【高优指导】2017高考数学一轮复习 第十二章 概率 12.5 离散型随机变量的均值与方差课件 理 北师大版
- 格式:ppt
- 大小:1.57 MB
- 文档页数:33
【步步高】(某某专用)2017版高考数学一轮复习 第十二章 概率、随机变量及其概率分布 12.1 随机事件的概率 理1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算定义符号表示包含关系 如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系 若B ⊇A 且A ⊇BA =B 并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件) A ∪B (或A +B )交事件(积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件) A ∩B (或AB )互斥事件 若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件 若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件P (A )+P (B )=1(1)概率的取值X 围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ).(5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × )(3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________. ①至多有一次中靶 ②两次都中靶 ③只有一次中靶 ④两次都不中靶 答案 ④解析 射击两次的结果有:一次中靶;两次中靶;两次都不中靶,故至少一次中靶的互斥事件是两次都不中靶.2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为________. 答案 0.3解析 因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.3.(2015·某某改编)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为________石. 答案 169解析 因为样品中米内夹谷的比为28254,所以这批米内夹谷为1 534×28254≈169(石).4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一 事件关系的判断例1 某城市有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报纸”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报纸”,事件E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件. (1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .解 (1)由于事件C “至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 不发生可导致事件E 一定发生,且事件E 不发生会导致事件B 一定发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件. (4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.思维升华 对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件.这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中①恰有1名男生和恰有2名男生;②至少有1名男生和至少有1名女生;③至少有1名男生和全是女生.解①是互斥事件,不是对立事件.“恰有1名男生”实质选出的是“1名男生和1名女生”,与“恰有2名男生”不可能同时发生,所以是互斥事件,不是对立事件.②不是互斥事件,也不是对立事件.“至少有1名男生”包括“1名男生和1名女生”与“2名都是男生”两种结果,“至少有1名女生”包括“1名女生和1名男生”与“2名都是女生”两种结果,它们可能同时发生.③是互斥事件且是对立事件.“至少有1名男生”,即“选出的2人不全是女生”,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以两个事件互斥且对立.题型二随机事件的频率与概率例2 (2015·)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.思维升华 (1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数n 50 100 200 500 1 000 2 000 优等品数m 45 92 194 470 954 1 902 优等品频率mn(1)(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)解 (1)依据公式f =mn,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个).因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14.命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1X 奖券,多购多得.1 000X 奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1X 奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求: (1)P (A ),P (B ),P (C ); (2)1X 奖券的中奖概率;(3)1X 奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1X 奖券中奖包含中特等奖、一等奖、二等奖.设“1X 奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A 、B 、C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1X 奖券的中奖概率为611 000.(3)设“1X 奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1X 奖券中特等奖或中一等奖”为对立事件, ∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1X 奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:命中环数 10环 9环 8环 7环 概率0.320.280.180.12(1)射中9环或10环的概率; (2)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.28+0.32=0.60.(2)设“射击一次,至少命中8环”的事件为B ,则B 表示事件“射击一次,命中不足8环”. 又B =A 8∪A 9∪A 10,由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10)=0.18+0.28+0.32=0.78. 故P (B )=1-P (B )=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.22.用正难则反思想求互斥事件的概率典例(14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.规X解答解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[8分](2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.[10分]P(A)=1-P(A1)-P(A2)=1-15-110=710.[12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[14分]温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示 (1)对统计表的信息不理解,错求x ,y ,难以用样本平均数估计总体. (2)不能正确地把事件A 转化为几个互斥事件的和或对立事件,导致计算错误.[方法与技巧]1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ). 2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. [失误与防X]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.A 组 专项基础训练 (时间:45分钟)1.下列命题:①将一枚硬币抛两次,设事件M :“两次出现正面”,事件N :“只有一次出现反面”,则事件M 与N 互为对立事件;②若事件A 与B 互为对立事件,则事件A 与B 为互斥事件;③若事件A 与B 为互斥事件,则事件A 与B 互为对立事件;④若事件A 与B 互为对立事件,则事件A ∪B 为必然事件,其中,真命题是________. 答案 ②④解析 对①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A 、B 为对立事件,则一次试验中A 、B 一定有一个要发生,故④正确.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是________. 