∠C=125°,∵∠1=∠A+∠E,∠A=45°,∴∠E=∠1﹣∠A=125°﹣45°=80°.故答案为:80°.点评:此题考查了平行线的性质与三角形外角的性质.此题比较简单,解题的关键是注意掌握两直线平行,同位角相等定理的应用.16.如图,在长方形草地内修建了宽为2米的道路,则草地面积为144米2.考点:有理数的混合运算.专题:应用题.分析:本题已知道路宽,可以计算道路长,得出道路面积,用总面积减去道路面积即可.解答:解:道路的总长为:(20+10﹣2)米,即28米.则道路所占面积为28×2=56米2,则草地面积为20×10﹣56=144米2.点评:此题求出道路的总长是关键,注意应减去重合的部分.17.已知关于x的不等式组的整数解共有4个,则a的取值范围是﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:将a看做已知数,求出不等式组的解集,根据解集中整数解有4个,即可确定出a 的范围.解答:解:解不等式组由①得x≥a,由②得x<2.由不等式组有整数解知,不等式组的解集为a≤x<2.又∵不等式组共有4个整数解,∴不等式组的整数解为﹣2,﹣1,0,1,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.点评:本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.18.如图,在第1个△ABA1中,∠B=20°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第三个三角形中,以A3为顶点的内角的度数为20°;第n个三角形中以A n为顶点的内角的度数为.考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以A n为顶点的内角的度数.解答:解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×80°=40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴第n个三角形的以A n为顶点的内角的度数=.故答案为;20°,.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.三、解答题(本大题共9小题,每小题6分,共54分)19.计算:.考点:立方根;算术平方根.专题:计算题.分析:根据x3=a,则x=,x2=b(b≥0)则x=,进行解答.解答:解:=9﹣3+=.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.20.若+(3x+y﹣1)2=0,求的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.分析:先根据非负数的性质求出x,y的值,代入代数式即可得出结论.解答:解:∵+(3x+y﹣1)2=0,∴,解得,∴原式==3.∴的平方根为±.点评:本题考查的是非负数的性质,熟知非负数之和等于0时,各项都等于0是解答此题的关键.21.解不等式:﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式.专题:计算题.分析:根据一元一次不等式的解法,将不等式去分母、去括号、移项、合并同类项、系数化1,解出不等式的值即可.解答:解:去分母得,3(x+5)﹣2(2x+3)≥12,去括号得,3x+15﹣4x﹣6≥12,移项得,3x﹣4x≥12﹣15+6,合并得,﹣x≥3,系数化1得,x≤﹣3;不等式的解集在数轴上表示如下:点评:本题考查了解一元一次不等式和不等式的性质.(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.解不等式组并求出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出每个不等式的解集,再求出其公共部分,然后得到其整数解.解答:解:解不等式(1)得x>﹣2,解不等式(2)得x≤1,∴不等式组的解集为﹣2<x≤1,∴不等式组的整数解为﹣1、0、1.点评:本题考查了解一元一次不等式组和一元一次不等式组的整数解,熟悉不等式的性质是解题的关键.23.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.考点:平行线的性质;角平分线的定义.分析:由角平分线的定义,结合平行线的性质,易求∠EDC的度数.解答:解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°(两直线平行,同位角相等),∵CD平分∠ACB,∴∠BCD=∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°(两直线平行,内错角相等).点评:这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.24.已知:如图,∠AGF=∠ABC,∠1+∠2=180°,DE⊥AC于点E.求证:BF⊥AC.考点:平行线的判定与性质.分析:要证BF⊥AC,只要证得DE∥BF即可,由平行线的判定可知只需证∠2+∠3=180°,根据平行线的性质结合已知条件即可求证.