5.固体流态化实验装置
- 格式:xls
- 大小:33.50 KB
- 文档页数:2
一、实验目的1. 观察固体颗粒在流态化过程中的聚式和散式流化现象。
2. 测定床层的堆积密度和空隙率。
3. 测定流体通过颗粒床层时的压降与空塔气速的曲线,并确定临界流化速度。
二、实验原理固体流态化是指固体颗粒在气体或液体介质中,由静止状态逐渐过渡到具有一定流动性的状态。
在此过程中,颗粒的流动速度与气体(或液体)的流速之间存在一定的关系。
当气体(或液体)流速达到某一临界值时,颗粒开始由静止状态转变为流态化状态,此时的流速称为临界流化速度。
三、实验装置1. 实验装置流程:鼓风机→ 气体流量调节阀→ 气体转子流量计→ 温度计→ 气体分布板→ 颗粒床层→ 床层顶部。
2. 实验材料:石英砂、空气或水。
四、实验步骤1. 将石英砂装入床层,轻轻敲打床层,使床层高度均匀一致,并测量首次静床高度。
2. 打开电源,启动风机,调节气体流量,从最小刻度开始,每次增加0.5m³/h,同时记录相应的空气流量、空气温度、床层压降等上行原始数据。
最大气体流量以不把石英砂带出床层为准。
3. 调节气体量从上行的最大流量开始,每次减少0.5m³/h,直至最小流量,记录相应的下行原始实验数据。
4. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
5. 在临界流化点之前,保证床层稳定,避免发生颗粒带出现象。
五、实验数据及处理1. 记录实验数据,包括空气流量、空气温度、床层压降、静床高度等。
2. 绘制压降与空塔气速的曲线。
3. 根据实验数据,确定临界流化速度。
六、实验结果与分析1. 通过实验观察,发现当气体流速较低时,颗粒处于静止状态;随着气体流速的增加,颗粒逐渐开始流动,床层开始出现波动;当气体流速达到临界流化速度时,颗粒完全流态化,床层波动明显。
2. 根据实验数据,绘制压降与空塔气速的曲线,曲线呈非线性关系。
3. 根据曲线,确定临界流化速度为0.4m/s。
七、实验结论1. 固体流态化过程中,颗粒的流动速度与气体流速之间存在一定的关系,当气体流速达到临界流化速度时,颗粒开始由静止状态转变为流态化状态。
固体流态化实验报告一、实验目的。
本实验旨在通过固体流态化实验,探究固体颗粒在气体流体中的运动规律,了解流态化现象的基本特征,以及对流态化过程的影响因素进行分析和研究。
二、实验原理。
固体流态化是指在气体流体作用下,固体颗粒呈现出类似流体的运动状态,其主要原理包括气体流体的作用力和颗粒本身的特性。
气体流体通过固体颗粒时,会产生上升力和阻力,使颗粒呈现出浮力和下沉的运动状态,最终形成流态化现象。
三、实验装置与方法。
本次实验采用了自行设计的固体流态化实验装置,主要包括气源、颗粒料仓、气固分离器、流化床和实验数据采集系统。
实验方法为先将颗粒料充满流化床,然后通过气源将气体通过床层,观察颗粒料的流态化现象,并采集实验数据。
四、实验结果与分析。
经过实验观察和数据采集,我们发现在一定气体流速下,颗粒料开始呈现出流态化现象,颗粒料呈现出了类似流体的运动状态。
通过对实验数据的分析,我们发现气体流速、颗粒料粒径和颗粒料密度是影响固体流态化现象的重要因素。
当气体流速增大时,颗粒料的流态化现象更加明显;颗粒料粒径较小、密度较大时,流态化现象也更加显著。
五、实验结论。
通过本次实验,我们得出了固体流态化现象的一些基本规律,即在气体流体作用下,固体颗粒呈现出流体的运动状态。
同时,我们也发现了影响固体流态化现象的重要因素,为进一步研究和应用固体流态化提供了一定的理论基础。
六、实验总结。
固体流态化实验是固体颗粒与气体流体相互作用的重要研究内容,通过本次实验,我们对固体流态化现象有了更深入的了解,也为今后的研究工作提供了一定的参考。
希望通过我们的努力,能够为固体流态化领域的发展做出更大的贡献。
七、参考文献。
1. 王明,李华. 固体流态化基础与应用. 北京,化学工业出版社,2008.2. 张三,李四. 固体流态化实验技术与应用. 上海,上海科学技术出版社,2010.以上就是本次固体流态化实验的报告内容,谢谢大家的阅读。
固体流化床特性曲线的测定一、实验概述固体流态化是近代发展的一个化工单元操作,由于它的连续性和传热性质的快速性,因而被广泛地用于化工,冶金等生产部门。
固体流态化,可分为气固体系和液固体系二种;前者称骤式流化,后者称散式流化。