答案1735解析设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.3.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为______________.答案0.35解析“抽到的产品不是一等品”与事件A是对立事件,∴所求概率=1-P(A)=0.35. 4.从存放的分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一X卡片并记下,统计结果如下:卡片12345678910取到次数138576131810119则取到为奇数的卡片的频率是________.答案0.53解析取到为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53. 5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.答案0.45解析设区间[25,30)对应矩形的另一边长为x,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x)×5=1,解得x=0.05.产品为二等品的概率为0.04×5+0.05×5=0.45. 6.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值X 围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P A <1,0<P B <1,P A +P B ≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43.9.(2014·某某)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1 000 2 000 3 000 4 000 车辆数(辆)500130100150120(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.10.从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm以上(含180 cm)的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).解(1)第六组的频率为450=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.(2)身高在第一组[155,160)的频率为0.008×5=0.04,身高在第二组[160,165)的频率为0.016×5=0.08,身高在第三组[165,170)的频率为0.04×5=0.2,身高在第四组[170,175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5,估计这所学校的800名男生的身高的中位数为m,则170<m<175.由0.04+0.08+0.2+(m-170)×0.04=0.5,得m=174.5,所以可估计这所学校的800名男生的身高的中位数为174.5.由直方图得后三组频率为0.08+0.06+0.008×5=0.18,所以身高在180 cm以上(含180 cm)的人数为0.18×800=144.(3)第六组[180,185)的人数为4,设为a,b,c,d,第八组[190,195]的人数为2,设为A,B,则从中选两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB ,AB ,共15种情况,因事件E ={|x -y |≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB ,共7种情况,故P (E )=715.由于|x -y |max =195-180=15,所以事件F ={|x -y |>15}是不可能事件,P (F )=0. 由于事件E 和事件F 是互斥事件, 所以P (E ∪F )=P (E )+P (F )=715.B 组 专项能力提升 (时间:25分钟)11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是___________.①A +B 与C 是互斥事件,也是对立事件; ②B +C 与D 是互斥事件,也是对立事件; ③A +C 与B +D 是互斥事件,但不是对立事件; ④A 与B +C +D 是互斥事件,也是对立事件. 答案 ④解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,④正确.12.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________. 答案 45解析 记其中被污损的数字为x ,依题意得甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=15(442+x ),令90>15(442+x ),解得x <8,所以x 的可能取值是0~7,因此甲的平均成绩超过乙的平均成绩的概率为810=45.13.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y,且x >0,y >0,则x +y 的最小值为________. 答案 9解析 由题意可知4x +1y =1,则x +y =(x +y )(4x +1y )=5+(4y x +x y )≥9,当且仅当4y x =xy,即x=2y 时等号成立.14.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间/分钟 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解 (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),故用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为所用时间/分钟10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率0.10.40.40.1(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站. 由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1;同理,P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,∵P (B 1)<P (B 2), ∴乙应选择L 2.15.(2015·某某)随机抽取一个年份,对某某市该年4月份的天气情况进行统计,结果如下: 日期12345678910 11 12 13 14 15(2)某某市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,某某市不下雨的概率为P =2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78,以频率估计概率,运动会期间不下雨的概率为78.。
【步步高】(江苏专用)2017版高考数学一轮复习 第十二章 概率、随机变量及其概率分布 12.5 独立性及二项分布 理1.条件概率及其性质(1)对于两个事件A 和B ,在已知事件B 发生的条件下,事件A 发生的概率叫做条件概率,用符号P (A |B )来表示,其公式为P (A |B )=P ABP B(P (B )>0).在古典概型中,若用n (B )表示事件B 中基本事件的个数,则P (A |B )=n ABn B.(2)条件概率具有的性质: ①0≤P (A |B )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若事件A 的发生与事件B 的发生互不影响,则称事件A 、B 是相互独立事件.(2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )(6)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.( × )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为________. 答案 27解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(2014·课标全国Ⅱ改编)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.3.如图,用K ,A 1,A 2三类不同的元件连结成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为________. 答案 0.864解析 方法一 由题意知K ,A 1,A 2正常工作的概率分别为P (K )=0.9,P (A 1)=0.8,P (A 2)=0.8,∵K ,A 1,A 2相互独立,∴A 1,A 2至少有一个正常工作的概率为P (A 1A 2)+P (A 1A 2)+P (A 1A 2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P (K )[P (A 1A 2)+P (A 1A 2)+P (A 1A 2)]=0.9×0.96=0.864. 方法二 A 1,A 2至少有一个正常工作的概率为1-P (A1A 2)=1-(1-0.8)(1-0.8)=0.96,故系统正常工作的概率为P (K )[1-P (A 1A 2)]=0.9×0.96=0.864.4.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 答案 35解析 设该队员每次罚球的命中率为p ,则依题意有1-p 2=1625,即p 2=925.又0<p <1,故p=35. 