几个典型磁场里的“动态圆”问题
- 格式:doc
- 大小:682.50 KB
- 文档页数:2
几个典型动圆问题例1. 如图2所示,真空室内存有匀强磁场,磁场方向垂直于图中纸面向里,磁感应强度的大小B =0.6T 。
磁场内有一块平面感光平板ab ,板面与磁场方向平行。
在距ab 的距离为L =16cm 处。
有一个点状的α粒子放射源S ,它向各个方向发射α粒子,α粒子的速度都是s /m 100.3v 6⨯=。
已知α粒子的电荷与质量之比kg/C 100.5m q7⨯=。
现在只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有:R mvqvB 2=由此得m q BvBq mv R ==,代入数据得R =10cm 。
可见,R L R 2>>。
因向不同的方向发射α粒子的圆轨迹都经过了S ,由此可知,将通过S 点半径为R 的圆,绕S 点转动,此圆就会与ab 直线相交,其相交局部就是题里要求的ab 直线上α粒子打中的区域的长度。
其中圆与ab 右侧最远点相交于2P 点,且R 2SP 2=,继续转动圆,此圆会与ab 线相交于很多点,构成线段21P P ,圆与ab 直线上最左边的交点为圆与ab 的切点1P ,即1P 为ab 直线上α粒子打中区域的左侧最远点,如图3所示。
作SN ⊥ab ,由几何知识得.cm 8cm )1016(10)R L (R NP 22221=--=--=由图中的几何关系得:cm 12cm 16)102(L )R 2(NP 22222=-⨯=-=所求的宽度为:.cm 20cm 12cm 8NP NP P P 2121=+=+=即ab 上被α粒子打中的区域的长度为:.cm 20P P 21=例2. 如图4所示,在xOy 平面内有很多电子(质量为m ,电量为e ),从坐标原点O 持续的以相同大小的速度0v 沿不同方向射入I 象限,现加一个垂直于xOy 平面的磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x 轴向+x 方向运动,试求符合该条件的磁场的最小面积。
摘要:磁场中动态圆问题是高中物理的难点,圆轨迹的转变规律的确信是难中之难,本文就动态圆问题进行总结归类,分确信入射点和速度大小,不确信速度方向;确信入射点和速度方向,不确信速度大小;确信入射速度,不确信入射点三种模型进行归类总结,旨在为以后的解题提供帮忙。
关键词:磁场;动态圆;带电粒子带电粒子在磁场中的动态圆问题是近几年高考的热点。
这种题目的难点在于带电粒子在磁场中运动轨迹的圆心在转变。
解这种题目的关键是准确找出符合题意的临界轨迹圆弧,大体方式是找圆心、画圆、求半径、按时刻。
下面分几种模型进行论述:模型一:确信入射点和速度大小,不确信速度方向如下图,磁场中P点有带正电粒子,以相等速度V沿各个方向射入磁场中。
1.找圆心方式以P点为圆心,R长为半径画圆,圆周上各点即为所求圆心O。
2.模型特点(1)各动态圆圆心轨迹为圆。
(2)各动态圆均相交于同一点P。
(3)在纸面内,各粒子所能打到的区域是以2R为半径的圆(包络面)。
(4)各动态圆周期T相同。
3.例题分析(1)如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。
许多质量为m、带电量为+q的粒子以相同的速度v沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的彼此阻碍。
以下图中阴影部份表示带电粒子可能通过的区域,其中哪个图是正确的()。
解:如下图,圆心轨迹是以O为圆心,半径为R的一个圆弧,右边界是沿ON 方向出射的粒子轨迹包围的部份,左侧界是2R为半径的圆的包络线,因此正确答案是A。
模型二:确信入射点和速度方向,不确信速度大小如下图,磁场中P点,不同速度的带正电的粒子沿水平方向射出。
1.找圆心方式带电粒子射入磁场的方向不变,大小转变,那么所有粒子运动轨迹的圆心都在垂直于初速度的直线上。
2.模型特点(1)各动态圆圆心轨迹为直线。
(2)各动态圆的半径R不同。
(3)各动态圆均相交于同一点P。
(4)各动态圆周期T相同。
【例4】在两块平行金属板A 、B 中,B 板的正中央有一α粒子源,
可向各个方向射出速率不同的α粒子,如图所示.若在A 、B 板中加上
U AB =U 0的电压后,A 板就没有α粒子射到,U 0是α粒子不能到达A 板
的最小电压.若撤去A 、B 间的电压,为了使α粒子不射到A 板,而在
A 、
B 之间加上匀强磁场,则匀强磁场的磁感强度B 必须符合什么条件
(已知α粒子的荷质比m /q=2.l ×10-8kg/C ,A 、B 间的距离
d =10cm ,电压U 0=4.2×104V )?