解答:证明:∵∠AGF=∠ABC,∴BC∥GF(同位角相等,两直线平行),∴∠1=∠3;又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE;∵DE⊥AC,∴BF⊥AC.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=90°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为 4.8.考点:作图—基本作图.分析:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)利用两直线平行同位角相等即可确定答案;(5)利用等积法即可求得线段AC的长.解答:解:(1)如图;(2)如图;(3)如图;(4)∵CD∥OA,∴∠CDB=∠OAB=90°;(5)AC==4.8.点评:本题考查了基本作图的知识,正确的根据题意作出图形是解答本题的关键,难度不大.26.列方程组和不等式解应用题小明所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个蓝球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.解答:解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(60﹣m)个足球,由题意得,80,m+50(60﹣m)≤4000,解得:m≤33,∵m为整数,∴m最大取33,答:最多可以买33个篮球.点评:本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.27.如图,已知△ABC,D为AB边上一点,∠BDC=∠ACB,过点D作直线DF.(1)若DF∥AC,判断∠FDA与∠BCD之间存在的数量关系,并证明;(2)若将直线DF绕这点D旋转(不含与AB,CD重合的情况),交射线CA于点H,判断∠ADH,∠AHD,∠BCD之间存在的数量关系并证明.考点:平行线的性质.分析:(1)根据DF∥AC,得到∠CDE=∠ACD,由∠BDC=∠ACB,得到∠BDE=∠BCD,根据对顶角相等得到∠FDA=∠BDE,所以∠FDA=∠BCD.(2)分两种情况,分别画出图形,利用三角形的内角和与外角的性质即可解答.解答:解:(1)如图1,∵DF∥AC,∴∠CDE=∠ACD,∵∠BDC=∠ACB,∴∠BDE+∠CDE=∠ACD+BCD,∴∠BDE=∠BCD,∵∠FDA=∠BDE,∴∠FDA=∠BCD.(2)当DF交AC于点H时,如图2,在△BDC中,∠B+∠BDC+∠BCD=180°,在△ABC中,∠B+∠ACB+∠A=180°,∵∠BDC=∠ACB,∴∠A=∠BCD,∵在△ADH中,∠A+∠ADH+∠AHD=180°,∴∠BCD+∠ADH+∠AHD=180°.当DF交射线CA与点H时,如图3,∵∠BAC=∠ADH+∠AHD(外角的性质),∠BAC=∠BCD,∴∠BCD=∠ADH+∠AHD.点评:本题考查了平行线的性质,三角形的内角和,外角的性质,在(2)中,分两种情况画出图形是解决本题的关键.一、填空题(本大题共1小题,共6分)28.已知如图:△ABC中,∠ABC的三等分线与∠ACB的三等分线分别相交于G1,G2,(1)若∠A=75°,则∠BG1C=145°;∠BG2C=110°;(2)试猜想:∠BG1C与∠A的关系.∠BG1C=120°+∠A;(3)试猜想:∠BG2C与∠A的关系.∠BG2C=60°+∠A.考点:三角形内角和定理.分析:(1)根据三角形的内角和定理可得∠ABC+∠ACB=138°,再由角的三等分线可得G2∠BC+∠G2CB,即可求得∠BG2C的度数;进一步在△BG1C中,得出∠G1BC+∠G1CB,求得∠BG1C;(2)(3)由(1)得出结论直接猜想得出答案即可.解答:解:(1)∵∠A=75°,∴∠ABC+∠ACB=180°﹣75°=105°,∴∠G2BC+∠G2CB=(∠ABC+∠ACB)°=70°,∴∠BG2C=180°﹣70°=110°.∴∠G1BC+∠G1CB=(∠ABC+∠ACB)=35°,∴∠BG1C=180°﹣35°=145°.(2)∠BG1C=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A;∠BG2C=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=60°+∠A.故答案为:145°,110°(2)(3).点评:本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.二、解答题(本大题共2小题,第29题6分,第30题8分,共14分)29.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).考点:一元一次不等式组的应用.专题:阅读型.分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.30.已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP 于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.考点:三角形内角和定理;三角形的外角性质.