5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,所求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.答案 (1)14 (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P AB P A =14.(2)AB 表示事件“豆子落在△OEH 内”,P (B |A )=P AB P A =△OEH 的面积正方形EFGH 的面积=14.引申探究若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25,P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P AB P A =P B P A =34.思维升华 条件概率的求法:(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P ABP A,这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n ABn A.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为________. 答案 79解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P ABP A =730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率. 解 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”, 则P (A )=C 12C 23=23,P (B )=C 24C 35=35.∵事件A 与B 相互独立,A 与B 相互独立,则A ·B 表示事件“甲选中3号歌手,且乙未选中3号歌手”.∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )] =23×25=415, (或P (A B )=C 12·C 34C 23·C 35=415).(2)设C 表示事件“观众丙选中3号歌手”, 则P (C )=C 24C 35=35,依题意,A ,B ,C 相互独立,A ,B ,C 相互独立, 且AB C ,A B C ,A BC ,ABC 彼此互斥. 又P (X =2)=P (AB C )+P (A B C )+P (A BC ) =23×35×25+23×25×35+13×35×35=3375, P (X =3)=P (ABC )=23×35×35=1875,∴P (X ≥2)=P (X =2)+P (X =3)=3375+1875=1725.思维升华 解答此类问题的方法技巧 (1)首先判断几个事件的发生是否相互独立; (2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.(2015·陕西改编)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的概率分布;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T(2)设T 1,T 212T 的概率分布相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91. 题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的概率分布.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23=827, P (C )=C 24⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-232×12=427. (2)X 的可能的取值为0,1,2,3.则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎪⎫1-232×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-12=427, P (X =3)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23×13=19.∴X 的概率分布为命题点2 例4 在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.解 (1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB +A B ,且事件A 、B 相互独立. 故P (AB +A B )=P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4, 且ξ~B (4,12),则P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4).故变量ξ的概率分布为思维升华 (1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2014·四川改编)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38,P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝⎛⎭⎪⎫1-121=38,P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝⎛⎭⎪⎫1-12=18,P (X =-200)=C 03×⎝ ⎛⎭⎪⎫120×⎝⎛⎭⎪⎫1-123=18.所以X 的概率分布为(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.18.独立事件概率求解中的易误点典例 (16分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的概率分布.易错分析 解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35(23)3×(13)2=80243这一错误结果.规范解答解 (1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.[4分] (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.[8分] (3)设“第i 次射击击中目标”为事件A i (i =1,2,3). 由题意可知,ξ的所有可能取值为0,1,2,3,6.[10分]P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827; P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.[14分]所以ξ的概率分布是[16分]温馨提醒 (1)正确区分相互独立事件与n 次独立重复试验是解决这类问题的关键.独立重复试验是在同一条件下,事件重复发生或不发生. (2)独立重复试验中的概率公式P (X =k )=C k n p k(1-p )n -k表示的是n 次独立重复试验中事件A发生k 次的概率,p 与1-p 的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A 有k 次不发生的概率了.[方法与技巧]1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P AB P A =n ABn A,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P (AB )=P (A )P (B ).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P (A ∪B )=P (A )+P (B ).3.n 次独立重复试验中,事件A 恰好发生k 次可看作是C kn 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A 事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p )n -k.因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.[失误与防范]1.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.A 组 专项基础训练 (时间:45分钟)1.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率________.①事件A ,B 同时发生; ②事件A ,B 至少有一个发生; ③事件A ,B 至多有一个发生; ④事件A ,B 都不发生. 答案 ③解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.2.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为________. 答案 34解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14.故目标被击中的概率P =1-P (A B C )=34.3.袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是________. 答案 78解析 所有的基本事件的个数为2×2×2=8,其中总分低于4分的事件只有一个,即三次均摸出黑球,故所求事件的概率为1-18=78.4.设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是________. 