13.如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,在第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里。
位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子。
在0~3t 0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。
已知t=0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场。
上述m 、q 、l 、t 0、B 为已知量。
(不考虑粒子间相互影响及返回极板间的情况)
(1) 求电压U 0的大小。
(2) 求12
t 0时刻进入两板间的带电粒子在磁场中做圆周运动的半径。
(3) 何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
“动态圆”模型带电粒子在磁场中做圆周运动轨迹的圆心位置变化的问题称为动态圆问题.常用的有两种模型.1.确定的入射点O 和速度大小v ,不确定速度方向(旋转圆模型)在垂直于纸面的无限大的磁感应强度为B 的匀强磁场中,在O 点有一粒子源在纸面内,朝各个方向发射速度大小为v ,质量为m ,电荷量为+q 的带电粒子(重力不计),这些带电粒子在匀强磁场中做同方向旋转匀速圆周运动.其特点是:(1)各动态圆圆心O 1、O 2、O 3 、O 4 、O 5(取五个圆)的轨迹分布在以粒子源O 为圆心,R =mv qB为半径的一个圆周上(如图虚线所示).(2)带电粒子在磁场中能经过的区域是以粒子源O 为圆心,2R 为半径的大圆(如图实线所示).(3)各动态圆相交于O 点.一、单边界磁场1、如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 、带电荷量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R =mvBq.哪个图是正确的( )答案:A 解析 由于带电粒子从O 点以相同速率射入纸面内的各个方向,射入磁场的带电粒子在磁场内做匀速圆周运动,其运动半径是相等的.沿ON 方向(临界方向)射入的粒子,恰能在磁场中做完整的圆周运动,则过O 点垂直MN 方向的右侧恰为一临界半圆;若将速度方向沿ON 方向逆时针偏转,则在过O 点垂直MN 方向的左侧,其运动轨迹上各个点到O 点的最远距离,恰好是以O 为圆心,以2R 为半径的14圆弧.A 正确. 2.(多选)(2012·江苏·9)如图所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,粒子重力不计,最远能落在边界上的A 点.下列说法正确的有( )A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd 2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd 2m答案:BC 解析 带电粒子在磁场中做匀速圆周运动,qv 0B =mv 20r ,所以r =mv 0qB ,当带电粒子从不同方向由O 点以速度v 0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA =2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确.若粒子速度虽然比v 0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 、D 错误.若粒子落在A 点左右两侧d 的范围内,设粒子运动轨迹的半径为r ′,则r ′≥2r -d 2,代入r =mv 0qB ,r ′=mv qB ,解得v ≥v 0-qBd 2m,选项C 正确. 3.(多选)如图所示,一粒子发射源P 位于足够大绝缘板AB 的上方d 处,能够在纸面内向各个方向发射速率为v 、电荷量为q 、质量为m的带正电的粒子。
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
磁场中的最小面积及动态圆积问题因带电粒子在磁场中做匀速圆周运动轨迹的特殊性,时常出现最小面积问题,常见的有圆形、矩形和三角形等等,以下仅就此类问题进行专题性演练。
【例1】如图所示,一质量为m 重力不计电量为q 的带电质点, 以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小半径。
【解析】由牛顿第二定律有:2v qvB m R = 可得mv R qB = 圆形磁场区域面积最小的圆是带电粒子在穿越磁场过程中以入射点 和出射点为直径的圆,故22r R = 其最小面积是:222222m v S r q B ππ== 【例2】如图,质量为m 重力不计带电量为q 的带电粒子以速度0v 从O点沿y 轴正向射入垂直于纸面、磁感强度为B 的圆形匀强磁场区域,粒子飞出磁场区域后从b 处穿过x 轴,速度方向与x 轴正向夹角为30°。
试求:(1)圆形磁场区的最小面积;(2)粒子从o 到b 经历的时间。
【解析】(1)由牛顿第二定律有:200v qv B m R = 可得0mv R qB= 如图,圆形磁场区域面积最小的圆是带电粒子以入射点和出射点为直径的圆,其半径°cos30r R =故其最小面积为:22202234m v S r q B ππ== (2)粒子从o 到b 经历的时间为:0132(3)33r m t T v qB π=+=+ 【例3】图为可测定带电粒子比荷装置的简化示意图,在第一象限区域内有垂直于纸面向里磁感应强度-32.010B T =⨯的匀强磁场,在x 轴上距坐标原点0.50L m =的P 处为离子的入射口,在y 上安放接收器,现将一重力不计的带正电的粒子以43.510/v m s =⨯的速率从P 处射入磁场,若粒子在y 轴上距坐标原点0.50L m =的M处被观测到,且运动轨迹半径恰好最小,试求:(1)该带电粒子的比荷q m; (2)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以限制在一个以PM 为边界的矩形区域内,求此矩形磁场区域的最小面积。