分析:根据三角形内角和定理可求出∠CBA+∠ACB,根据邻补角的性质可求出∠MBC+∠NGB,再根据角平分线的性质∠PBC+∠PCB,根据三角形内角和定理算出结果.解答:解:(1)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°∴∠MBC+∠NGB=360°﹣∠ABC﹣∠ACB=360°﹣(180°﹣α)=180°+α∵BP,CP分别平分△ABC的外角∠CBM和∠BCN∴∠PBC=∠MBC,∠PCB=∠NCB∴∠PBC+∠PCB=∠MBC+∠NCB=(180°+α)=90°+α∵∠BPC+∠PBC+∠PCB=180°∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(90°+α)=90°﹣α∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角∴∠MBC=α+β∵BP平分∠MBC∴∠MBP=∠MBC=(α+β)∵∠MBP是△ABP的外角,AP 平分∠BAC∴∠BAP=α,∠MBP=∠BAP+∠APB∴∠PBD=90°﹣∠APB=90°﹣(∠MBP﹣∠BAP)=90°﹣∠MBP+∠BAP=90°﹣(α+β)+α=90°﹣β;(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论已发生变化;∠PBD=.点评:本题考查了三角形内角和定理,角平分线,外角的性质.注意知识的灵活运用.。
北京十二中2016-2017学年第二学期中考试试题初一数学一、选择题(每题2分,共20分) 1.下列计算正确的是( ). A .326x x x ⋅=B .448x x x +=C .326()x x -=D .333()xy x y -=【答案】C【解析】选项A 应该是325x x x ⋅=,B 应该是4442x x x +=,D 应该是333()xy x y -=-,故选C .2.如果不等式组2x x m <⎧⎨>⎩有解,则m 的取值范围是( ).A .2m >B .2m ≥C .2m <D .2m ≤【答案】C【解析】∵不等式有解, ∴根据数轴, ∴判断2m <.3.若a b >,则下列等式中一定成立的是( ). A .33a b ->-B .22a b< C .22ac bc > D .22(1)(1)m a m b +>+【答案】D 【解析】∵a b >, 根据不等式性质, 选项A 应该是33a b --<,B 应该是22a b >, C 应该是22ac bc ≥.故选D .4.已知4x y +=-,3xy =,则22x y +=( ). A .22 B .10 C .13 D .5【答案】B【解析】∵4x y +=, ∴2()16x y +=, ∴22216x y xy ++=, ∵3xy =, ∴22616x y ++=, 2210x y +=.5.已知2310x y -+=且694m x y -+=,则m 的值为( ). A .7 B .3 C .1 D .5【答案】C【解析】∵2310x y -+=, ∴231x y -=-, 又∵694m x y -+=, 3(23)4m x y --=,34m +=, 1m =.6.下列等式中,正确的有( ). ①22(3)9a a -=-;②22(2)24a a a +=++; ③2(3)(3)9a a a +-=- ;④22()()4a b a b ab -=+-. A .1个B .2个C .3个D .4个【答案】A【解析】①22(3)69a a a -=-+故①错; ②22(2)44a a a +=++,故②错; ③2(3)(3)9a a a +-=-故③错;④222()2()4a b a ab b a b ab -=-+=+-,故④对, 故选A .7.若2()()x a x b x kx ab --=++,则k 的值为( ). A .a b + B .a b -- C .a b - D .b a -【答案】B【解析】∵2()()x a x b x kx ab --=++, 2()()()x a x b x a b x ab --=-++,∴知k a b =--.8.已知2213a ab +=,23221ab b +=,则22213644a ab b ++-的值为( ). A .45B .66C .77D .55【答案】A【解析】∵2213a ab +=①,23221ab b +=②, ①2⨯得,22426a ab +=③, ②3⨯得29663ab b +=④, ∴③+④得22213689a ab b ++=, ∴22213644894445a ab b ++-=-=.9.已知a 、b 为常数,若0ax b +>的解集是14x <,则0bx a -<的解集是( ). A .4x >-B .4x <-C .4x >D .4x <【答案】B【解析】∵0ax b +>的解集14x <, ∴bx a <-,则14b a -=,∴0a <, 4a b =-,∴0b >,∴0bx a -<,40bx b +<, 40x +<, 4x <-.10.已知a 、b 满足等式229x a b =++,2(32)y a b =--,则x 、y 的大小关系是( ). A .x y < B .x y ≤C .x y >D .x y ≥【答案】C【解析】判断大小用作差法, 229264x y a b a b -=++-++22(21)(69)3a a b b =-+++++ 22(1)(3)3a b =-+++.