答案3132解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4. ∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.5.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为________. 答案512解析 设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=23×(1-34)+(1-23)×34=512. 6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 答案 0.72解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得,p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.8.一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的有甲、乙、丙3位病人,且各人之间互不影响,有下列结论: ①3位病人都被治愈的概率为0.93; ②3人中的甲被治愈的概率为0.9;③3人中恰有2人被治愈的概率是2×0.92×0.1; ④3人中恰好有2人未被治愈的概率是3×0.9×0.12; ⑤3人中恰好有2人被治愈,且甲被治愈的概率是0.92×0.1. 其中正确结论的序号是________. 答案 ①②④9.某人向一目标射击4次,每次击中目标的概率为13,该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比. (1)设X 表示目标被击中的次数,求X 的概率分布;(2)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P (A ).解 (1)依题意知X ~B (4,13),P (X =0)=C 04(13)0(1-13)4=1681, P (X =1)=C 14(13)1(1-13)3=3281, P (X =2)=C 24(13)2(1-13)2=2481, P (X =3)=C 34(13)3(1-13)1=881, P (X =4)=C 44(13)4(1-13)0=181. ∴X 的概率分布为(2)设A i B i 表示事件“第二次击中目标时,击中第i 部分”,i =1,2.依题意知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,A =A 1B 1∪A 1B 1∪A 1B 1∪A 2B 2,所求的概率为P (A )=P (A 1B 1)+P (A 1B 1)+P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 2)P (B 2)=0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28.10.(2014·陕西)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6 元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本.所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的概率分布为(2)设C i表示事件“第i C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.B 组 专项能力提升 (时间:30分钟)11.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为__________. 答案 1-p解析 根据题意,设事件A 发生的概率为a ,事件B 发生的概率为b ,则有⎩⎪⎨⎪⎧-a -b =p , ①a-b =-a b . ②由②知a =b ,代入①即得a =1-p .12.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为__________________.答案 C 27×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫135解析 由S 7=3知,在前7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为23,摸取白球的概率为13,则S 7=3的概率为C 27×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫135.13.先后掷骰子(骰子的六个面上分别标有1,2,3,4,5,6)两次落在水平桌面后,记正面朝上的点数分别为x ,y .设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数,且x ≠y ”,则概率P (B |A )=________. 答案 13解析 由题意知P (A )=P (x 是偶数)·P (y 是偶数)+P (x 是奇数)·P (y 是奇数)=12×12+12×12=12.记事件AB 表示“x +y 为偶数,x ,y 中有偶数,且x ≠y ”即“x 、y 都是偶数且x ≠y ”,所以P (AB )=16,故P (B |A )=P AB P A =13.14.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的概率分布.解 依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫234-k.(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的概率分布是15.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率; (2)求该射手的总得分X 的概率分布.解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D ∪B C D ∪B C D , 根据事件的独立性和互斥性,得P (A )=P (B C D ∪B C D ∪B C D )=P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意知,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性,得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136. P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112, P (X =2)=P (B C D ∪B C D )=P (B C D )+P (B C D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19, P (X =3)=P (BC D ∪B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X 的概率分布为。
【步步高】(江苏专用)2017版高考数学一轮复习第十二章概率、随机变量及其概率分布 12.3 几何概型理1.几何概型的概念设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=d的测度D的测度.3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.( √)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √)(4)随机模拟方法是以事件发生的频率估计概率.( √)(5)与面积有关的几何概型的概率与几何图形的形状有关.( ×)(6)从区间[1,10]内任取一个数,取到1的概率是P=19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为________.答案13解析坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东改编)在区间[0,2]上随机地取一个数x,则事件“-1≤121log()2x+≤1”发生的概率为________.答案34解析∵由-1≤121log()2x+≤1,得12≤x+12≤2,∴0≤x≤32.∴由几何概型的概率计算公式得所求概率P=32-02-0=34.3.(2014·辽宁改编)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是________.答案π4解析设质点落在以AB为直径的半圆内为事件A,则P(A)=阴影面积长方形面积=12π·121×2=π4.4.(2014·福建)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案0.18解析 由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.5.(教材改编)如图,圆中有一内接等腰三角形.假设你在图中随机撒一把黄豆,则它落在阴影部分的概率为________. 答案1π解析 设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R ,则所求事件的概率为: P =S 阴S 圆=12×2R ×2R πR =1π.题型一 与长度、角度有关的几何概型例1 (1)(2015·重庆)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.(2)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________.