固体流态化过程可分为三个阶段。
(一) 固定床阶段,(二) 流化床(亦称沸腾床)阶段,(三) 移动床(亦称输送床)阶段,它们各有自己的规律,并且都有自己的应用领域。
本实验就是测定固体流态化过程——流化三阶段——特性曲线。
二、实验目的1.认识固体流化床基本结构及操作2.掌握固体流态化过程特征三、实验原理流体通过固体颗粒层时,随流速和颗粒变化将出现三种状态。
(一)当固体重力大于其所受浮力与摩擦力之和时,固体在床层上不动,称固定床。
(二)当固体重力等于其所受浮力与摩擦力之和时,固体失重,在床层上下翻腾,称沸腾床.(三) 当固体重力小于其所受浮力与摩擦力之和时,固体将随流体流动离开床层,称为移动床。
以上三种状态既然是固体和流体间力的作用的结果,它们就可以用数学关系来描述,实践中用流化装置的流体压强降(△P)和其线速度(v)的变化关系来表示;或用床层高度(H)和流体速度(v)的关系表达之。
本实验采用玻璃球和水组成流化体系,在一个模拟床内进行流化操作,测定△P,v,H,以求出固体流化过程特性曲线。
四、实验设备和装置1.实验设备①转子流量计LZB—25 一只=600mm 一套②流化床φ50×3mm h高③U型压强计H 500mm 一只④标尺 1 m 一根2.实验装置固体流态化特性曲线测定装置如教材212页图4.4-1所示,将流化床下端入口与水龙头通过导管连接起来,中间串接一个转子流量计,流化床两端支管分别与U 型压强计相接在一起。
流化床另一侧垂直竖立一个标尺以测床层高度。
五、实验步骤1.检查装置管线是否正确,有无漏气。
2.打开水龙头,用出水阀调节流量,进行设备充水排气。
3.校正U 型压强计零点,并记下零点误差。
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
固体流态化的流动特性实验(示范实验)1、实验目的在环境工程专业,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
①通过本实验,认识与了解流化床反应器运行。
掌握解流化床反应器启动中物料的连续流化方法及其测定的主要内容,掌握流化床与固定床的区别,掌握鼓泡流化床与循环流化床在本质上的差异。
②测定流化床床层压降与气速的关系曲线本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和流化速度,并试验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
2、实验装置与实验原理介绍流化床反应器是一种易于大型化生产的重要化学反应器。
通常是指反应物料悬浮于从下而上的气流或者液流之中,气体或者液体中的成分在与反应物料的接触中发生反应。
流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉)。
目前,流化床反应器已在电力、化工、石油、冶金、核工业等行业得到广泛应用。
与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油流化床催化裂化的迅速发展就是这一方面的典型例子。
然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体反应物料在流动过程中的剧烈撞击和摩擦,使物料加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒反应物料的带出,造成明显的反应物料流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。
实验五、固体流态化实验
1.基本参数
(1)设备参数 液-固系统
柱体内径: d =Φ50mm 柱高: h =520mm 孔板流量
计锐孔直径d 0 = 3mm 孔流系数:C 0 =0.6025 静床层高度: H 0 =100mm
(2)固体颗粒基本参数 固体种类:玻璃微珠
平均粒径: d p =0.3-0.5mm 颗粒密度: ρ= 1937kg · m –3 堆积密度: ρb =1160 kg · m –3 孔隙率)(s
b
s ρρρε-=
: ε= 0.401 (3)流体物性数据
流体种类: 水
温 度: T t = 27.8℃ 密 度:ρg = 997.5kg · m –3 粘 度:μg =8.94×10-4P a · s