带电粒子在磁场中的动态圆问题高亚敏1、在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy 平面,方向指向纸外,原点O 处有一离子源,沿各个方向射出速率相等的同价正离子,对于速度在Oxy 平面内的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用下面给出的四个半圆中的一个来表示,其中正确的是( )2、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是,已知α粒子的电荷与质量之比,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
3、电子质量为m ,电荷量为e ,从坐标原点O 处沿xOy 平面射入第一象限,射入时速度方向不同,速度大小均为v 0,如图所示。
现在某一区域加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度为B ,若这些电子穿过磁场后都能垂直射到荧光屏MN 上,荧光屏与y 轴平行,求: (1)荧光屏上光斑的长度; (2)所加磁场范围的最小面积。
DCBAxyO xy O xy O xy O4、如图,ABCD 是边长为a 的正方形。
质量为m 、电荷量为e 的电子以大小为v0的初速度沿纸面垂直于BC 变射入正方形区域。
在正方形内适当区域中有匀强磁场。
电子从BC 边上的任意点入射,都只能从A 点射出磁场。
不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。
5、一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响. 下列图中阴影部分表示带电粒子可能经过的区域,其中正确的图是 ( )6、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. 图1xo y⨯s ⨯⨯⨯⨯⨯⨯⨯7、如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.带电粒子在磁场中运动的多解问题8.如图5所示,垂直纸面向里的匀强磁场以MN 为边界,左侧磁感应强度为B 1,右侧磁感应强度为B 2,B 1=2B 2=2T ,荷质比为2×106C/kg 的带正电粒子从O 点以v 0=4×104m/s 的速度垂直MN 进入右侧的磁场区域,求粒子通过距离O 点4cm 的磁场边界上的P 点所需的时间。
磁场中的动态圆问题一、粒子特点:入射粒子速度的方向相同,速度的大小不同,或者是B 的大小变化,从而造成轨迹圆的半径不同。
如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大.或者磁感应强B 越小,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线CO 上.解决方法:放缩圆法。
粒子的轨迹圆的的圆心轨迹为一条线段,利用圆规作图,不断改变圆心位置找到符合要求的轨迹圆。
例:(多选)如图2所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点,一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是( )图2A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是23t 0C.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是t 0D.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是53t 0解析 带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t0.作出粒子从O 点沿纸面以与Od 成30°角的方向射入恰好从各边射出的轨迹,如图所示发现粒子不可能经过正方形的某顶点,故A 正确;作出粒子恰好从ab 边射出的临界轨迹③④,(从ab 边射出意思是不从ad 边出,就是和ad 边相切,与ab 边相切)由几何关系知圆心角不大于150°,在磁场中经历的时间不大于512个周期,即56t 0;圆心角不小于60°,在磁场中经历的时间不小于16个周期,即13t 0,故B 正确;作出粒子恰好从bc 边射出的临界轨迹②③,由几何关系知圆心角不大于240°,在磁场中经历的时间不大于23个周期,即43t 0;圆心角不小于150°,在磁场中经历的时间不小于512个周期,即56t 0,故C 正确;若该带电粒子在磁场中经历的时间是56个周期,即53t 0.粒子轨迹的圆心角为θ=53π,速度的偏向角也为53π,根据几何知识得知,粒子射出磁场时与磁场边界的夹角为30°,必定从cd 边射出磁场,故D 错误.答案 ABC例2、如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q (q >0)的带电粒子(重力不计)从AB 边的中心O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场磁感应强度的大小B 需满足( )A.B >3mv3aqB.B <3mv 3aqC.B >3mv aqD.B <3mvaq答案 B解析 若粒子刚好达到C 点时,其运动轨迹与AC 相切,如图所示,则粒子运动的半径为r 0=atan 30°=3a .