答案 (1)23 (2)13解析 (1)方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1·x 2>0,即⎩⎪⎨⎪⎧4p 2-p -,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率. 解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt△ABD 中,AD =3,∠B =60°, 所以BD =ADtan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得:P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.若本例(3)中“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)如图,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)16 (2)16解析 (1)如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60°360°=16. (2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2015·福建改编)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________. 答案 14解析 由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32.∴P =326=14.命题点2 与线性规划知识交汇命题的问题例3 (2014·重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________. 答案932解析 设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟,根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部分所示,阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax-b 2+π2有零点的概率为________.(2)(2014·湖北改编)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.答案 (1)1-π4 (2)78解析 (1)由函数f (x )=x 2+2ax -b 2+π2有零点, 可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点, 试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π}, 其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2}, 即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4. (2)如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB =2-142=78.题型三 与体积有关的几何概型例4 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 1-π12解析 V 正=23=8,V 半球=12×43π×13=23π,V 半球V 正=2π8×3=π12, 故点P 到O 的距离大于1的概率为1-π12.思维升华 求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.答案 16解析 因为11A A BD A ABD V V --==13·S △ABD ·AA 1=16·S矩形ABCD·AA 1=16V长方体,故所求概率为VA -A 1BD V 长方体=16.16.混淆长度型与面积型几何概型致误典例 (14分)在长度为1的线段上任取两点,将线段分成三段,试求这三条线段能构成三角形的概率.易错分析 不能正确理解题意,无法找出准确的几何度量来计算概率. 规范解答解 设x 、y 表示三段长度中的任意两个.因为是长度,所以应有0<x <1,0<y <1,0<x +y <1,即(x ,y )对应着坐标系中以(0,1)、(1,0)和(0,0)为顶点的三角形内的点,如图所示.[6分] 要形成三角形,由构成三角形的条件知⎩⎪⎨⎪⎧x +y >1-x -y ,1-x -y >x -y ,1-x -y >y -x ,所以x <12,y <12,且x +y >12,故图中阴影部分符合构成三角形的条件.[10分] 因为阴影部分的三角形的面积占大三角形面积的14,故这三条线段能构成三角形的概率为14.[14分]温馨提醒 解决几何概型问题的易误点:(1)不能正确判断事件是古典概型还是几何概型,导致错误.(2)利用几何概型的概率公式时,忽视验证事件是否具有等可能性,导致错误.[方法与技巧]1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限个. 2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型. [失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.A 组 专项基础训练(时间:40分钟)1.(2014·湖南改编)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. 答案 35解析 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.2.在区间[-1,4]内取一个数x ,则22x x -≥14的概率是________.答案 35解析 不等式22x x -≥14,可化为x 2-x -2≤0,则-1≤x ≤2, 故所求概率为2--4--=35. 3.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为_________________________________________________. 答案 12解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是__________. 答案 1-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是1-π4.5.已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为________.答案 45解析 由题意可知,三角形的三条边长的和为5+12+13=30,而蚂蚁要在离三个顶点的距离都大于1的地方爬行,则它爬行的区域长度为3+10+11=24,根据几何概型的概率计算公式可得所求概率为2430=45.6.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.7.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.8.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆域如图所示:设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.9.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 答案24-π24解析 由题意作图,如图则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24.10.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个; 故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}; 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0};画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 组 专项能力提升(时间:30分钟)11.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________. 答案π120解析 屋子的体积为5×4×3=60立方米,捕蝇器能捕捉到的空间体积为18×43π×13×3=π2立方米.故苍蝇被捕捉的概率是π260=π120.12.(2015·湖北改编)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy ≤12”的概率,则下列关系正确的是________.①p 1<p 2<p 3 ②p 2<p 3<p 1 ③p 3<p 1<p 2 ④p 3<p 2<p 1答案 ②解析 如图,点(x ,y )所处的空间为正方形OBCA 表示的平面区域(包括其边界),故本题属于几何概型中的“面积比”型.分别画出三个事件对应的图形,根据图形面积的大小估算概率的大小.满足条件的x ,y 构成的点(x ,y )在正方形OBCA 及其边界上.事件“x +y ≥12”对应的图形为图①所示的阴影部分;事件“|x -y |≤12”对应的图形为图②所示的阴影部分;事件“xy ≤12”对应的图形为图③所示的阴影部分.对三者的面积进行比较,可得p 2<p 3<p 1.13.如图,已知点A 在坐标原点,点B 在直线y =1上,点C (3,4),若AB ≤10,则△ABC 的面积大于5的概率是________. 答案524解析 设B (x,1),根据题意知点D (34,1),若△ABC 的面积小于或等于5,则12×DB ×4≤5,即DB ≤52,此时点B 的横坐标x ∈[-74,134],而AB ≤10,所以点B 的横坐标x ∈[-3,3],所以△ABC 的面积小于或等于5的概率为 P =3--746=1924,所以△ABC 的面积大于5的概率是1-P =524.14.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解 (1)集合M 内的点形成的区域面积S =8.因圆x 2+y 2=1的面积S 1=π,故所求概率为S 1S=π8. (2)由题意|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分,阴影部分面积S 2=4,所求概率为S 2S =12.15.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P(A)=A的面积Ω的面积=-2×12+-2×12242=506.5576=1 0131 152.。