∵2(1)0a -≥,2(3)0b +≥, ∴22(1)(3)30a b -+++>, ∴0x y ->, ∴x y >.二、填空题(每题2分,共20分)11.已知方程组22103215x y x y +=⎧⎨+=⎩,则x y +=__________.【答案】5【解析】∵22103215x y x y +=⎧⎨+=⎩①②,∴①+②得5525x y +=5x y +=.12.若不等式(3)3m x m ->-的解集为1x <,则m 的取值范围是__________. 【答案】3m <【解析】∵解集为1x <, ∴30m -<, ∴3m <.13.若317335804m m x y --+-=是关于x 、y 的二元一次方程,则mn =__________.【答案】43mn =【解析】根据题意,311m -=,∴23m =, 731n -=,∴2n =,∴43mn =.14.如果2(3)16x k x +-+是完成平方式,则k =__________. 【答案】11k =或5-【解析】根据题意38k -=±,∴11k =或5-.15.已知2(3)(1)x x kx +--化简后不含x 项,则k =__________. 【答案】1k =-【解析】232(3)(1)(1)(1)3x x kx kx k x k x +--=-+-++-, ∵不含x 项, ∴10k +=,1k =-.16.不等式组202(1)(3)0x x x -⎧⎨--->⎩≤的正整数解为__________.【答案】1,2【解析】∵202(1)(3)0x x x -⎧⎨--->⎩≤①②,解①得2x ≤,②得1x >-, ∴12x -<≤, ∴正整数解1,2.17.若2m a =,3n a =,则32m n a +=__________. 【答案】72【解析】∵2m a =,∴33(2)8m a ==, ∴3n a =,∴22(3)9n a ==, ∴328972m n a +=⨯=.18.已知12a a -=,则2421a a a =-+__________.【答案】15【解析】∵12a a-=,∵212a a =+, ∴2422121(12)(12)1a aa a a a +=-++-++212144121aa a a +=++--+212124aa a +=++225a a= 15=.19.已知21m m =+,21n n =+,则33m n +=__________. 【答案】4【解析】∵21m m =+,21n n =+, ∴3322m n m m n n +=⋅+⋅ (1)(1)m m n n =+++ 22m n m n =+++11m n m n =+++++ 222m n =++.又∵22m n m n -=-, ()()m n m n m n -+=-,∴0m n -≠,∴1m n +=, ∴332()24m n m n +=++=.20.若55432543210(21)x a x a x a x a x a x a +=+++++,则42a a +=__________. 【答案】120【解析】令0x =时,01a =,令1x =时,543210243a a a a a a +++++=①, 令1x =-时,5432101a a a a a a -+++++=-②, 令①+②得420222242a a a ++= 4222240a a += 42120a a +=.三、计算题(每小题4分,共16分) 21.2(3)a a b c -+. 【答案】见解析 【解析】2(3)a a b c -+ 2226a ab ac =-+.22.2109. 【答案】见解析 【解析】2109 2(1009)=+10000180081=++ 11881=.23.(231)(231)a b a b --++. 【答案】见解析【解析】(231)(231)a b a b --++ [][]2(31)2(31)a b a b =-+++ 22(2)(31)a b =-+ 224(961)a b b =-++224961a b b =+--.24.2()()()2()(4)x y x y x y y x y y ⎡⎤+---+-÷-⎣⎦.【答案】见解析【解析】2()()()2()(4)x y x y x y y x y y ⎡⎤+---+-÷-⎣⎦[]{}()()()2(4)x y x y x y y y =-+--+÷-[]()(2)(4)x y x y x y y =-+-+÷- []()4(4)x y y y =-⋅÷-()x y =--x y =-+.四、解方程,不等式组(每小题4分,共12分) 25.1233(1)1x y x y +⎧=⎪⎨⎪-=+⎩. 【答案】见解析【解析】1233(1)1x y x y +⎧=⎪⎨⎪-=+⎩①②,整理得32234x y x y -=⎧⎨-=⎩③④令③-④22y y =-,2y -=-, 2y =.把2y =代入①得2x =, ∴22x y =⎧⎨=⎩.26.7(5)2(1)152131032x x x x -++>-⎧⎪+-⎨-<⎪⎩.【答案】见解析【解析】7(5)2(1)152131032x x x x -++>-⎧⎪⎨+--<⎪⎩①②,解①得2x >,②得1x >, ∴2x >.27.23mx x ->+. 