由qvB =mv 2r 得r =mvqB,粒子要能从AC 边射出,粒子运行的半径应满足r >r 0,解得B <3mv3aq,选项B 正确.3、(多选)(2018·湖北省十堰市调研)如图12所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一边长为L 的正三角形(边界上有磁场),A 、B 、C 为三角形的三个顶点.今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度v =3qBL4m从AB 边上的某点P 既垂直于AB 边又垂直于磁场的方向射入磁场,然后从BC 边上某点Q 射出.若从P 点射入的该粒子能从Q 点射出,则( )A .PB <1+34L B .PB <2+34L C .QB ≤34L D .QB ≤12L答案 BD解析 粒子在磁场中运动的轨迹如图所示:粒子在磁场中的运动轨迹半径为r =mv Bq ,因此可得r =34L ,当入射点为P 1,圆心为O 1,且此刻轨迹正好与BC 相切时,PB 取得最大值,若粒子从BC 边射出,根据几何关系有PB <P 1B =2+34L ,A错误,B 正确;当运动轨迹为弧P 2Q 时,即O 2Q 与AB 垂直时,此刻QB 取得最大值,根据几何关系有QB =rsin 60°=12L ,所以有QB ≤12L ,C 错误,D 正确.二、粒子特点:入射粒子速度的方向不相同,速度的大小相同。
几个典型动圆问题
例1. 如图2所示,真空室内存在匀强磁场,磁场方向垂直于图中纸面向里,磁感应强度的大小B =0.6T 。
磁场内有一块平面感光平板ab ,板面与磁场方向平行。
在距ab 的距离为L =16cm 处。
有一个点状的α粒子放射源S ,它向各个方向发射α粒
子,α粒子的速度都是s /m 100.3v 6
⨯=。
已知α粒
子的电荷与质量之比kg
/C 100.5m q
7⨯=。
现在只考
虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有:
R mv qvB 2
=
由此得
m q B
v
Bq mv R =
=
,代入数据得R =10cm 。
可见,R L R 2>>。
因向不同的方向发射α粒子的圆轨迹都经过了S ,由此可知,将通过S 点半径为R 的圆,绕S 点转动,此圆就会与ab 直线相交,其相交部分就是题里要求的ab 直线上α粒子打中的区域的长度。
其中圆与ab 右侧最远点相交于2P 点,且R 2SP 2=,继续转动圆,此圆会与ab 线相交于许多点,构成线段21P P ,圆与ab 直线上最左边的交点为圆与ab 的切点1P ,即1P 为ab 直线上α粒子打中区域的左侧最远点,如图3所示。
作SN ⊥ab ,由几何知识得
.cm 8cm )1016(10)R L (R NP 22221=--=--=
由图中的几何关系得:
cm 12cm 16)102(L )R 2(NP 22222=-⨯=-=
所
求
的
宽
度
为
:
.cm 20cm 12cm 8NP NP P P 2121=+=+=
即ab 上被α粒子打中的区域的长度为:
.cm 20P P 21=
例2. 如图4所示,在xOy 平面内有许多电子(质量为m ,电量为e ),从坐标原点O 不断的以相同大小的速度0v 沿不同方向射入I 象限,现加一个垂直于xOy 平面的磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x 轴向+x 方向运动,试求符合该条件的磁场的最小面积。
解析:设磁场B 的方向垂直纸面向里,当电子以与x 轴成θ角从O 点进入B 中做圆周运动,从A 点出磁场时其速度方向平行于x 轴,也就是圆弧在y 轴正向的最高点,如图5所示,所有
满足题意的点可看作是过定点O ,以半径为⎪
⎭⎫ ⎝
⎛
=Be mv R R 0的圆在纸面内绕O 转动90°角过程中圆弧最高点的集合,如图5所
示。
(A 为其上一点)。
设A 点坐标为(x ,y ),对应于圆心为1O ,由几何关系知:
.cos R R y ,sin R OB x θ-=θ==
可得2
2
2
R )R y (x =-+由圆的知识得,满足题意要求的磁场区域边界是一段41
圆弧,对应
圆心为2O ,坐标(O ,R )。
最小磁场区域的面积即为图中阴影部分面积,由几何关系得:
.
e B v m 12R 21R 412S 222
0222
min
⎪⎭⎫ ⎝⎛-π=⎪⎭⎫ ⎝⎛-π⨯=
例3、(11广东)如图19(a )所示,在以O 为圆心,内外半径分别为和的圆环区域内,
存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,,
一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力. (1)已知粒子从外圆上以速度
射出,求粒子在A 点的初速度
的大小
(2)若撤去电场,如图19(b ),已知粒子从OA 延长线与外圆的交点C 以速度
射
出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间 (3)在图19(b )中,若粒子从A 点进入
磁场,速度大小为
,方向不确定,要使
粒子一定能够从外圆射出,磁感应强度应小于多少?
【解析】(1)根据动能定理,qU =12mv 21-12mv 2
,所以v 0=
v 21
-2qU m
.
(2)如图所示,设粒子在磁场中做匀速圆周运动的半径为R ,由几何知识可知R 2+R 2=(R 2-R 1)2
,解得R =2R 0.根据洛伦兹力公式qv 2B =m v 22
R
,
解得B =mv 2q 2R 0=2mv 2
2qR 0.
根据公式t T =θ
2π
,2πR =v 2T ,
qv 2B =m v 22
R ,解得t =T 4=2πm 4Bq =2πm 4×
mv 22R =2πR 02v 2
.
(3)考虑临界情况,如图所示
①qv 3B ′1=m v 23
R 0,解得B ′1=mv 3qR 0,
②qv 3B ′2=m v 23
2R 0,解得B ′2=mv 32qR 0,
综合得:B
′<
mv 3
2qR 0
.。