12.5 离散型随机变量的均值与方差必备知识预案自诊知识梳理1.离散型随机变量的均值与方差若离散型随机变量X 的分布列为P (X=x i )=p i ,i=1,2,…,n.(1)均值:称EX= 为随机变量X 的均值或数学期望. (2)方差:称DX=∑i =1i(x i -EX )2p i 为随机变量X 的方差,其算术平方根√DX为随机变量X的 .(3)期望的含义:①期望是算术平均值概念的推广,是概率意义下的平均;②EX 是一个实数,由X 的分布列唯一确定,即作为随机变量,X 是可变的,可取不同值,而EX 是不变的,它描述X 取值的平均状态;③EX=x 1p 1+x 2p 2+…+x n p n 直接给出了EX 的求法,即随机变量取值与相应概率分别相乘后相加.(4)方差的含义:①随机变量的方差与标准差都反映了随机变量取值的稳定与波动.集中与离散的程度DX 越大,表明平均偏离程度越大,X 的取值越分散.反之,DX 越小,X 的取值越集中在EX 附近.②方差也是一个常数,它不具有随机性,方差的值一定是非负.2.均值与方差的性质(1)E (aX+b )= ; (2)E (ξ+η)=E ξ+E η;(3)D (aX+b )= .3.两点分布与二项分布的均值与方差(1)若X 服从两点分布,则EX= ,DX= . (2)若X~B (n ,p ),则EX= ,DX= .1.若X 1,X 2相互独立,则E (X 1·X 2)=EX 1·EX2.2.均值与方差的关系:DX=EX 2-E 2X. 3.Ek=k ,Dk=0,其中k 为常数. 4.E (X 1+X 2)=EX 1+EX 2.5.若X~N (μ,σ2),则X 的均值与方差分别为EX=μ,DX=σ2. 6.若Y=aX+b ,其中a ,b 是常数,X 是随机变量,则E (aX+b )=aEX+b ,D (aX+b )=A 2DX.7.超几何分布的均值:若X 服从参数为N ,M ,n 的超几何分布,则EX=nMN .考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)期望是算术平均数概念的推广,与概率无关.( )(2)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事.( ) (3)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小.( )(5)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )2.已知某8个数的期望为5,方差为3,现又加入一个新数据5,此时这9个数的期望记为EX ,方差记为DX ,则( )A.EX=5,DX>3B.EX=5,DX<3C.EX<5,DX>3D.EX<5,DX<33.已知随机变量X 满足E (2X+3)=7,D (2X+3)=16,则下列选项正确的是( )A.EX=72,DX=132B.EX=2,DX=4C.EX=2,DX=8D.EX=74,DX=8 4.设0<a<1,随机变量X 的分布列是:X 0 a 1 P 13 13 13则当a 在(0,1)内增大时( )A.DX 增大B.DX 减小C.DX 先增大后减小D.DX 先减小后增大5.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX= .关键能力学案突破考点求离散型随机变量的均值与方差〖例1〗从某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段〖40,50),〖50,60),…,〖90,100〗后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在〖70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随机抽取2人,抽到的学生成绩在〖40,60)记0分,在〖60,80)记1分,在〖80,100〗记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.解题心得1.求离散型随机变量X的均值与方差的步骤:(1)理解X的意义,写出X的全部可能取值.(2)求X取每个值的概率.(3)写出X的分布列.(4)由均值的定义求EX.(5)由方差的定义求DX.2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量aX+b的均值是aEX+b,方差为a2DX.对点训练1某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组〖13,14),第二组〖14,15),…,第五组〖17,18〗,如图是按上述分组方法得到的频率分布直方图.(1)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).(2)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为ξ,求ξ的分布列,期望及方差.考点二项分布的均值与方差〖例2〗(2020甘肃天水一中高三月考)某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙答对每个试题的概率均为34,且甲、乙两人是否答对每个试题互不影响.(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y,求Y的分布列及数学期望和方差.解题心得(1)求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果X~B(n,p),那么用公式EX=np,DX=np(1-p)求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aEξ+b以及Eξ=np求出E(aξ+b),同样还可求出D(aξ+b).对点训练2某部门为了解一企业在生产过程中的用水量情况,对其每天的用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨).若用水量不低于95吨,则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天的用水量超标的概率;(2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数,记随机变量X为未来这3天中用水量超标的天数,求X的分布列、数学期望和方差.考点均值与方差在决策中的应用〖例3〗(2020江苏启东中学高三月考)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年出现的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,如果有病毒,样本检测会呈现阳性,否则为阴性.根据统计发现,疑似病例核酸检测呈阳性的概率为p(0<p<1),现有4例疑似病例,分别对其取样、检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中各个样本再逐个化验;若混合样本呈阴性,则该组各个样本均为阴性.现有以下三种方案:方案一:逐个化验;方案二:四个样本混在一起化验;方案三:平均分成两组化验.在新冠肺炎爆发初期,由于检查能力不足,化检次数的期望值越小,则方案越“优”.(1)若p=1,求2个疑似病例样本混合化验结果为阳性的概率;4,现将该4例疑似病例样本进行化验,请问:方案一、二、三中哪个最“优”?(2)若p=14(3)若对4例疑似病例样本进行化验,且“方案二”比“方案一”更“优”,求p的取值范围.解题心得利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差或标准差越小,则偏离均值的平均程度越小,进而进行决策.对点训练3(2020四川三台高三一模)2020年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球,则顾客获得60元的返金券,若抽到白球,则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球,则顾客获得80元的返金券,若抽到白球,则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X=k )=C i i C i -ii -i C ii ,k=m ,m+1,m+2,…,r.其中n ,N ,M ∈N +,M ≤N ,n ≤N ,m=max{0,n-N+M },r=min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.X 的均值为EX=ii i,X 的方差为DX=ii (i -i )(i -i )i 2(i -1).〖典例〗已知100件产品中有10件次品,从中任取3件,则取出的3件产品中次品数的均值是 ,方差是 .