2实验数据记录
3在双对数坐标纸上标绘Δ p -u 0关系曲线,并求出临界流化速度u 0,f 。
将实验测定值与计算值进行比较,算出相对误差。
4.在双对数坐标纸上标绘固定床阶段的R em-λm的关系曲线。
将实验测定曲线与由计算值标绘的曲线进行对照比较。
化工原理实验报告固体流态化主要测量点及仪表引言在化工领域中,固体流态化是一个重要的研究方向。
通过研究固体颗粒在流体中的行为,可以帮助我们了解固体颗粒的流动特性,从而优化化工流程,提高生产效率。
本实验报告旨在探讨固体流态化实验的主要测量点以及适用的仪表。
测量点固体流态化实验中,主要需要测量以下几个方面的参数:1. 固体颗粒的流动速度固体颗粒的流动速度是流态化实验中的关键参数。
通过测量颗粒的流动速度,我们可以评估固体颗粒的输送能力,进而决定设备的尺寸和操作条件。
常用的测量方法包括使用流速计、超声波测量等。
2. 固体颗粒的浓度分布固体颗粒的浓度分布描述了颗粒在流体中的分布情况。
浓度分布的均匀性对于流动的稳定性和设备的性能有重要影响。
测量固体颗粒浓度分布的方法主要有侵蚀式测量法、非侵蚀式测量法等。
3. 固体颗粒的压力损失固体颗粒在流动中会产生压力损失,这是由于颗粒与流体之间的摩擦作用引起的。
测量固体颗粒的压力损失可以帮助我们了解流态化过程中的能量消耗情况,从而评估设备的能效。
常用的测量方法包括压力传感器测量、差压测量等。
4. 固体颗粒的颗粒尺寸分布固体流态化过程中,颗粒的尺寸分布对于流态化的稳定性和效果有重要影响。
测量固体颗粒的颗粒尺寸分布可以帮助我们了解不同颗粒尺寸对流体中的行为影响,从而优化流态化过程。
常见的测量方法有激光粒度仪、动态图像分析仪等。
适用仪表为了准确测量上述参数,需要使用适当的仪表。
以下是几种常用的仪表:1. 流速计流速计可以测量固体颗粒的流动速度,常见的类型有电磁流速计、涡轮流速计等。
选择合适的流速计应考虑流体性质、流速范围以及测量精度等。
2. 浓度计浓度计可以用于测量固体颗粒的浓度分布,常见的类型有阻抗浓度计、光学浓度计等。
选择合适的浓度计应考虑颗粒浓度范围、测量精度以及是否影响流动性等因素。
3. 压力传感器压力传感器可以测量流态化过程中固体颗粒的压力损失。
选择合适的压力传感器应考虑工作范围、精度以及介质是否腐蚀性等因素。
4固体流态化实验4.1实验目的(1)掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法; (2)测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 4.2实验原理 4.2.1固定床 1)基本概念当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。
床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下:1.静床堆积密度:ρb =M/V,它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。
ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。
2.静床空隙率ε:ε=1–(ρb /ρs ),它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。
2)固定床阶段压降Δp m 与空速u 的关系当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。
因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式:m m m d uK d K uL p ψ-+ψ-=∆ρεεμεε322321)1()()1((1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直线,从直线的斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。
4.2.2流化床 1)基本概念当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。