【答案】见解析 【解析】23mx x ->+,5mx x ->,(1)5m x ->,①10m ->,∴51x m >-, ②10m -<,∴51x m <-, ②10m -=,∴x 无解.五、解答题(28-32,每小题5分,33小题7分,共32分)28.在长为12m ,宽为9m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.12m【答案】见解析【解析】解:设小长方形长为x ,宽为y , 根据题意可列方程21229x y y x +=⎧⎨+=⎩①②,解得52x y =⎧⎨=⎩,答:小长方形长为5m ,宽为2m .29.已知2343231x y kx y k +=⎧⎨+=+⎩且12y x -<-<,求k 的取值范围.【答案】见解析【解析】解:∵2343231x y k x y k +=⎧⎨+=+⎩①②①-②1y x k -=-,∵12y x -<-<, ∴112k -<-<, ∴03k <<.30.已知2100x x +-=,求代数式2(1)(2)(2)(3)x x x x x -++---的值. 【答案】见解析【解析】解:代数式2(1)(2)(2)(3)x x x x x -++--- 2222143x x x x x =-++--+ 23x x =+-,∵2100x x +-=, ∴210x x +=, ∴原式1037=-=.31.已知120153a m =+,120163b m =+,120173c m =+,求222a b c ab bc ac ++---的值.【答案】见解析【解析】222a b c ab bc ac ++---2221(222222)2a b c ab bc ac =++--- 2221()()()2a b b c a c ⎡⎤=-+-+-⎣⎦, ∵120153a m =+,120163b m =+,120173c m =+,代入原式22211111112015201620162017201520172333333m m m m m m ⎡⎤⎛⎫⎛⎫⎛⎫=+--++--++--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1(114)2=++ 3=.32.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值. 解:∵2222440m mn n n -+-+=, ∴222(2)(44)0m mn n n n -++-+=, ∴22()(2)0m n n -+-=, ∴2()0m n -=,2(2)0n -=, ∴2n =,2m =.根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则a =__________,b =__________. (2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC △的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC △的周长.(提示:三角形任意两边之和大于第三边,任意两边之差小于第三边) 【答案】见解析【解析】(1)∵2262100a b a b ++-+=, 22(69)(21)0a a b b -++-+=, 22(3)(1)0a b -+-=,∵2(3)0a -≥,2(1)0b -≥, ∴30a -=,3a =,10b -=,1b =.(2)22228160x y xy y +-++=,222(2)(816)0x x y y y -++++=,22()(4)0x y y -++=,∵2()0x y -≥,2(4)0y +≥,∴0x y -=,x y =,40y +=,4y =-,∴4x =-,∴16xy =.(3)22248180a b a b +--+=,222428160a a b b -++-+=,222(1)(4)0a b -+-=,∵2(1)0a -≥,2(4)0b -≥,∴10a -=,1a =,40b -=,4b =,∵a b c +>,∴5c <,b ac -<,∴3x >,∵a 、b 、c 为正整数,∴4c =,∴ABC △周长1449++=.33.某超市老板到批发中心选购甲、乙两种品牌的文具盒共300个,乙品牌的进货单价比甲品牌进货单价多15元,当购进甲品牌的文具盒120个时,购进甲、乙品牌文具盒共需7200元. (1)求甲、乙两种品牌的的文具盒进货单价.(2)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获得不低于1795元,问该超市有几种进货方案,分别是什么方案. (3)哪种方案能使获利最大,最大获得为多少元.【答案】见解析【解析】(1)设甲文具盒进货单件为x 元,乙为y 元,15120(300120)7200y x x y -=⎧⎨+-=⎩, 解得1530x y =⎧⎨=⎩, 答:甲进货单件为15元,乙为30元.(2)解:设进甲x 个,乙为300x -个, 49(300)17951530(300)6300x x x x +-⎧⎨+-⎩≥①≤②解①得181x ≤, ②得180x ≥,∴180181x ≤≤.∴有两种方案1.甲进180个,乙进120个.2.甲进181个,乙进119个.(3)根据乙种获利较大为9元,选第一种方案, 获利180412091800⨯+⨯=(元).更多初中数学资料,初中数学试题精解请微信关注。