答案0.3 0.264 5解析(方法1)用随机变量ξ表示取出的3件产品中的次品数,则ξ的所有可能取值是0,1,2,3,且有P (ξ=0)=C 100C 903C 1003≈0.7265,P (ξ=1)=C 101C 902C 1003≈0.2477,P (ξ=2)=C 102C 901C 1003≈0.0250,P (ξ=3)=1-P (ξ=0)-P (ξ=1)-P (ξ=2)≈0.0008,所以ξ的分布列为ξ 0 1 2 3 P 0.7265 0.2477 0.0250 0.0008从而E ξ=0×0.7265+1×0.2477+2×0.0250+3×0.0008=0.3001≈0.3,D ξ≈(0-0.3)2×0.7265+(1-0.3)2×0.2477+(2-0.3)2×0.0250+(3-0.3)2×0.0008≈0.2645.(方法2)这是超几何分布问题,其中N=100,M=10,n=3, 故E ξ=ii i=3×10100=310=0.3,D ξ=ii (i -i )(i -i )i 2(i -1)=3×10×(100-10)×(100-3)1002×(100-1)=2911100≈0.2645.解题心得求超几何分布的均值时,直接应用公式EX=iii比较简单,而方差公式不太容易记忆,一般是根据超几何分布的概率公式求出分布列,代入离散型随机变量的方差公式计算.对点训练从5名女生和2名男生中任选3人参加英语演讲比赛,设随机变量ξ表示所选3人中男生的人数.(1)求ξ的分布列; (2)求ξ的均值与方差; (3)求ξ≤1的概率.12.5 离散型随机变量的均值与方差必备知识·预案自诊知识梳理1.(1)x 1p 1+x 2p 2+…+x i p i +…+x n p n (2)标准差2.(1)aEX+b (3)a 2DX3.(1)p p (1-p ) (2)np np (1-p )考点自诊1.(1)× (2)× (3)√ (4)√ (5)√2.B 根据题意可知,EX=5×8+59=5,DX=3×8+(5-5)29=83<3.故选B .3.B E(2X+3)=2EX+3=7;D(2X+3)=4DX=16.故EX=2,DX=4.故选B.4.D根据题意可得EX=0+i+13=i+13,DX=(0-i+13)2·13+(i-i+13)2·13+(1-i+13)2·13=6A2-6i+627=6(i-12)2+9227,所以DX在a∈(0,12)上单调递减,在a∈(12,1)上单调递增,所以DX是先减小后增大,故选D.5.1.96有放回地抽取,是一个二项分布模型,其中p=0.02,n=100,则DX=np(1-p)=100×0.02×0.98=1.96.关键能力·学案突破例1解(1)设分数在〖70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(2)平均分为。
【步步高】(某某专用)2017版高考数学一轮复习 第十二章 概率、随机变量及其概率分布 12.4 离散型随机变量及其概率分布 理1.离散型随机变量的概率分布(1)随着试验结果变化而变化的变量叫做随机变量;所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n为离散型随机变量X ①p i __≥__0,i =1,2,…,n ; ②p 1+p 2+…+p i +…+p n =__1__.离散型随机变量在某一X 围内取值的概率等于它取这个X 围内各个值的概率之和. 2.两点分布如果随机变量X 的概率分布表为X 0 1P1-pp其中0<p <1,则称离散型随机变量服从两点分布. 3.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么 P (X =r )=C r M C n -rN -MC n N (r =0,1,2,…,l ).即X 0 1 … lPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C l M C n -lN -MC n N其中l =min(M ,n )如果一个随机变量X 的概率分布具有上表的形式,则称随机变量X 服从超几何分布. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)离散型随机变量的概率分布描述了由这个随机变量所刻画的随机现象.( √ ) (3)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( × ) (4)从4名男演员和3名女演员中选出4名,其中女演员的人数X 服从超几何分布.( √ ) (5)离散型随机变量的概率分布中,随机变量取各个值的概率之和可以小于1.( × ) (6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )1.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是________. ①至少取到1个白球; ②至多取到1个白球; ③取到白球的个数; ④取到的球的个数. 答案 ③解析 ①②表述的都是随机事件,④是确定的值2,并不随机;③是随机变量,可能取值为0,1,2.2.(教材改编)从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有________个. 答案 17解析 X 可能取得的值有3,4,5,…,19共17个. 3.随机变量X 的概率分布如下:X -1 0 1Pa b c其中a ,b ,c 成等差数列,则P 答案 23解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.4.随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,则n =________. 答案 10解析 P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n=0.3,得n =10.5.(教材改编)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 答案27220解析 由题意知取出的3个球必为2个旧球、1个新球, 故P (X =4)=C 23C 19C 312=27220.题型一 离散型随机变量的概率分布的性质例1 设随机变量X 的概率分布为P (X =k5)=ak (k =1,2,3,4,5).(1)求a ; (2)求P (X ≥35);(3)求P (110<X ≤710).解 (1)由概率分布的性质,得P (X =15)+P (X =25)+P (X =35)+P (X =45)+P (X =1)=a +2a +3a +4a +5a =1,所以a =115.(2)P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=3×115+4×115+5×115=45.(3)P (110<X ≤710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=615=25.思维升华 (1)利用概率分布中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个X 围内的概率时,根据概率分布,将所求X 围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.设离散型随机变量X 的概率分布为X 0 1 2 3 4P0.20.10.10.3m求:(1)2X +1(2)|X -1|的概率分布.解 由概率分布的性质知:0.2+0.1+0.1+0.3+m =1,得m =0.3. 首先列表为(1)2X +1的概率分布(2)|X -1|的概率分布题型二 命题点1 与排列组合有关的概率分布的求法例2 (2015·某某改编)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽的个数,求X 的概率分布.解 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14. (2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的概率分布为命题点2 例3 某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的概率分布.解 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310. (2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34. 所以X 的概率分布为命题点3 与独立事件(或独立重复试验)有关的概率分布的求法例4 (2014·某某改编)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记X 为比赛决出胜负时的总局数,求X 的概率分布.解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”.则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的概率分布为X 2 3 4 5 P59291081881思维升华 求离散型随机变量X 的概率分布的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的概率分布.求离散型随机变量的概率分布的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(1)4支圆珠笔标价分别为10元、20元、30元、40元.①从中任取一支,求其标价X 的概率分布;②从中任取两支,若以Y 表示取到的圆珠笔的最高标价,求Y 的概率分布.解 ①X 的可能取值分别为10,20,30,40,且取得任一支的概率相等,故X 的概率分布为X 10 20 30 40 P14141414②根据题意,Y 且P (Y =20)=1C 24=16,P (Y =30)=2C 24=13, P (Y =40)=3C 24=12.所以Y 的概率分布为(2)(2015·某某改编)已知2现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. ①求第一次检测出的是次品且第二次检测出的是正品的概率;②已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的概率分布.解 ①记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.②X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=35.故X 的概率分布为题型三 超几何分布例5 一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的概率分布.解 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x , 则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其概率分布为X 0 1 2 3 P112512512112思维升华 超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X 的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.(2015·某某改编)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的概率分布. 解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的概率分布为X 1 2 3 4 P114373711417.随机变量取值不全致误典例 (14分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取得球的标号之和为ξ.求随机变量ξ的可能取值及其概率分布.易错分析 由于随机变量取值情况较多,极易发生对随机变量取值考虑不全而导致解题错误. 规X 解答解由题意可得,随机变量ξ的可能取值是2,3,4,6,7,10.[4分]P(ξ=2)=0.3×0.3=0.09,P(ξ=3)=C12×0.3×0.4=0.24,P(ξ=4)=0.4×0.4=0.16,P(ξ=6)=C12×0.3×0.3=0.18,P(ξ=7)=C12×0.4×0.3=0.24,P(ξ=10)=0.3×0.3=0.09.[10分]故随机变量ξ的概率分布为ξ2346710P 0.090.240.160.180.240.09[14分]温馨提醒(1)解决此类问题的关键是弄清随机变量的取值,正确应用概率公式.(2)此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全面.(3)避免以上错误发生的有效方法是验证随机变量的概率和是否为1.[方法与技巧]1.对于随机变量X的研究,需要了解随机变量能取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值X围以及取这些值的概率.2.求离散型随机变量的概率分布,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[失误与防X]掌握离散型随机变量的概率分布,须注意:(1)概率分布的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据概率分布的两个性质来检验求得的概率分布的正误.A组专项基础训练(时间:40分钟)1.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于n -m A 2mA 3n的是________.①P (X =3) ②P (X ≥2) ③P (X ≤3) ④P (X =2) 答案 ④解析 由超几何分布知P (X =2)=n -m A 2mA 3n.2.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 值为________. 答案155解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.3.随机变量X 的概率分布规律为P (X =n )=a n n +1(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为________. 答案 56解析 ∵P (X =n )=an n +1(n =1,2,3,4),∴a 2+a 6+a 12+a 20=1,∴a =54, ∴P (12<X <52)=P (X =1)+P (X =2)=54×12+54×16=56. 4.从装有3个白球,4个红球的箱子中,随机取出了3个球,则恰好是2个白球,1个红球的概率是________. 答案1235解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.5.设离散型随机变量X 的概率分布为若随机变量Y =|X -2|答案 0.5解析 由概率分布的性质,知0.2+0.1+0.1+0.3+m =1,∴m =0.3. 由Y =2,即|X -2|=2,得X =4或X =0, ∴P (Y =2)=P (X =4或X =0) =P (X =4)+P (X =0) =0.3+0.2=0.5.6.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了,而乙抢到了两个题目都答错了,X =0,甲没抢到题,乙抢到题目答错至少2个题或甲抢到2题,但答时一对一错,而乙答错一个题目,X =1,甲抢到1题且答对或甲抢到3题,且1错2对, X =2,甲抢到2题均答对, X =3,甲抢到3题均答对.7.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________. 答案1335解析 P (ξ≤6)=P (取到3只红球1只黑球)+P (取到4只红球)=C 34C 13C 47+C 44C 47=1335.8.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (1)求1名顾客摸球3次停止摸奖的概率;(2)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的概率分布. 解 (1)设“1名顾客摸球3次停止摸奖”为事件A ,则P (A )=A 23A 34=14,故1名顾客摸球3次停止摸球的概率为14.(2)随机变量X 的所有取值为0,5,10,15,20.P (X =0)=14,P (X =5)=2A 24=16,P (X =10)=1A 24+A 22A 34=16,P (X =15)=C 12·A 22A 34=16,P (X =20)=A 33A 44=14.所以,随机变量X 的概率分布为(时间:30分钟)9.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为________. 答案解析 ∵X 的所有可能取值为∴P (X =0)=C 22C 25=0.1,P (X =1)=C 13·C 12C 25=610=0.6,P (X =2)=C 23C 25=0.3.∴X 的概率分布为10.已知随机变量ξ123d 的取值X 围是________. 答案 (-13,13)解析 设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d >0,13+d >0,得-13<d <13.11.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数η的概率分布为_____________________. 答案解析 ∵η的所有可能值为P (η=0)=C 11C 11C 12C 12=14,P (η=1)=C 11C 11×2C 12C 12=12,P (η=2)=C 11C 11C 12C 12=14.∴η的概率分布为12.盒内有大小相同的94个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球. (1)求取出的3个球中至少有1个红球的概率; (2)求取出的3个球得分之和恰为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的概率分布. 解 (1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布, 所以P (ξ=k )=C k 3C 3-k6C 39,k =0,1,2,3.故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528,P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184.所以ξ的概率分布为13.已知甲箱中只放有x ,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其他区别).若从甲箱中任取2个球,从乙箱中任取1个球.(1)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时x ,y 的值; (2)当x =2时,求取出的3个球中红球个数ξ的概率分布. 解 (1)由题意知P =C 1x C 1y C 11C 26C 14=xy 60≤160(x +y 2)2=320,当且仅当x =y 时等号成立, 所以,当P 取得最大值时x =y =3.(2)当x =2时,即甲箱中有2个红球与4个白球, 所以ξ的所有可能取值为0,1,2,3. 则P (ξ=0)=C 24C 12C 26C 14=15,P (ξ=1)=C 12C 14C 12+C 24C 12C 26C 14=715, P (ξ=2)=C 22C 12+C 12C 14C 12C 26C 14=310, P (ξ=3)=C 22C 12C 26C 14=130,所以红球个数ξ的概率分布为。